use std::{ fmt, marker::PhantomData, ops::{Index, IndexMut}, slice, }; use crate::{Idx, IndexVec}; /// A view into contiguous `T`s, indexed by `I` rather than by `usize`. /// /// One common pattern you'll see is code that uses [`IndexVec::from_elem`] /// to create the storage needed for a particular "universe" (aka the set of all /// the possible keys that need an associated value) then passes that working /// area as `&mut IndexSlice` to clarify that nothing will be added nor /// removed during processing (and, as a bonus, to chase fewer pointers). #[derive(PartialEq, Eq, Hash)] #[repr(transparent)] pub struct IndexSlice { _marker: PhantomData, pub raw: [T], } impl IndexSlice { #[inline] pub const fn empty() -> &'static Self { Self::from_raw(&[]) } #[inline] pub const fn from_raw(raw: &[T]) -> &Self { let ptr: *const [T] = raw; // SAFETY: `IndexSlice` is `repr(transparent)` over a normal slice unsafe { &*(ptr as *const Self) } } #[inline] pub fn from_raw_mut(raw: &mut [T]) -> &mut Self { let ptr: *mut [T] = raw; // SAFETY: `IndexSlice` is `repr(transparent)` over a normal slice unsafe { &mut *(ptr as *mut Self) } } #[inline] pub const fn len(&self) -> usize { self.raw.len() } #[inline] pub const fn is_empty(&self) -> bool { self.raw.is_empty() } /// Gives the next index that will be assigned when `push` is called. /// /// Manual bounds checks can be done using `idx < slice.next_index()` /// (as opposed to `idx.index() < slice.len()`). #[inline] pub fn next_index(&self) -> I { I::new(self.len()) } #[inline] pub fn iter(&self) -> slice::Iter<'_, T> { self.raw.iter() } #[inline] pub fn iter_enumerated( &self, ) -> impl DoubleEndedIterator + ExactSizeIterator + '_ { self.raw.iter().enumerate().map(|(n, t)| (I::new(n), t)) } #[inline] pub fn indices( &self, ) -> impl DoubleEndedIterator + ExactSizeIterator + Clone + 'static { (0..self.len()).map(|n| I::new(n)) } #[inline] pub fn iter_mut(&mut self) -> slice::IterMut<'_, T> { self.raw.iter_mut() } #[inline] pub fn iter_enumerated_mut( &mut self, ) -> impl DoubleEndedIterator + ExactSizeIterator + '_ { self.raw.iter_mut().enumerate().map(|(n, t)| (I::new(n), t)) } #[inline] pub fn last_index(&self) -> Option { self.len().checked_sub(1).map(I::new) } #[inline] pub fn swap(&mut self, a: I, b: I) { self.raw.swap(a.index(), b.index()) } #[inline] pub fn get(&self, index: I) -> Option<&T> { self.raw.get(index.index()) } #[inline] pub fn get_mut(&mut self, index: I) -> Option<&mut T> { self.raw.get_mut(index.index()) } /// Returns mutable references to two distinct elements, `a` and `b`. /// /// Panics if `a == b`. #[inline] pub fn pick2_mut(&mut self, a: I, b: I) -> (&mut T, &mut T) { let (ai, bi) = (a.index(), b.index()); assert!(ai != bi); if ai < bi { let (c1, c2) = self.raw.split_at_mut(bi); (&mut c1[ai], &mut c2[0]) } else { let (c2, c1) = self.pick2_mut(b, a); (c1, c2) } } /// Returns mutable references to three distinct elements. /// /// Panics if the elements are not distinct. #[inline] pub fn pick3_mut(&mut self, a: I, b: I, c: I) -> (&mut T, &mut T, &mut T) { let (ai, bi, ci) = (a.index(), b.index(), c.index()); assert!(ai != bi && bi != ci && ci != ai); let len = self.raw.len(); assert!(ai < len && bi < len && ci < len); let ptr = self.raw.as_mut_ptr(); unsafe { (&mut *ptr.add(ai), &mut *ptr.add(bi), &mut *ptr.add(ci)) } } #[inline] pub fn binary_search(&self, value: &T) -> Result where T: Ord, { match self.raw.binary_search(value) { Ok(i) => Ok(Idx::new(i)), Err(i) => Err(Idx::new(i)), } } } impl IndexSlice { /// Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`, /// assuming the values in `self` are a permutation of `0..self.len()`. /// /// This is used to go between `memory_index` (source field order to memory order) /// and `inverse_memory_index` (memory order to source field order). /// See also `FieldsShape::Arbitrary::memory_index` for more details. // FIXME(eddyb) build a better abstraction for permutations, if possible. pub fn invert_bijective_mapping(&self) -> IndexVec { debug_assert_eq!( self.iter().map(|x| x.index() as u128).sum::(), (0..self.len() as u128).sum::(), "The values aren't 0..N in input {self:?}", ); let mut inverse = IndexVec::from_elem_n(Idx::new(0), self.len()); for (i1, &i2) in self.iter_enumerated() { inverse[i2] = i1; } debug_assert_eq!( inverse.iter().map(|x| x.index() as u128).sum::(), (0..inverse.len() as u128).sum::(), "The values aren't 0..N in result {self:?}", ); inverse } } impl fmt::Debug for IndexSlice { fn fmt(&self, fmt: &mut fmt::Formatter<'_>) -> fmt::Result { fmt::Debug::fmt(&self.raw, fmt) } } impl Index for IndexSlice { type Output = T; #[inline] fn index(&self, index: I) -> &T { &self.raw[index.index()] } } impl IndexMut for IndexSlice { #[inline] fn index_mut(&mut self, index: I) -> &mut T { &mut self.raw[index.index()] } } impl<'a, I: Idx, T> IntoIterator for &'a IndexSlice { type Item = &'a T; type IntoIter = slice::Iter<'a, T>; #[inline] fn into_iter(self) -> slice::Iter<'a, T> { self.raw.iter() } } impl<'a, I: Idx, T> IntoIterator for &'a mut IndexSlice { type Item = &'a mut T; type IntoIter = slice::IterMut<'a, T>; #[inline] fn into_iter(self) -> slice::IterMut<'a, T> { self.raw.iter_mut() } } impl ToOwned for IndexSlice { type Owned = IndexVec; fn to_owned(&self) -> IndexVec { IndexVec::from_raw(self.raw.to_owned()) } fn clone_into(&self, target: &mut IndexVec) { self.raw.clone_into(&mut target.raw) } } impl Default for &IndexSlice { #[inline] fn default() -> Self { IndexSlice::from_raw(Default::default()) } } impl Default for &mut IndexSlice { #[inline] fn default() -> Self { IndexSlice::from_raw_mut(Default::default()) } } // Whether `IndexSlice` is `Send` depends only on the data, // not the phantom data. unsafe impl Send for IndexSlice where T: Send {}