use super::TypeErrCtxt; use rustc_errors::Applicability::{MachineApplicable, MaybeIncorrect}; use rustc_errors::{pluralize, Diagnostic, MultiSpan}; use rustc_hir::{self as hir, def::DefKind}; use rustc_middle::traits::ObligationCauseCode; use rustc_middle::ty::error::ExpectedFound; use rustc_middle::ty::print::Printer; use rustc_middle::{ traits::ObligationCause, ty::{self, error::TypeError, print::FmtPrinter, suggest_constraining_type_param, Ty}, }; use rustc_span::{def_id::DefId, sym, BytePos, Span, Symbol}; impl<'tcx> TypeErrCtxt<'_, 'tcx> { pub fn note_and_explain_type_err( &self, diag: &mut Diagnostic, err: TypeError<'tcx>, cause: &ObligationCause<'tcx>, sp: Span, body_owner_def_id: DefId, ) { use ty::error::TypeError::*; debug!("note_and_explain_type_err err={:?} cause={:?}", err, cause); let tcx = self.tcx; match err { ArgumentSorts(values, _) | Sorts(values) => { match (values.expected.kind(), values.found.kind()) { (ty::Closure(..), ty::Closure(..)) => { diag.note("no two closures, even if identical, have the same type"); diag.help("consider boxing your closure and/or using it as a trait object"); } (ty::Alias(ty::Opaque, ..), ty::Alias(ty::Opaque, ..)) => { // Issue #63167 diag.note("distinct uses of `impl Trait` result in different opaque types"); } (ty::Float(_), ty::Infer(ty::IntVar(_))) if let Ok( // Issue #53280 snippet, ) = tcx.sess.source_map().span_to_snippet(sp) => { if snippet.chars().all(|c| c.is_digit(10) || c == '-' || c == '_') { diag.span_suggestion( sp, "use a float literal", format!("{}.0", snippet), MachineApplicable, ); } } (ty::Param(expected), ty::Param(found)) => { let generics = tcx.generics_of(body_owner_def_id); let e_span = tcx.def_span(generics.type_param(expected, tcx).def_id); if !sp.contains(e_span) { diag.span_label(e_span, "expected type parameter"); } let f_span = tcx.def_span(generics.type_param(found, tcx).def_id); if !sp.contains(f_span) { diag.span_label(f_span, "found type parameter"); } diag.note( "a type parameter was expected, but a different one was found; \ you might be missing a type parameter or trait bound", ); diag.note( "for more information, visit \ https://doc.rust-lang.org/book/ch10-02-traits.html\ #traits-as-parameters", ); } (ty::Alias(ty::Projection, _), ty::Alias(ty::Projection, _)) => { diag.note("an associated type was expected, but a different one was found"); } (ty::Param(p), ty::Alias(ty::Projection, proj)) | (ty::Alias(ty::Projection, proj), ty::Param(p)) if tcx.def_kind(proj.def_id) != DefKind::ImplTraitPlaceholder => { let p_def_id = tcx .generics_of(body_owner_def_id) .type_param(p, tcx) .def_id; let p_span = tcx.def_span(p_def_id); if !sp.contains(p_span) { diag.span_label(p_span, "this type parameter"); } let hir = tcx.hir(); let mut note = true; let parent = p_def_id .as_local() .and_then(|id| { let local_id = hir.local_def_id_to_hir_id(id); let generics = tcx.hir().find_parent(local_id)?.generics()?; Some((id, generics)) }); if let Some((local_id, generics)) = parent { // Synthesize the associated type restriction `Add`. // FIXME: extract this logic for use in other diagnostics. let (trait_ref, assoc_substs) = proj.trait_ref_and_own_substs(tcx); let item_name = tcx.item_name(proj.def_id); let item_args = self.format_generic_args(assoc_substs); // Here, we try to see if there's an existing // trait implementation that matches the one that // we're suggesting to restrict. If so, find the // "end", whether it be at the end of the trait // or the end of the generic arguments. let mut matching_span = None; let mut matched_end_of_args = false; for bound in generics.bounds_for_param(local_id) { let potential_spans = bound .bounds .iter() .find_map(|bound| { let bound_trait_path = bound.trait_ref()?.path; let def_id = bound_trait_path.res.opt_def_id()?; let generic_args = bound_trait_path.segments.iter().last().map(|path| path.args()); (def_id == trait_ref.def_id).then_some((bound_trait_path.span, generic_args)) }); if let Some((end_of_trait, end_of_args)) = potential_spans { let args_span = end_of_args.and_then(|args| args.span()); matched_end_of_args = args_span.is_some(); matching_span = args_span .or_else(|| Some(end_of_trait)) .map(|span| span.shrink_to_hi()); break; } } if matched_end_of_args { // Append suggestion to the end of our args let path = format!(", {}{} = {}",item_name, item_args, p); note = !suggest_constraining_type_param( tcx, generics, diag, &format!("{}", proj.self_ty()), &path, None, matching_span, ); } else { // Suggest adding a bound to an existing trait // or if the trait doesn't exist, add the trait // and the suggested bounds. let path = format!("<{}{} = {}>", item_name, item_args, p); note = !suggest_constraining_type_param( tcx, generics, diag, &format!("{}", proj.self_ty()), &path, None, matching_span, ); } } if note { diag.note("you might be missing a type parameter or trait bound"); } } (ty::Param(p), ty::Dynamic(..) | ty::Alias(ty::Opaque, ..)) | (ty::Dynamic(..) | ty::Alias(ty::Opaque, ..), ty::Param(p)) => { let generics = tcx.generics_of(body_owner_def_id); let p_span = tcx.def_span(generics.type_param(p, tcx).def_id); if !sp.contains(p_span) { diag.span_label(p_span, "this type parameter"); } diag.help("type parameters must be constrained to match other types"); if tcx.sess.teach(&diag.get_code().unwrap()) { diag.help( "given a type parameter `T` and a method `foo`: ``` trait Trait { fn foo(&self) -> T; } ``` the only ways to implement method `foo` are: - constrain `T` with an explicit type: ``` impl Trait for X { fn foo(&self) -> String { String::new() } } ``` - add a trait bound to `T` and call a method on that trait that returns `Self`: ``` impl Trait for X { fn foo(&self) -> T { ::default() } } ``` - change `foo` to return an argument of type `T`: ``` impl Trait for X { fn foo(&self, x: T) -> T { x } } ```", ); } diag.note( "for more information, visit \ https://doc.rust-lang.org/book/ch10-02-traits.html\ #traits-as-parameters", ); } (ty::Param(p), ty::Closure(..) | ty::Generator(..)) => { let generics = tcx.generics_of(body_owner_def_id); let p_span = tcx.def_span(generics.type_param(p, tcx).def_id); if !sp.contains(p_span) { diag.span_label(p_span, "this type parameter"); } diag.help(&format!( "every closure has a distinct type and so could not always match the \ caller-chosen type of parameter `{}`", p )); } (ty::Param(p), _) | (_, ty::Param(p)) => { let generics = tcx.generics_of(body_owner_def_id); let p_span = tcx.def_span(generics.type_param(p, tcx).def_id); if !sp.contains(p_span) { diag.span_label(p_span, "this type parameter"); } } (ty::Alias(ty::Projection, proj_ty), _) if tcx.def_kind(proj_ty.def_id) != DefKind::ImplTraitPlaceholder => { self.expected_projection( diag, proj_ty, values, body_owner_def_id, cause.code(), ); } (_, ty::Alias(ty::Projection, proj_ty)) if tcx.def_kind(proj_ty.def_id) != DefKind::ImplTraitPlaceholder => { let msg = format!( "consider constraining the associated type `{}` to `{}`", values.found, values.expected, ); if !(self.suggest_constraining_opaque_associated_type( diag, &msg, proj_ty, values.expected, ) || self.suggest_constraint( diag, &msg, body_owner_def_id, proj_ty, values.expected, )) { diag.help(&msg); diag.note( "for more information, visit \ https://doc.rust-lang.org/book/ch19-03-advanced-traits.html", ); } } (ty::FnPtr(_), ty::FnDef(def, _)) if let hir::def::DefKind::Fn = tcx.def_kind(def) => { diag.note( "when the arguments and return types match, functions can be coerced \ to function pointers", ); } _ => {} } debug!( "note_and_explain_type_err expected={:?} ({:?}) found={:?} ({:?})", values.expected, values.expected.kind(), values.found, values.found.kind(), ); } CyclicTy(ty) => { // Watch out for various cases of cyclic types and try to explain. if ty.is_closure() || ty.is_generator() { diag.note( "closures cannot capture themselves or take themselves as argument;\n\ this error may be the result of a recent compiler bug-fix,\n\ see issue #46062 \n\ for more information", ); } } TargetFeatureCast(def_id) => { let target_spans = tcx.get_attrs(def_id, sym::target_feature).map(|attr| attr.span); diag.note( "functions with `#[target_feature]` can only be coerced to `unsafe` function pointers" ); diag.span_labels(target_spans, "`#[target_feature]` added here"); } _ => {} } } fn suggest_constraint( &self, diag: &mut Diagnostic, msg: &str, body_owner_def_id: DefId, proj_ty: &ty::AliasTy<'tcx>, ty: Ty<'tcx>, ) -> bool { let tcx = self.tcx; let assoc = tcx.associated_item(proj_ty.def_id); let (trait_ref, assoc_substs) = proj_ty.trait_ref_and_own_substs(tcx); if let Some(item) = tcx.hir().get_if_local(body_owner_def_id) { if let Some(hir_generics) = item.generics() { // Get the `DefId` for the type parameter corresponding to `A` in `::Foo`. // This will also work for `impl Trait`. let def_id = if let ty::Param(param_ty) = proj_ty.self_ty().kind() { let generics = tcx.generics_of(body_owner_def_id); generics.type_param(param_ty, tcx).def_id } else { return false; }; let Some(def_id) = def_id.as_local() else { return false; }; // First look in the `where` clause, as this might be // `fn foo(x: T) where T: Trait`. for pred in hir_generics.bounds_for_param(def_id) { if self.constrain_generic_bound_associated_type_structured_suggestion( diag, &trait_ref, pred.bounds, assoc, assoc_substs, ty, msg, false, ) { return true; } } } } false } /// An associated type was expected and a different type was found. /// /// We perform a few different checks to see what we can suggest: /// /// - In the current item, look for associated functions that return the expected type and /// suggest calling them. (Not a structured suggestion.) /// - If any of the item's generic bounds can be constrained, we suggest constraining the /// associated type to the found type. /// - If the associated type has a default type and was expected inside of a `trait`, we /// mention that this is disallowed. /// - If all other things fail, and the error is not because of a mismatch between the `trait` /// and the `impl`, we provide a generic `help` to constrain the assoc type or call an assoc /// fn that returns the type. fn expected_projection( &self, diag: &mut Diagnostic, proj_ty: &ty::AliasTy<'tcx>, values: ExpectedFound>, body_owner_def_id: DefId, cause_code: &ObligationCauseCode<'_>, ) { let tcx = self.tcx; let msg = format!( "consider constraining the associated type `{}` to `{}`", values.expected, values.found ); let body_owner = tcx.hir().get_if_local(body_owner_def_id); let current_method_ident = body_owner.and_then(|n| n.ident()).map(|i| i.name); // We don't want to suggest calling an assoc fn in a scope where that isn't feasible. let callable_scope = matches!( body_owner, Some( hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(..), .. }) | hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn(..), .. }) | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn(..), .. }), ) ); let impl_comparison = matches!(cause_code, ObligationCauseCode::CompareImplItemObligation { .. }); let assoc = tcx.associated_item(proj_ty.def_id); if !callable_scope || impl_comparison { // We do not want to suggest calling functions when the reason of the // type error is a comparison of an `impl` with its `trait` or when the // scope is outside of a `Body`. } else { // If we find a suitable associated function that returns the expected type, we don't // want the more general suggestion later in this method about "consider constraining // the associated type or calling a method that returns the associated type". let point_at_assoc_fn = self.point_at_methods_that_satisfy_associated_type( diag, assoc.container_id(tcx), current_method_ident, proj_ty.def_id, values.expected, ); // Possibly suggest constraining the associated type to conform to the // found type. if self.suggest_constraint(diag, &msg, body_owner_def_id, proj_ty, values.found) || point_at_assoc_fn { return; } } self.suggest_constraining_opaque_associated_type(diag, &msg, proj_ty, values.found); if self.point_at_associated_type(diag, body_owner_def_id, values.found) { return; } if !impl_comparison { // Generic suggestion when we can't be more specific. if callable_scope { diag.help(&format!( "{} or calling a method that returns `{}`", msg, values.expected )); } else { diag.help(&msg); } diag.note( "for more information, visit \ https://doc.rust-lang.org/book/ch19-03-advanced-traits.html", ); } if tcx.sess.teach(&diag.get_code().unwrap()) { diag.help( "given an associated type `T` and a method `foo`: ``` trait Trait { type T; fn foo(&self) -> Self::T; } ``` the only way of implementing method `foo` is to constrain `T` with an explicit associated type: ``` impl Trait for X { type T = String; fn foo(&self) -> Self::T { String::new() } } ```", ); } } /// When the expected `impl Trait` is not defined in the current item, it will come from /// a return type. This can occur when dealing with `TryStream` (#71035). fn suggest_constraining_opaque_associated_type( &self, diag: &mut Diagnostic, msg: &str, proj_ty: &ty::AliasTy<'tcx>, ty: Ty<'tcx>, ) -> bool { let tcx = self.tcx; let assoc = tcx.associated_item(proj_ty.def_id); if let ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) = *proj_ty.self_ty().kind() { let opaque_local_def_id = def_id.as_local(); let opaque_hir_ty = if let Some(opaque_local_def_id) = opaque_local_def_id { match &tcx.hir().expect_item(opaque_local_def_id).kind { hir::ItemKind::OpaqueTy(opaque_hir_ty) => opaque_hir_ty, _ => bug!("The HirId comes from a `ty::Opaque`"), } } else { return false; }; let (trait_ref, assoc_substs) = proj_ty.trait_ref_and_own_substs(tcx); self.constrain_generic_bound_associated_type_structured_suggestion( diag, &trait_ref, opaque_hir_ty.bounds, assoc, assoc_substs, ty, msg, true, ) } else { false } } fn point_at_methods_that_satisfy_associated_type( &self, diag: &mut Diagnostic, assoc_container_id: DefId, current_method_ident: Option, proj_ty_item_def_id: DefId, expected: Ty<'tcx>, ) -> bool { let tcx = self.tcx; let items = tcx.associated_items(assoc_container_id); // Find all the methods in the trait that could be called to construct the // expected associated type. // FIXME: consider suggesting the use of associated `const`s. let methods: Vec<(Span, String)> = items .in_definition_order() .filter(|item| { ty::AssocKind::Fn == item.kind && Some(item.name) != current_method_ident && !tcx.is_doc_hidden(item.def_id) }) .filter_map(|item| { let method = tcx.fn_sig(item.def_id).subst_identity(); match *method.output().skip_binder().kind() { ty::Alias(ty::Projection, ty::AliasTy { def_id: item_def_id, .. }) if item_def_id == proj_ty_item_def_id => { Some(( tcx.def_span(item.def_id), format!("consider calling `{}`", tcx.def_path_str(item.def_id)), )) } _ => None, } }) .collect(); if !methods.is_empty() { // Use a single `help:` to show all the methods in the trait that can // be used to construct the expected associated type. let mut span: MultiSpan = methods.iter().map(|(sp, _)| *sp).collect::>().into(); let msg = format!( "{some} method{s} {are} available that return{r} `{ty}`", some = if methods.len() == 1 { "a" } else { "some" }, s = pluralize!(methods.len()), are = pluralize!("is", methods.len()), r = if methods.len() == 1 { "s" } else { "" }, ty = expected ); for (sp, label) in methods.into_iter() { span.push_span_label(sp, label); } diag.span_help(span, &msg); return true; } false } fn point_at_associated_type( &self, diag: &mut Diagnostic, body_owner_def_id: DefId, found: Ty<'tcx>, ) -> bool { let tcx = self.tcx; let Some(hir_id) = body_owner_def_id.as_local() else { return false; }; let hir_id = tcx.hir().local_def_id_to_hir_id(hir_id); // When `body_owner` is an `impl` or `trait` item, look in its associated types for // `expected` and point at it. let parent_id = tcx.hir().get_parent_item(hir_id); let item = tcx.hir().find_by_def_id(parent_id.def_id); debug!("expected_projection parent item {:?}", item); let param_env = tcx.param_env(body_owner_def_id); match item { Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Trait(.., items), .. })) => { // FIXME: account for `#![feature(specialization)]` for item in &items[..] { match item.kind { hir::AssocItemKind::Type => { // FIXME: account for returning some type in a trait fn impl that has // an assoc type as a return type (#72076). if let hir::Defaultness::Default { has_value: true } = tcx.impl_defaultness(item.id.owner_id) { let assoc_ty = tcx.type_of(item.id.owner_id).subst_identity(); if self.infcx.can_eq(param_env, assoc_ty, found) { diag.span_label( item.span, "associated type defaults can't be assumed inside the \ trait defining them", ); return true; } } } _ => {} } } } Some(hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(hir::Impl { items, .. }), .. })) => { for item in &items[..] { if let hir::AssocItemKind::Type = item.kind { let assoc_ty = tcx.type_of(item.id.owner_id).subst_identity(); if self.infcx.can_eq(param_env, assoc_ty, found) { diag.span_label(item.span, "expected this associated type"); return true; } } } } _ => {} } false } /// Given a slice of `hir::GenericBound`s, if any of them corresponds to the `trait_ref` /// requirement, provide a structured suggestion to constrain it to a given type `ty`. /// /// `is_bound_surely_present` indicates whether we know the bound we're looking for is /// inside `bounds`. If that's the case then we can consider `bounds` containing only one /// trait bound as the one we're looking for. This can help in cases where the associated /// type is defined on a supertrait of the one present in the bounds. fn constrain_generic_bound_associated_type_structured_suggestion( &self, diag: &mut Diagnostic, trait_ref: &ty::TraitRef<'tcx>, bounds: hir::GenericBounds<'_>, assoc: ty::AssocItem, assoc_substs: &[ty::GenericArg<'tcx>], ty: Ty<'tcx>, msg: &str, is_bound_surely_present: bool, ) -> bool { // FIXME: we would want to call `resolve_vars_if_possible` on `ty` before suggesting. let trait_bounds = bounds.iter().filter_map(|bound| match bound { hir::GenericBound::Trait(ptr, hir::TraitBoundModifier::None) => Some(ptr), _ => None, }); let matching_trait_bounds = trait_bounds .clone() .filter(|ptr| ptr.trait_ref.trait_def_id() == Some(trait_ref.def_id)) .collect::>(); let span = match &matching_trait_bounds[..] { &[ptr] => ptr.span, &[] if is_bound_surely_present => match &trait_bounds.collect::>()[..] { &[ptr] => ptr.span, _ => return false, }, _ => return false, }; self.constrain_associated_type_structured_suggestion( diag, span, assoc, assoc_substs, ty, msg, ) } /// Given a span corresponding to a bound, provide a structured suggestion to set an /// associated type to a given type `ty`. fn constrain_associated_type_structured_suggestion( &self, diag: &mut Diagnostic, span: Span, assoc: ty::AssocItem, assoc_substs: &[ty::GenericArg<'tcx>], ty: Ty<'tcx>, msg: &str, ) -> bool { let tcx = self.tcx; if let Ok(has_params) = tcx.sess.source_map().span_to_snippet(span).map(|snippet| snippet.ends_with('>')) { let (span, sugg) = if has_params { let pos = span.hi() - BytePos(1); let span = Span::new(pos, pos, span.ctxt(), span.parent()); (span, format!(", {} = {}", assoc.ident(tcx), ty)) } else { let item_args = self.format_generic_args(assoc_substs); (span.shrink_to_hi(), format!("<{}{} = {}>", assoc.ident(tcx), item_args, ty)) }; diag.span_suggestion_verbose(span, msg, sugg, MaybeIncorrect); return true; } false } pub fn format_generic_args(&self, args: &[ty::GenericArg<'tcx>]) -> String { FmtPrinter::new(self.tcx, hir::def::Namespace::TypeNS) .path_generic_args(Ok, args) .expect("could not write to `String`.") .into_buffer() } }