//! Lints in the Rust compiler. //! //! This contains lints which can feasibly be implemented as their own //! AST visitor. Also see `rustc_session::lint::builtin`, which contains the //! definitions of lints that are emitted directly inside the main compiler. //! //! To add a new lint to rustc, declare it here using `declare_lint!()`. //! Then add code to emit the new lint in the appropriate circumstances. //! You can do that in an existing `LintPass` if it makes sense, or in a //! new `LintPass`, or using `Session::add_lint` elsewhere in the //! compiler. Only do the latter if the check can't be written cleanly as a //! `LintPass` (also, note that such lints will need to be defined in //! `rustc_session::lint::builtin`, not here). //! //! If you define a new `EarlyLintPass`, you will also need to add it to the //! `add_early_builtin!` or `add_early_builtin_with_new!` invocation in //! `lib.rs`. Use the former for unit-like structs and the latter for structs //! with a `pub fn new()`. //! //! If you define a new `LateLintPass`, you will also need to add it to the //! `late_lint_methods!` invocation in `lib.rs`. use crate::{ errors::BuiltinEllpisisInclusiveRangePatterns, lints::{ BuiltinAnonymousParams, BuiltinBoxPointers, BuiltinClashingExtern, BuiltinClashingExternSub, BuiltinConstNoMangle, BuiltinDeprecatedAttrLink, BuiltinDeprecatedAttrLinkSuggestion, BuiltinDeprecatedAttrUsed, BuiltinDerefNullptr, BuiltinEllipsisInclusiveRangePatternsLint, BuiltinExplicitOutlives, BuiltinExplicitOutlivesSuggestion, BuiltinIncompleteFeatures, BuiltinIncompleteFeaturesHelp, BuiltinIncompleteFeaturesNote, BuiltinKeywordIdents, BuiltinMissingCopyImpl, BuiltinMissingDebugImpl, BuiltinMissingDoc, BuiltinMutablesTransmutes, BuiltinNoMangleGeneric, BuiltinNonShorthandFieldPatterns, BuiltinSpecialModuleNameUsed, BuiltinTrivialBounds, BuiltinTypeAliasGenericBounds, BuiltinTypeAliasGenericBoundsSuggestion, BuiltinTypeAliasWhereClause, BuiltinUnexpectedCliConfigName, BuiltinUnexpectedCliConfigValue, BuiltinUngatedAsyncFnTrackCaller, BuiltinUnnameableTestItems, BuiltinUnpermittedTypeInit, BuiltinUnpermittedTypeInitSub, BuiltinUnreachablePub, BuiltinUnsafe, BuiltinUnstableFeatures, BuiltinUnusedDocComment, BuiltinUnusedDocCommentSub, BuiltinWhileTrue, SuggestChangingAssocTypes, }, types::{transparent_newtype_field, CItemKind}, EarlyContext, EarlyLintPass, LateContext, LateLintPass, LintContext, }; use hir::IsAsync; use rustc_ast::attr; use rustc_ast::tokenstream::{TokenStream, TokenTree}; use rustc_ast::visit::{FnCtxt, FnKind}; use rustc_ast::{self as ast, *}; use rustc_ast_pretty::pprust::{self, expr_to_string}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::stack::ensure_sufficient_stack; use rustc_errors::{fluent, Applicability, DecorateLint, MultiSpan}; use rustc_feature::{deprecated_attributes, AttributeGate, BuiltinAttribute, GateIssue, Stability}; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID}; use rustc_hir::intravisit::FnKind as HirFnKind; use rustc_hir::{ Body, FnDecl, ForeignItemKind, GenericParamKind, HirId, Node, PatKind, PredicateOrigin, }; use rustc_index::vec::Idx; use rustc_middle::lint::in_external_macro; use rustc_middle::ty::layout::{LayoutError, LayoutOf}; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::subst::GenericArgKind; use rustc_middle::ty::{self, Instance, Ty, TyCtxt, VariantDef}; use rustc_session::lint::{BuiltinLintDiagnostics, FutureIncompatibilityReason}; use rustc_span::edition::Edition; use rustc_span::source_map::Spanned; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{BytePos, InnerSpan, Span}; use rustc_target::abi::{Abi, VariantIdx}; use rustc_trait_selection::infer::{InferCtxtExt, TyCtxtInferExt}; use rustc_trait_selection::traits::{self, misc::type_allowed_to_implement_copy}; use crate::nonstandard_style::{method_context, MethodLateContext}; use std::fmt::Write; // hardwired lints from librustc_middle pub use rustc_session::lint::builtin::*; declare_lint! { /// The `while_true` lint detects `while true { }`. /// /// ### Example /// /// ```rust,no_run /// while true { /// /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// `while true` should be replaced with `loop`. A `loop` expression is /// the preferred way to write an infinite loop because it more directly /// expresses the intent of the loop. WHILE_TRUE, Warn, "suggest using `loop { }` instead of `while true { }`" } declare_lint_pass!(WhileTrue => [WHILE_TRUE]); /// Traverse through any amount of parenthesis and return the first non-parens expression. fn pierce_parens(mut expr: &ast::Expr) -> &ast::Expr { while let ast::ExprKind::Paren(sub) = &expr.kind { expr = sub; } expr } impl EarlyLintPass for WhileTrue { #[inline] fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { if let ast::ExprKind::While(cond, _, label) = &e.kind && let cond = pierce_parens(cond) && let ast::ExprKind::Lit(token_lit) = cond.kind && let token::Lit { kind: token::Bool, symbol: kw::True, .. } = token_lit && !cond.span.from_expansion() { let condition_span = e.span.with_hi(cond.span.hi()); let replace = format!( "{}loop", label.map_or_else(String::new, |label| format!( "{}: ", label.ident, )) ); cx.emit_spanned_lint(WHILE_TRUE, condition_span, BuiltinWhileTrue { suggestion: condition_span, replace, }); } } } declare_lint! { /// The `box_pointers` lints use of the Box type. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(box_pointers)] /// struct Foo { /// x: Box, /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This lint is mostly historical, and not particularly useful. `Box` /// used to be built into the language, and the only way to do heap /// allocation. Today's Rust can call into other allocators, etc. BOX_POINTERS, Allow, "use of owned (Box type) heap memory" } declare_lint_pass!(BoxPointers => [BOX_POINTERS]); impl BoxPointers { fn check_heap_type(&self, cx: &LateContext<'_>, span: Span, ty: Ty<'_>) { for leaf in ty.walk() { if let GenericArgKind::Type(leaf_ty) = leaf.unpack() { if leaf_ty.is_box() { cx.emit_spanned_lint(BOX_POINTERS, span, BuiltinBoxPointers { ty }); } } } } } impl<'tcx> LateLintPass<'tcx> for BoxPointers { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => { self.check_heap_type(cx, it.span, cx.tcx.type_of(it.owner_id)) } _ => (), } // If it's a struct, we also have to check the fields' types match it.kind { hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { for field in struct_def.fields() { self.check_heap_type(cx, field.span, cx.tcx.type_of(field.def_id)); } } _ => (), } } fn check_expr(&mut self, cx: &LateContext<'_>, e: &hir::Expr<'_>) { let ty = cx.typeck_results().node_type(e.hir_id); self.check_heap_type(cx, e.span, ty); } } declare_lint! { /// The `non_shorthand_field_patterns` lint detects using `Struct { x: x }` /// instead of `Struct { x }` in a pattern. /// /// ### Example /// /// ```rust /// struct Point { /// x: i32, /// y: i32, /// } /// /// /// fn main() { /// let p = Point { /// x: 5, /// y: 5, /// }; /// /// match p { /// Point { x: x, y: y } => (), /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// The preferred style is to avoid the repetition of specifying both the /// field name and the binding name if both identifiers are the same. NON_SHORTHAND_FIELD_PATTERNS, Warn, "using `Struct { x: x }` instead of `Struct { x }` in a pattern" } declare_lint_pass!(NonShorthandFieldPatterns => [NON_SHORTHAND_FIELD_PATTERNS]); impl<'tcx> LateLintPass<'tcx> for NonShorthandFieldPatterns { fn check_pat(&mut self, cx: &LateContext<'_>, pat: &hir::Pat<'_>) { if let PatKind::Struct(ref qpath, field_pats, _) = pat.kind { let variant = cx .typeck_results() .pat_ty(pat) .ty_adt_def() .expect("struct pattern type is not an ADT") .variant_of_res(cx.qpath_res(qpath, pat.hir_id)); for fieldpat in field_pats { if fieldpat.is_shorthand { continue; } if fieldpat.span.from_expansion() { // Don't lint if this is a macro expansion: macro authors // shouldn't have to worry about this kind of style issue // (Issue #49588) continue; } if let PatKind::Binding(binding_annot, _, ident, None) = fieldpat.pat.kind { if cx.tcx.find_field_index(ident, &variant) == Some(cx.typeck_results().field_index(fieldpat.hir_id)) { cx.emit_spanned_lint( NON_SHORTHAND_FIELD_PATTERNS, fieldpat.span, BuiltinNonShorthandFieldPatterns { ident, suggestion: fieldpat.span, prefix: binding_annot.prefix_str(), }, ); } } } } } } declare_lint! { /// The `unsafe_code` lint catches usage of `unsafe` code. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(unsafe_code)] /// fn main() { /// unsafe { /// /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This lint is intended to restrict the usage of `unsafe`, which can be /// difficult to use correctly. UNSAFE_CODE, Allow, "usage of `unsafe` code" } declare_lint_pass!(UnsafeCode => [UNSAFE_CODE]); impl UnsafeCode { fn report_unsafe( &self, cx: &EarlyContext<'_>, span: Span, decorate: impl for<'a> DecorateLint<'a, ()>, ) { // This comes from a macro that has `#[allow_internal_unsafe]`. if span.allows_unsafe() { return; } cx.emit_spanned_lint(UNSAFE_CODE, span, decorate); } } impl EarlyLintPass for UnsafeCode { fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { if attr.has_name(sym::allow_internal_unsafe) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::AllowInternalUnsafe); } } #[inline] fn check_expr(&mut self, cx: &EarlyContext<'_>, e: &ast::Expr) { if let ast::ExprKind::Block(ref blk, _) = e.kind { // Don't warn about generated blocks; that'll just pollute the output. if blk.rules == ast::BlockCheckMode::Unsafe(ast::UserProvided) { self.report_unsafe(cx, blk.span, BuiltinUnsafe::UnsafeBlock); } } } fn check_item(&mut self, cx: &EarlyContext<'_>, it: &ast::Item) { match it.kind { ast::ItemKind::Trait(box ast::Trait { unsafety: ast::Unsafe::Yes(_), .. }) => { self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeTrait); } ast::ItemKind::Impl(box ast::Impl { unsafety: ast::Unsafe::Yes(_), .. }) => { self.report_unsafe(cx, it.span, BuiltinUnsafe::UnsafeImpl); } ast::ItemKind::Fn(..) => { if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleFn); } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameFn); } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionFn); } } ast::ItemKind::Static(..) => { if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleStatic); } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameStatic); } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::link_section) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::LinkSectionStatic); } } _ => {} } } fn check_impl_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { if let ast::AssocItemKind::Fn(..) = it.kind { if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::no_mangle) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::NoMangleMethod); } if let Some(attr) = cx.sess().find_by_name(&it.attrs, sym::export_name) { self.report_unsafe(cx, attr.span, BuiltinUnsafe::ExportNameMethod); } } } fn check_fn(&mut self, cx: &EarlyContext<'_>, fk: FnKind<'_>, span: Span, _: ast::NodeId) { if let FnKind::Fn( ctxt, _, ast::FnSig { header: ast::FnHeader { unsafety: ast::Unsafe::Yes(_), .. }, .. }, _, _, body, ) = fk { let decorator = match ctxt { FnCtxt::Foreign => return, FnCtxt::Free => BuiltinUnsafe::DeclUnsafeFn, FnCtxt::Assoc(_) if body.is_none() => BuiltinUnsafe::DeclUnsafeMethod, FnCtxt::Assoc(_) => BuiltinUnsafe::ImplUnsafeMethod, }; self.report_unsafe(cx, span, decorator); } } } declare_lint! { /// The `missing_docs` lint detects missing documentation for public items. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(missing_docs)] /// pub fn foo() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This lint is intended to ensure that a library is well-documented. /// Items without documentation can be difficult for users to understand /// how to use properly. /// /// This lint is "allow" by default because it can be noisy, and not all /// projects may want to enforce everything to be documented. pub MISSING_DOCS, Allow, "detects missing documentation for public members", report_in_external_macro } pub struct MissingDoc { /// Stack of whether `#[doc(hidden)]` is set at each level which has lint attributes. doc_hidden_stack: Vec, } impl_lint_pass!(MissingDoc => [MISSING_DOCS]); fn has_doc(attr: &ast::Attribute) -> bool { if attr.is_doc_comment() { return true; } if !attr.has_name(sym::doc) { return false; } if attr.value_str().is_some() { return true; } if let Some(list) = attr.meta_item_list() { for meta in list { if meta.has_name(sym::hidden) { return true; } } } false } impl MissingDoc { pub fn new() -> MissingDoc { MissingDoc { doc_hidden_stack: vec![false] } } fn doc_hidden(&self) -> bool { *self.doc_hidden_stack.last().expect("empty doc_hidden_stack") } fn check_missing_docs_attrs( &self, cx: &LateContext<'_>, def_id: LocalDefId, article: &'static str, desc: &'static str, ) { // If we're building a test harness, then warning about // documentation is probably not really relevant right now. if cx.sess().opts.test { return; } // `#[doc(hidden)]` disables missing_docs check. if self.doc_hidden() { return; } // Only check publicly-visible items, using the result from the privacy pass. // It's an option so the crate root can also use this function (it doesn't // have a `NodeId`). if def_id != CRATE_DEF_ID { if !cx.effective_visibilities.is_exported(def_id) { return; } } let attrs = cx.tcx.hir().attrs(cx.tcx.hir().local_def_id_to_hir_id(def_id)); let has_doc = attrs.iter().any(has_doc); if !has_doc { cx.emit_spanned_lint( MISSING_DOCS, cx.tcx.def_span(def_id), BuiltinMissingDoc { article, desc }, ); } } } impl<'tcx> LateLintPass<'tcx> for MissingDoc { #[inline] fn enter_lint_attrs(&mut self, _cx: &LateContext<'_>, attrs: &[ast::Attribute]) { let doc_hidden = self.doc_hidden() || attrs.iter().any(|attr| { attr.has_name(sym::doc) && match attr.meta_item_list() { None => false, Some(l) => attr::list_contains_name(&l, sym::hidden), } }); self.doc_hidden_stack.push(doc_hidden); } fn exit_lint_attrs(&mut self, _: &LateContext<'_>, _attrs: &[ast::Attribute]) { self.doc_hidden_stack.pop().expect("empty doc_hidden_stack"); } fn check_crate(&mut self, cx: &LateContext<'_>) { self.check_missing_docs_attrs(cx, CRATE_DEF_ID, "the", "crate"); } fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Trait(..) => { // Issue #11592: traits are always considered exported, even when private. if cx.tcx.visibility(it.owner_id) == ty::Visibility::Restricted( cx.tcx.parent_module_from_def_id(it.owner_id.def_id).to_def_id(), ) { return; } } hir::ItemKind::TyAlias(..) | hir::ItemKind::Fn(..) | hir::ItemKind::Macro(..) | hir::ItemKind::Mod(..) | hir::ItemKind::Enum(..) | hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Const(..) | hir::ItemKind::Static(..) => {} _ => return, }; let (article, desc) = cx.tcx.article_and_description(it.owner_id.to_def_id()); self.check_missing_docs_attrs(cx, it.owner_id.def_id, article, desc); } fn check_trait_item(&mut self, cx: &LateContext<'_>, trait_item: &hir::TraitItem<'_>) { let (article, desc) = cx.tcx.article_and_description(trait_item.owner_id.to_def_id()); self.check_missing_docs_attrs(cx, trait_item.owner_id.def_id, article, desc); } fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { // If the method is an impl for a trait, don't doc. if method_context(cx, impl_item.hir_id()) == MethodLateContext::TraitImpl { return; } // If the method is an impl for an item with docs_hidden, don't doc. if method_context(cx, impl_item.hir_id()) == MethodLateContext::PlainImpl { let parent = cx.tcx.hir().get_parent_item(impl_item.hir_id()); let impl_ty = cx.tcx.type_of(parent); let outerdef = match impl_ty.kind() { ty::Adt(def, _) => Some(def.did()), ty::Foreign(def_id) => Some(*def_id), _ => None, }; let is_hidden = match outerdef { Some(id) => cx.tcx.is_doc_hidden(id), None => false, }; if is_hidden { return; } } let (article, desc) = cx.tcx.article_and_description(impl_item.owner_id.to_def_id()); self.check_missing_docs_attrs(cx, impl_item.owner_id.def_id, article, desc); } fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'_>) { let (article, desc) = cx.tcx.article_and_description(foreign_item.owner_id.to_def_id()); self.check_missing_docs_attrs(cx, foreign_item.owner_id.def_id, article, desc); } fn check_field_def(&mut self, cx: &LateContext<'_>, sf: &hir::FieldDef<'_>) { if !sf.is_positional() { self.check_missing_docs_attrs(cx, sf.def_id, "a", "struct field") } } fn check_variant(&mut self, cx: &LateContext<'_>, v: &hir::Variant<'_>) { self.check_missing_docs_attrs(cx, v.def_id, "a", "variant"); } } declare_lint! { /// The `missing_copy_implementations` lint detects potentially-forgotten /// implementations of [`Copy`]. /// /// [`Copy`]: https://doc.rust-lang.org/std/marker/trait.Copy.html /// /// ### Example /// /// ```rust,compile_fail /// #![deny(missing_copy_implementations)] /// pub struct Foo { /// pub field: i32 /// } /// # fn main() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Historically (before 1.0), types were automatically marked as `Copy` /// if possible. This was changed so that it required an explicit opt-in /// by implementing the `Copy` trait. As part of this change, a lint was /// added to alert if a copyable type was not marked `Copy`. /// /// This lint is "allow" by default because this code isn't bad; it is /// common to write newtypes like this specifically so that a `Copy` type /// is no longer `Copy`. `Copy` types can result in unintended copies of /// large data which can impact performance. pub MISSING_COPY_IMPLEMENTATIONS, Allow, "detects potentially-forgotten implementations of `Copy`" } declare_lint_pass!(MissingCopyImplementations => [MISSING_COPY_IMPLEMENTATIONS]); impl<'tcx> LateLintPass<'tcx> for MissingCopyImplementations { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) { return; } let (def, ty) = match item.kind { hir::ItemKind::Struct(_, ref ast_generics) => { if !ast_generics.params.is_empty() { return; } let def = cx.tcx.adt_def(item.owner_id); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } hir::ItemKind::Union(_, ref ast_generics) => { if !ast_generics.params.is_empty() { return; } let def = cx.tcx.adt_def(item.owner_id); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } hir::ItemKind::Enum(_, ref ast_generics) => { if !ast_generics.params.is_empty() { return; } let def = cx.tcx.adt_def(item.owner_id); (def, cx.tcx.mk_adt(def, cx.tcx.intern_substs(&[]))) } _ => return, }; if def.has_dtor(cx.tcx) { return; } // If the type contains a raw pointer, it may represent something like a handle, // and recommending Copy might be a bad idea. for field in def.all_fields() { let did = field.did; if cx.tcx.type_of(did).is_unsafe_ptr() { return; } } let param_env = ty::ParamEnv::empty(); if ty.is_copy_modulo_regions(cx.tcx, param_env) { return; } // We shouldn't recommend implementing `Copy` on stateful things, // such as iterators. if let Some(iter_trait) = cx.tcx.get_diagnostic_item(sym::Iterator) && cx.tcx .infer_ctxt() .build() .type_implements_trait(iter_trait, [ty], param_env) .must_apply_modulo_regions() { return; } // Default value of clippy::trivially_copy_pass_by_ref const MAX_SIZE: u64 = 256; if let Some(size) = cx.layout_of(ty).ok().map(|l| l.size.bytes()) { if size > MAX_SIZE { return; } } if type_allowed_to_implement_copy( cx.tcx, param_env, ty, traits::ObligationCause::misc(item.span, item.hir_id()), ) .is_ok() { cx.emit_spanned_lint(MISSING_COPY_IMPLEMENTATIONS, item.span, BuiltinMissingCopyImpl); } } } declare_lint! { /// The `missing_debug_implementations` lint detects missing /// implementations of [`fmt::Debug`]. /// /// [`fmt::Debug`]: https://doc.rust-lang.org/std/fmt/trait.Debug.html /// /// ### Example /// /// ```rust,compile_fail /// #![deny(missing_debug_implementations)] /// pub struct Foo; /// # fn main() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Having a `Debug` implementation on all types can assist with /// debugging, as it provides a convenient way to format and display a /// value. Using the `#[derive(Debug)]` attribute will automatically /// generate a typical implementation, or a custom implementation can be /// added by manually implementing the `Debug` trait. /// /// This lint is "allow" by default because adding `Debug` to all types can /// have a negative impact on compile time and code size. It also requires /// boilerplate to be added to every type, which can be an impediment. MISSING_DEBUG_IMPLEMENTATIONS, Allow, "detects missing implementations of Debug" } #[derive(Default)] pub struct MissingDebugImplementations { impling_types: Option, } impl_lint_pass!(MissingDebugImplementations => [MISSING_DEBUG_IMPLEMENTATIONS]); impl<'tcx> LateLintPass<'tcx> for MissingDebugImplementations { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { if !cx.effective_visibilities.is_reachable(item.owner_id.def_id) { return; } match item.kind { hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) | hir::ItemKind::Enum(..) => {} _ => return, } let Some(debug) = cx.tcx.get_diagnostic_item(sym::Debug) else { return }; if self.impling_types.is_none() { let mut impls = LocalDefIdSet::default(); cx.tcx.for_each_impl(debug, |d| { if let Some(ty_def) = cx.tcx.type_of(d).ty_adt_def() { if let Some(def_id) = ty_def.did().as_local() { impls.insert(def_id); } } }); self.impling_types = Some(impls); debug!("{:?}", self.impling_types); } if !self.impling_types.as_ref().unwrap().contains(&item.owner_id.def_id) { cx.emit_spanned_lint( MISSING_DEBUG_IMPLEMENTATIONS, item.span, BuiltinMissingDebugImpl { tcx: cx.tcx, def_id: debug }, ); } } } declare_lint! { /// The `anonymous_parameters` lint detects anonymous parameters in trait /// definitions. /// /// ### Example /// /// ```rust,edition2015,compile_fail /// #![deny(anonymous_parameters)] /// // edition 2015 /// pub trait Foo { /// fn foo(usize); /// } /// fn main() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// This syntax is mostly a historical accident, and can be worked around /// quite easily by adding an `_` pattern or a descriptive identifier: /// /// ```rust /// trait Foo { /// fn foo(_: usize); /// } /// ``` /// /// This syntax is now a hard error in the 2018 edition. In the 2015 /// edition, this lint is "warn" by default. This lint /// enables the [`cargo fix`] tool with the `--edition` flag to /// automatically transition old code from the 2015 edition to 2018. The /// tool will run this lint and automatically apply the /// suggested fix from the compiler (which is to add `_` to each /// parameter). This provides a completely automated way to update old /// code for a new edition. See [issue #41686] for more details. /// /// [issue #41686]: https://github.com/rust-lang/rust/issues/41686 /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html pub ANONYMOUS_PARAMETERS, Warn, "detects anonymous parameters", @future_incompatible = FutureIncompatibleInfo { reference: "issue #41686 ", reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), }; } declare_lint_pass!( /// Checks for use of anonymous parameters (RFC 1685). AnonymousParameters => [ANONYMOUS_PARAMETERS] ); impl EarlyLintPass for AnonymousParameters { fn check_trait_item(&mut self, cx: &EarlyContext<'_>, it: &ast::AssocItem) { if cx.sess().edition() != Edition::Edition2015 { // This is a hard error in future editions; avoid linting and erroring return; } if let ast::AssocItemKind::Fn(box Fn { ref sig, .. }) = it.kind { for arg in sig.decl.inputs.iter() { if let ast::PatKind::Ident(_, ident, None) = arg.pat.kind { if ident.name == kw::Empty { let ty_snip = cx.sess().source_map().span_to_snippet(arg.ty.span); let (ty_snip, appl) = if let Ok(ref snip) = ty_snip { (snip.as_str(), Applicability::MachineApplicable) } else { ("", Applicability::HasPlaceholders) }; cx.emit_spanned_lint( ANONYMOUS_PARAMETERS, arg.pat.span, BuiltinAnonymousParams { suggestion: (arg.pat.span, appl), ty_snip }, ); } } } } } } /// Check for use of attributes which have been deprecated. #[derive(Clone)] pub struct DeprecatedAttr { // This is not free to compute, so we want to keep it around, rather than // compute it for every attribute. depr_attrs: Vec<&'static BuiltinAttribute>, } impl_lint_pass!(DeprecatedAttr => []); impl DeprecatedAttr { pub fn new() -> DeprecatedAttr { DeprecatedAttr { depr_attrs: deprecated_attributes() } } } impl EarlyLintPass for DeprecatedAttr { fn check_attribute(&mut self, cx: &EarlyContext<'_>, attr: &ast::Attribute) { for BuiltinAttribute { name, gate, .. } in &self.depr_attrs { if attr.ident().map(|ident| ident.name) == Some(*name) { if let &AttributeGate::Gated( Stability::Deprecated(link, suggestion), name, reason, _, ) = gate { let suggestion = match suggestion { Some(msg) => { BuiltinDeprecatedAttrLinkSuggestion::Msg { suggestion: attr.span, msg } } None => { BuiltinDeprecatedAttrLinkSuggestion::Default { suggestion: attr.span } } }; cx.emit_spanned_lint( DEPRECATED, attr.span, BuiltinDeprecatedAttrLink { name, reason, link, suggestion }, ); } return; } } if attr.has_name(sym::no_start) || attr.has_name(sym::crate_id) { cx.emit_spanned_lint( DEPRECATED, attr.span, BuiltinDeprecatedAttrUsed { name: pprust::path_to_string(&attr.get_normal_item().path), suggestion: attr.span, }, ); } } } fn warn_if_doc(cx: &EarlyContext<'_>, node_span: Span, node_kind: &str, attrs: &[ast::Attribute]) { use rustc_ast::token::CommentKind; let mut attrs = attrs.iter().peekable(); // Accumulate a single span for sugared doc comments. let mut sugared_span: Option = None; while let Some(attr) = attrs.next() { let is_doc_comment = attr.is_doc_comment(); if is_doc_comment { sugared_span = Some(sugared_span.map_or(attr.span, |span| span.with_hi(attr.span.hi()))); } if attrs.peek().map_or(false, |next_attr| next_attr.is_doc_comment()) { continue; } let span = sugared_span.take().unwrap_or(attr.span); if is_doc_comment || attr.has_name(sym::doc) { let sub = match attr.kind { AttrKind::DocComment(CommentKind::Line, _) | AttrKind::Normal(..) => { BuiltinUnusedDocCommentSub::PlainHelp } AttrKind::DocComment(CommentKind::Block, _) => { BuiltinUnusedDocCommentSub::BlockHelp } }; cx.emit_spanned_lint( UNUSED_DOC_COMMENTS, span, BuiltinUnusedDocComment { kind: node_kind, label: node_span, sub }, ); } } } impl EarlyLintPass for UnusedDocComment { fn check_stmt(&mut self, cx: &EarlyContext<'_>, stmt: &ast::Stmt) { let kind = match stmt.kind { ast::StmtKind::Local(..) => "statements", // Disabled pending discussion in #78306 ast::StmtKind::Item(..) => return, // expressions will be reported by `check_expr`. ast::StmtKind::Empty | ast::StmtKind::Semi(_) | ast::StmtKind::Expr(_) | ast::StmtKind::MacCall(_) => return, }; warn_if_doc(cx, stmt.span, kind, stmt.kind.attrs()); } fn check_arm(&mut self, cx: &EarlyContext<'_>, arm: &ast::Arm) { let arm_span = arm.pat.span.with_hi(arm.body.span.hi()); warn_if_doc(cx, arm_span, "match arms", &arm.attrs); } fn check_expr(&mut self, cx: &EarlyContext<'_>, expr: &ast::Expr) { warn_if_doc(cx, expr.span, "expressions", &expr.attrs); } fn check_generic_param(&mut self, cx: &EarlyContext<'_>, param: &ast::GenericParam) { warn_if_doc(cx, param.ident.span, "generic parameters", ¶m.attrs); } fn check_block(&mut self, cx: &EarlyContext<'_>, block: &ast::Block) { warn_if_doc(cx, block.span, "blocks", &block.attrs()); } fn check_item(&mut self, cx: &EarlyContext<'_>, item: &ast::Item) { if let ast::ItemKind::ForeignMod(_) = item.kind { warn_if_doc(cx, item.span, "extern blocks", &item.attrs); } } } declare_lint! { /// The `no_mangle_const_items` lint detects any `const` items with the /// [`no_mangle` attribute]. /// /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute /// /// ### Example /// /// ```rust,compile_fail /// #[no_mangle] /// const FOO: i32 = 5; /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Constants do not have their symbols exported, and therefore, this /// probably means you meant to use a [`static`], not a [`const`]. /// /// [`static`]: https://doc.rust-lang.org/reference/items/static-items.html /// [`const`]: https://doc.rust-lang.org/reference/items/constant-items.html NO_MANGLE_CONST_ITEMS, Deny, "const items will not have their symbols exported" } declare_lint! { /// The `no_mangle_generic_items` lint detects generic items that must be /// mangled. /// /// ### Example /// /// ```rust /// #[no_mangle] /// fn foo(t: T) { /// /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// A function with generics must have its symbol mangled to accommodate /// the generic parameter. The [`no_mangle` attribute] has no effect in /// this situation, and should be removed. /// /// [`no_mangle` attribute]: https://doc.rust-lang.org/reference/abi.html#the-no_mangle-attribute NO_MANGLE_GENERIC_ITEMS, Warn, "generic items must be mangled" } declare_lint_pass!(InvalidNoMangleItems => [NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS]); impl<'tcx> LateLintPass<'tcx> for InvalidNoMangleItems { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { let attrs = cx.tcx.hir().attrs(it.hir_id()); let check_no_mangle_on_generic_fn = |no_mangle_attr: &ast::Attribute, impl_generics: Option<&hir::Generics<'_>>, generics: &hir::Generics<'_>, span| { for param in generics.params.iter().chain(impl_generics.map(|g| g.params).into_iter().flatten()) { match param.kind { GenericParamKind::Lifetime { .. } => {} GenericParamKind::Type { .. } | GenericParamKind::Const { .. } => { cx.emit_spanned_lint( NO_MANGLE_GENERIC_ITEMS, span, BuiltinNoMangleGeneric { suggestion: no_mangle_attr.span }, ); break; } } } }; match it.kind { hir::ItemKind::Fn(.., ref generics, _) => { if let Some(no_mangle_attr) = cx.sess().find_by_name(attrs, sym::no_mangle) { check_no_mangle_on_generic_fn(no_mangle_attr, None, generics, it.span); } } hir::ItemKind::Const(..) => { if cx.sess().contains_name(attrs, sym::no_mangle) { // account for "pub const" (#45562) let start = cx .tcx .sess .source_map() .span_to_snippet(it.span) .map(|snippet| snippet.find("const").unwrap_or(0)) .unwrap_or(0) as u32; // `const` is 5 chars let suggestion = it.span.with_hi(BytePos(it.span.lo().0 + start + 5)); // Const items do not refer to a particular location in memory, and therefore // don't have anything to attach a symbol to cx.emit_spanned_lint( NO_MANGLE_CONST_ITEMS, it.span, BuiltinConstNoMangle { suggestion }, ); } } hir::ItemKind::Impl(hir::Impl { generics, items, .. }) => { for it in *items { if let hir::AssocItemKind::Fn { .. } = it.kind { if let Some(no_mangle_attr) = cx .sess() .find_by_name(cx.tcx.hir().attrs(it.id.hir_id()), sym::no_mangle) { check_no_mangle_on_generic_fn( no_mangle_attr, Some(generics), cx.tcx.hir().get_generics(it.id.owner_id.def_id).unwrap(), it.span, ); } } } } _ => {} } } } declare_lint! { /// The `mutable_transmutes` lint catches transmuting from `&T` to `&mut /// T` because it is [undefined behavior]. /// /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html /// /// ### Example /// /// ```rust,compile_fail /// unsafe { /// let y = std::mem::transmute::<&i32, &mut i32>(&5); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Certain assumptions are made about aliasing of data, and this transmute /// violates those assumptions. Consider using [`UnsafeCell`] instead. /// /// [`UnsafeCell`]: https://doc.rust-lang.org/std/cell/struct.UnsafeCell.html MUTABLE_TRANSMUTES, Deny, "transmuting &T to &mut T is undefined behavior, even if the reference is unused" } declare_lint_pass!(MutableTransmutes => [MUTABLE_TRANSMUTES]); impl<'tcx> LateLintPass<'tcx> for MutableTransmutes { fn check_expr(&mut self, cx: &LateContext<'_>, expr: &hir::Expr<'_>) { if let Some((&ty::Ref(_, _, from_mutbl), &ty::Ref(_, _, to_mutbl))) = get_transmute_from_to(cx, expr).map(|(ty1, ty2)| (ty1.kind(), ty2.kind())) { if from_mutbl < to_mutbl { cx.emit_spanned_lint(MUTABLE_TRANSMUTES, expr.span, BuiltinMutablesTransmutes); } } fn get_transmute_from_to<'tcx>( cx: &LateContext<'tcx>, expr: &hir::Expr<'_>, ) -> Option<(Ty<'tcx>, Ty<'tcx>)> { let def = if let hir::ExprKind::Path(ref qpath) = expr.kind { cx.qpath_res(qpath, expr.hir_id) } else { return None; }; if let Res::Def(DefKind::Fn, did) = def { if !def_id_is_transmute(cx, did) { return None; } let sig = cx.typeck_results().node_type(expr.hir_id).fn_sig(cx.tcx); let from = sig.inputs().skip_binder()[0]; let to = sig.output().skip_binder(); return Some((from, to)); } None } fn def_id_is_transmute(cx: &LateContext<'_>, def_id: DefId) -> bool { cx.tcx.is_intrinsic(def_id) && cx.tcx.item_name(def_id) == sym::transmute } } } declare_lint! { /// The `unstable_features` is deprecated and should no longer be used. UNSTABLE_FEATURES, Allow, "enabling unstable features (deprecated. do not use)" } declare_lint_pass!( /// Forbids using the `#[feature(...)]` attribute UnstableFeatures => [UNSTABLE_FEATURES] ); impl<'tcx> LateLintPass<'tcx> for UnstableFeatures { fn check_attribute(&mut self, cx: &LateContext<'_>, attr: &ast::Attribute) { if attr.has_name(sym::feature) { if let Some(items) = attr.meta_item_list() { for item in items { cx.emit_spanned_lint(UNSTABLE_FEATURES, item.span(), BuiltinUnstableFeatures); } } } } } declare_lint! { /// The `ungated_async_fn_track_caller` lint warns when the /// `#[track_caller]` attribute is used on an async function, method, or /// closure, without enabling the corresponding unstable feature flag. /// /// ### Example /// /// ```rust /// #[track_caller] /// async fn foo() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// The attribute must be used in conjunction with the /// [`closure_track_caller` feature flag]. Otherwise, the `#[track_caller]` /// annotation will function as a no-op. /// /// [`closure_track_caller` feature flag]: https://doc.rust-lang.org/beta/unstable-book/language-features/closure-track-caller.html UNGATED_ASYNC_FN_TRACK_CALLER, Warn, "enabling track_caller on an async fn is a no-op unless the closure_track_caller feature is enabled" } declare_lint_pass!( /// Explains corresponding feature flag must be enabled for the `#[track_caller] attribute to /// do anything UngatedAsyncFnTrackCaller => [UNGATED_ASYNC_FN_TRACK_CALLER] ); impl<'tcx> LateLintPass<'tcx> for UngatedAsyncFnTrackCaller { fn check_fn( &mut self, cx: &LateContext<'_>, fn_kind: HirFnKind<'_>, _: &'tcx FnDecl<'_>, _: &'tcx Body<'_>, span: Span, hir_id: HirId, ) { if fn_kind.asyncness() == IsAsync::Async && !cx.tcx.features().closure_track_caller && let attrs = cx.tcx.hir().attrs(hir_id) // Now, check if the function has the `#[track_caller]` attribute && let Some(attr) = attrs.iter().find(|attr| attr.has_name(sym::track_caller)) { cx.emit_spanned_lint(UNGATED_ASYNC_FN_TRACK_CALLER, attr.span, BuiltinUngatedAsyncFnTrackCaller { label: span, parse_sess: &cx.tcx.sess.parse_sess, }); } } } declare_lint! { /// The `unreachable_pub` lint triggers for `pub` items not reachable from /// the crate root. /// /// ### Example /// /// ```rust,compile_fail /// #![deny(unreachable_pub)] /// mod foo { /// pub mod bar { /// /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// A bare `pub` visibility may be misleading if the item is not actually /// publicly exported from the crate. The `pub(crate)` visibility is /// recommended to be used instead, which more clearly expresses the intent /// that the item is only visible within its own crate. /// /// This lint is "allow" by default because it will trigger for a large /// amount existing Rust code, and has some false-positives. Eventually it /// is desired for this to become warn-by-default. pub UNREACHABLE_PUB, Allow, "`pub` items not reachable from crate root" } declare_lint_pass!( /// Lint for items marked `pub` that aren't reachable from other crates. UnreachablePub => [UNREACHABLE_PUB] ); impl UnreachablePub { fn perform_lint( &self, cx: &LateContext<'_>, what: &str, def_id: LocalDefId, vis_span: Span, exportable: bool, ) { let mut applicability = Applicability::MachineApplicable; if cx.tcx.visibility(def_id).is_public() && !cx.effective_visibilities.is_reachable(def_id) { if vis_span.from_expansion() { applicability = Applicability::MaybeIncorrect; } let def_span = cx.tcx.def_span(def_id); cx.emit_spanned_lint( UNREACHABLE_PUB, def_span, BuiltinUnreachablePub { what, suggestion: (vis_span, applicability), help: exportable.then_some(()), }, ); } } } impl<'tcx> LateLintPass<'tcx> for UnreachablePub { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { // Do not warn for fake `use` statements. if let hir::ItemKind::Use(_, hir::UseKind::ListStem) = &item.kind { return; } self.perform_lint(cx, "item", item.owner_id.def_id, item.vis_span, true); } fn check_foreign_item(&mut self, cx: &LateContext<'_>, foreign_item: &hir::ForeignItem<'tcx>) { self.perform_lint(cx, "item", foreign_item.owner_id.def_id, foreign_item.vis_span, true); } fn check_field_def(&mut self, cx: &LateContext<'_>, field: &hir::FieldDef<'_>) { let map = cx.tcx.hir(); if matches!(map.get_parent(field.hir_id), Node::Variant(_)) { return; } self.perform_lint(cx, "field", field.def_id, field.vis_span, false); } fn check_impl_item(&mut self, cx: &LateContext<'_>, impl_item: &hir::ImplItem<'_>) { // Only lint inherent impl items. if cx.tcx.associated_item(impl_item.owner_id).trait_item_def_id.is_none() { self.perform_lint(cx, "item", impl_item.owner_id.def_id, impl_item.vis_span, false); } } } declare_lint! { /// The `type_alias_bounds` lint detects bounds in type aliases. /// /// ### Example /// /// ```rust /// type SendVec = Vec; /// ``` /// /// {{produces}} /// /// ### Explanation /// /// The trait bounds in a type alias are currently ignored, and should not /// be included to avoid confusion. This was previously allowed /// unintentionally; this may become a hard error in the future. TYPE_ALIAS_BOUNDS, Warn, "bounds in type aliases are not enforced" } declare_lint_pass!( /// Lint for trait and lifetime bounds in type aliases being mostly ignored. /// They are relevant when using associated types, but otherwise neither checked /// at definition site nor enforced at use site. TypeAliasBounds => [TYPE_ALIAS_BOUNDS] ); impl TypeAliasBounds { pub(crate) fn is_type_variable_assoc(qpath: &hir::QPath<'_>) -> bool { match *qpath { hir::QPath::TypeRelative(ref ty, _) => { // If this is a type variable, we found a `T::Assoc`. match ty.kind { hir::TyKind::Path(hir::QPath::Resolved(None, ref path)) => { matches!(path.res, Res::Def(DefKind::TyParam, _)) } _ => false, } } hir::QPath::Resolved(..) | hir::QPath::LangItem(..) => false, } } } impl<'tcx> LateLintPass<'tcx> for TypeAliasBounds { fn check_item(&mut self, cx: &LateContext<'_>, item: &hir::Item<'_>) { let hir::ItemKind::TyAlias(ty, type_alias_generics) = &item.kind else { return }; if let hir::TyKind::OpaqueDef(..) = ty.kind { // Bounds are respected for `type X = impl Trait` return; } // There must not be a where clause if type_alias_generics.predicates.is_empty() { return; } let mut where_spans = Vec::new(); let mut inline_spans = Vec::new(); let mut inline_sugg = Vec::new(); for p in type_alias_generics.predicates { let span = p.span(); if p.in_where_clause() { where_spans.push(span); } else { for b in p.bounds() { inline_spans.push(b.span()); } inline_sugg.push((span, String::new())); } } let mut suggested_changing_assoc_types = false; if !where_spans.is_empty() { let sub = (!suggested_changing_assoc_types).then(|| { suggested_changing_assoc_types = true; SuggestChangingAssocTypes { ty } }); cx.emit_spanned_lint( TYPE_ALIAS_BOUNDS, where_spans, BuiltinTypeAliasWhereClause { suggestion: type_alias_generics.where_clause_span, sub, }, ); } if !inline_spans.is_empty() { let suggestion = BuiltinTypeAliasGenericBoundsSuggestion { suggestions: inline_sugg }; let sub = (!suggested_changing_assoc_types).then(|| { suggested_changing_assoc_types = true; SuggestChangingAssocTypes { ty } }); cx.emit_spanned_lint( TYPE_ALIAS_BOUNDS, inline_spans, BuiltinTypeAliasGenericBounds { suggestion, sub }, ); } } } declare_lint_pass!( /// Lint constants that are erroneous. /// Without this lint, we might not get any diagnostic if the constant is /// unused within this crate, even though downstream crates can't use it /// without producing an error. UnusedBrokenConst => [] ); impl<'tcx> LateLintPass<'tcx> for UnusedBrokenConst { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { match it.kind { hir::ItemKind::Const(_, body_id) => { let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); // trigger the query once for all constants since that will already report the errors cx.tcx.ensure().const_eval_poly(def_id); } hir::ItemKind::Static(_, _, body_id) => { let def_id = cx.tcx.hir().body_owner_def_id(body_id).to_def_id(); cx.tcx.ensure().eval_static_initializer(def_id); } _ => {} } } } declare_lint! { /// The `trivial_bounds` lint detects trait bounds that don't depend on /// any type parameters. /// /// ### Example /// /// ```rust /// #![feature(trivial_bounds)] /// pub struct A where i32: Copy; /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Usually you would not write a trait bound that you know is always /// true, or never true. However, when using macros, the macro may not /// know whether or not the constraint would hold or not at the time when /// generating the code. Currently, the compiler does not alert you if the /// constraint is always true, and generates an error if it is never true. /// The `trivial_bounds` feature changes this to be a warning in both /// cases, giving macros more freedom and flexibility to generate code, /// while still providing a signal when writing non-macro code that /// something is amiss. /// /// See [RFC 2056] for more details. This feature is currently only /// available on the nightly channel, see [tracking issue #48214]. /// /// [RFC 2056]: https://github.com/rust-lang/rfcs/blob/master/text/2056-allow-trivial-where-clause-constraints.md /// [tracking issue #48214]: https://github.com/rust-lang/rust/issues/48214 TRIVIAL_BOUNDS, Warn, "these bounds don't depend on an type parameters" } declare_lint_pass!( /// Lint for trait and lifetime bounds that don't depend on type parameters /// which either do nothing, or stop the item from being used. TrivialConstraints => [TRIVIAL_BOUNDS] ); impl<'tcx> LateLintPass<'tcx> for TrivialConstraints { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'tcx>) { use rustc_middle::ty::visit::TypeVisitable; use rustc_middle::ty::Clause; use rustc_middle::ty::PredicateKind::*; if cx.tcx.features().trivial_bounds { let predicates = cx.tcx.predicates_of(item.owner_id); for &(predicate, span) in predicates.predicates { let predicate_kind_name = match predicate.kind().skip_binder() { Clause(Clause::Trait(..)) => "trait", Clause(Clause::TypeOutlives(..)) | Clause(Clause::RegionOutlives(..)) => "lifetime", // Ignore projections, as they can only be global // if the trait bound is global Clause(Clause::Projection(..)) | // Ignore bounds that a user can't type WellFormed(..) | ObjectSafe(..) | ClosureKind(..) | Subtype(..) | Coerce(..) | ConstEvaluatable(..) | ConstEquate(..) | Ambiguous | TypeWellFormedFromEnv(..) => continue, }; if predicate.is_global() { cx.emit_spanned_lint( TRIVIAL_BOUNDS, span, BuiltinTrivialBounds { predicate_kind_name, predicate }, ); } } } } } declare_lint_pass!( /// Does nothing as a lint pass, but registers some `Lint`s /// which are used by other parts of the compiler. SoftLints => [ WHILE_TRUE, BOX_POINTERS, NON_SHORTHAND_FIELD_PATTERNS, UNSAFE_CODE, MISSING_DOCS, MISSING_COPY_IMPLEMENTATIONS, MISSING_DEBUG_IMPLEMENTATIONS, ANONYMOUS_PARAMETERS, UNUSED_DOC_COMMENTS, NO_MANGLE_CONST_ITEMS, NO_MANGLE_GENERIC_ITEMS, MUTABLE_TRANSMUTES, UNSTABLE_FEATURES, UNREACHABLE_PUB, TYPE_ALIAS_BOUNDS, TRIVIAL_BOUNDS ] ); declare_lint! { /// The `ellipsis_inclusive_range_patterns` lint detects the [`...` range /// pattern], which is deprecated. /// /// [`...` range pattern]: https://doc.rust-lang.org/reference/patterns.html#range-patterns /// /// ### Example /// /// ```rust,edition2018 /// let x = 123; /// match x { /// 0...100 => {} /// _ => {} /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// The `...` range pattern syntax was changed to `..=` to avoid potential /// confusion with the [`..` range expression]. Use the new form instead. /// /// [`..` range expression]: https://doc.rust-lang.org/reference/expressions/range-expr.html pub ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, Warn, "`...` range patterns are deprecated", @future_incompatible = FutureIncompatibleInfo { reference: "", reason: FutureIncompatibilityReason::EditionError(Edition::Edition2021), }; } #[derive(Default)] pub struct EllipsisInclusiveRangePatterns { /// If `Some(_)`, suppress all subsequent pattern /// warnings for better diagnostics. node_id: Option, } impl_lint_pass!(EllipsisInclusiveRangePatterns => [ELLIPSIS_INCLUSIVE_RANGE_PATTERNS]); impl EarlyLintPass for EllipsisInclusiveRangePatterns { fn check_pat(&mut self, cx: &EarlyContext<'_>, pat: &ast::Pat) { if self.node_id.is_some() { // Don't recursively warn about patterns inside range endpoints. return; } use self::ast::{PatKind, RangeSyntax::DotDotDot}; /// If `pat` is a `...` pattern, return the start and end of the range, as well as the span /// corresponding to the ellipsis. fn matches_ellipsis_pat(pat: &ast::Pat) -> Option<(Option<&Expr>, &Expr, Span)> { match &pat.kind { PatKind::Range( a, Some(b), Spanned { span, node: RangeEnd::Included(DotDotDot) }, ) => Some((a.as_deref(), b, *span)), _ => None, } } let (parenthesise, endpoints) = match &pat.kind { PatKind::Ref(subpat, _) => (true, matches_ellipsis_pat(&subpat)), _ => (false, matches_ellipsis_pat(pat)), }; if let Some((start, end, join)) = endpoints { if parenthesise { self.node_id = Some(pat.id); let end = expr_to_string(&end); let replace = match start { Some(start) => format!("&({}..={})", expr_to_string(&start), end), None => format!("&(..={})", end), }; if join.edition() >= Edition::Edition2021 { cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns { span: pat.span, suggestion: pat.span, replace, }); } else { cx.emit_spanned_lint( ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, pat.span, BuiltinEllipsisInclusiveRangePatternsLint::Parenthesise { suggestion: pat.span, replace, }, ); } } else { let replace = "..="; if join.edition() >= Edition::Edition2021 { cx.sess().emit_err(BuiltinEllpisisInclusiveRangePatterns { span: pat.span, suggestion: join, replace: replace.to_string(), }); } else { cx.emit_spanned_lint( ELLIPSIS_INCLUSIVE_RANGE_PATTERNS, join, BuiltinEllipsisInclusiveRangePatternsLint::NonParenthesise { suggestion: join, }, ); } }; } } fn check_pat_post(&mut self, _cx: &EarlyContext<'_>, pat: &ast::Pat) { if let Some(node_id) = self.node_id { if pat.id == node_id { self.node_id = None } } } } declare_lint! { /// The `unnameable_test_items` lint detects [`#[test]`][test] functions /// that are not able to be run by the test harness because they are in a /// position where they are not nameable. /// /// [test]: https://doc.rust-lang.org/reference/attributes/testing.html#the-test-attribute /// /// ### Example /// /// ```rust,test /// fn main() { /// #[test] /// fn foo() { /// // This test will not fail because it does not run. /// assert_eq!(1, 2); /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// In order for the test harness to run a test, the test function must be /// located in a position where it can be accessed from the crate root. /// This generally means it must be defined in a module, and not anywhere /// else such as inside another function. The compiler previously allowed /// this without an error, so a lint was added as an alert that a test is /// not being used. Whether or not this should be allowed has not yet been /// decided, see [RFC 2471] and [issue #36629]. /// /// [RFC 2471]: https://github.com/rust-lang/rfcs/pull/2471#issuecomment-397414443 /// [issue #36629]: https://github.com/rust-lang/rust/issues/36629 UNNAMEABLE_TEST_ITEMS, Warn, "detects an item that cannot be named being marked as `#[test_case]`", report_in_external_macro } pub struct UnnameableTestItems { boundary: Option, // Id of the item under which things are not nameable items_nameable: bool, } impl_lint_pass!(UnnameableTestItems => [UNNAMEABLE_TEST_ITEMS]); impl UnnameableTestItems { pub fn new() -> Self { Self { boundary: None, items_nameable: true } } } impl<'tcx> LateLintPass<'tcx> for UnnameableTestItems { fn check_item(&mut self, cx: &LateContext<'_>, it: &hir::Item<'_>) { if self.items_nameable { if let hir::ItemKind::Mod(..) = it.kind { } else { self.items_nameable = false; self.boundary = Some(it.owner_id); } return; } let attrs = cx.tcx.hir().attrs(it.hir_id()); if let Some(attr) = cx.sess().find_by_name(attrs, sym::rustc_test_marker) { cx.emit_spanned_lint(UNNAMEABLE_TEST_ITEMS, attr.span, BuiltinUnnameableTestItems); } } fn check_item_post(&mut self, _cx: &LateContext<'_>, it: &hir::Item<'_>) { if !self.items_nameable && self.boundary == Some(it.owner_id) { self.items_nameable = true; } } } declare_lint! { /// The `keyword_idents` lint detects edition keywords being used as an /// identifier. /// /// ### Example /// /// ```rust,edition2015,compile_fail /// #![deny(keyword_idents)] /// // edition 2015 /// fn dyn() {} /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Rust [editions] allow the language to evolve without breaking /// backwards compatibility. This lint catches code that uses new keywords /// that are added to the language that are used as identifiers (such as a /// variable name, function name, etc.). If you switch the compiler to a /// new edition without updating the code, then it will fail to compile if /// you are using a new keyword as an identifier. /// /// You can manually change the identifiers to a non-keyword, or use a /// [raw identifier], for example `r#dyn`, to transition to a new edition. /// /// This lint solves the problem automatically. It is "allow" by default /// because the code is perfectly valid in older editions. The [`cargo /// fix`] tool with the `--edition` flag will switch this lint to "warn" /// and automatically apply the suggested fix from the compiler (which is /// to use a raw identifier). This provides a completely automated way to /// update old code for a new edition. /// /// [editions]: https://doc.rust-lang.org/edition-guide/ /// [raw identifier]: https://doc.rust-lang.org/reference/identifiers.html /// [`cargo fix`]: https://doc.rust-lang.org/cargo/commands/cargo-fix.html pub KEYWORD_IDENTS, Allow, "detects edition keywords being used as an identifier", @future_incompatible = FutureIncompatibleInfo { reference: "issue #49716 ", reason: FutureIncompatibilityReason::EditionError(Edition::Edition2018), }; } declare_lint_pass!( /// Check for uses of edition keywords used as an identifier. KeywordIdents => [KEYWORD_IDENTS] ); struct UnderMacro(bool); impl KeywordIdents { fn check_tokens(&mut self, cx: &EarlyContext<'_>, tokens: TokenStream) { for tt in tokens.into_trees() { match tt { // Only report non-raw idents. TokenTree::Token(token, _) => { if let Some((ident, false)) = token.ident() { self.check_ident_token(cx, UnderMacro(true), ident); } } TokenTree::Delimited(_, _, tts) => self.check_tokens(cx, tts), } } } fn check_ident_token( &mut self, cx: &EarlyContext<'_>, UnderMacro(under_macro): UnderMacro, ident: Ident, ) { let next_edition = match cx.sess().edition() { Edition::Edition2015 => { match ident.name { kw::Async | kw::Await | kw::Try => Edition::Edition2018, // rust-lang/rust#56327: Conservatively do not // attempt to report occurrences of `dyn` within // macro definitions or invocations, because `dyn` // can legitimately occur as a contextual keyword // in 2015 code denoting its 2018 meaning, and we // do not want rustfix to inject bugs into working // code by rewriting such occurrences. // // But if we see `dyn` outside of a macro, we know // its precise role in the parsed AST and thus are // assured this is truly an attempt to use it as // an identifier. kw::Dyn if !under_macro => Edition::Edition2018, _ => return, } } // There are no new keywords yet for the 2018 edition and beyond. _ => return, }; // Don't lint `r#foo`. if cx.sess().parse_sess.raw_identifier_spans.borrow().contains(&ident.span) { return; } cx.emit_spanned_lint( KEYWORD_IDENTS, ident.span, BuiltinKeywordIdents { kw: ident, next: next_edition, suggestion: ident.span }, ); } } impl EarlyLintPass for KeywordIdents { fn check_mac_def(&mut self, cx: &EarlyContext<'_>, mac_def: &ast::MacroDef) { self.check_tokens(cx, mac_def.body.tokens.clone()); } fn check_mac(&mut self, cx: &EarlyContext<'_>, mac: &ast::MacCall) { self.check_tokens(cx, mac.args.tokens.clone()); } fn check_ident(&mut self, cx: &EarlyContext<'_>, ident: Ident) { self.check_ident_token(cx, UnderMacro(false), ident); } } declare_lint_pass!(ExplicitOutlivesRequirements => [EXPLICIT_OUTLIVES_REQUIREMENTS]); impl ExplicitOutlivesRequirements { fn lifetimes_outliving_lifetime<'tcx>( inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)], def_id: DefId, ) -> Vec> { inferred_outlives .iter() .filter_map(|(clause, _)| match *clause { ty::Clause::RegionOutlives(ty::OutlivesPredicate(a, b)) => match *a { ty::ReEarlyBound(ebr) if ebr.def_id == def_id => Some(b), _ => None, }, _ => None, }) .collect() } fn lifetimes_outliving_type<'tcx>( inferred_outlives: &'tcx [(ty::Clause<'tcx>, Span)], index: u32, ) -> Vec> { inferred_outlives .iter() .filter_map(|(clause, _)| match *clause { ty::Clause::TypeOutlives(ty::OutlivesPredicate(a, b)) => { a.is_param(index).then_some(b) } _ => None, }) .collect() } fn collect_outlives_bound_spans<'tcx>( &self, tcx: TyCtxt<'tcx>, bounds: &hir::GenericBounds<'_>, inferred_outlives: &[ty::Region<'tcx>], predicate_span: Span, ) -> Vec<(usize, Span)> { use rustc_middle::middle::resolve_lifetime::Region; bounds .iter() .enumerate() .filter_map(|(i, bound)| { let hir::GenericBound::Outlives(lifetime) = bound else { return None; }; let is_inferred = match tcx.named_region(lifetime.hir_id) { Some(Region::EarlyBound(def_id)) => inferred_outlives .iter() .any(|r| matches!(**r, ty::ReEarlyBound(ebr) if { ebr.def_id == def_id })), _ => false, }; if !is_inferred { return None; } let span = bound.span().find_ancestor_inside(predicate_span)?; if in_external_macro(tcx.sess, span) { return None; } Some((i, span)) }) .collect() } fn consolidate_outlives_bound_spans( &self, lo: Span, bounds: &hir::GenericBounds<'_>, bound_spans: Vec<(usize, Span)>, ) -> Vec { if bounds.is_empty() { return Vec::new(); } if bound_spans.len() == bounds.len() { let (_, last_bound_span) = bound_spans[bound_spans.len() - 1]; // If all bounds are inferable, we want to delete the colon, so // start from just after the parameter (span passed as argument) vec![lo.to(last_bound_span)] } else { let mut merged = Vec::new(); let mut last_merged_i = None; let mut from_start = true; for (i, bound_span) in bound_spans { match last_merged_i { // If the first bound is inferable, our span should also eat the leading `+`. None if i == 0 => { merged.push(bound_span.to(bounds[1].span().shrink_to_lo())); last_merged_i = Some(0); } // If consecutive bounds are inferable, merge their spans Some(h) if i == h + 1 => { if let Some(tail) = merged.last_mut() { // Also eat the trailing `+` if the first // more-than-one bound is inferable let to_span = if from_start && i < bounds.len() { bounds[i + 1].span().shrink_to_lo() } else { bound_span }; *tail = tail.to(to_span); last_merged_i = Some(i); } else { bug!("another bound-span visited earlier"); } } _ => { // When we find a non-inferable bound, subsequent inferable bounds // won't be consecutive from the start (and we'll eat the leading // `+` rather than the trailing one) from_start = false; merged.push(bounds[i - 1].span().shrink_to_hi().to(bound_span)); last_merged_i = Some(i); } } } merged } } } impl<'tcx> LateLintPass<'tcx> for ExplicitOutlivesRequirements { fn check_item(&mut self, cx: &LateContext<'tcx>, item: &'tcx hir::Item<'_>) { use rustc_middle::middle::resolve_lifetime::Region; let def_id = item.owner_id.def_id; if let hir::ItemKind::Struct(_, hir_generics) | hir::ItemKind::Enum(_, hir_generics) | hir::ItemKind::Union(_, hir_generics) = item.kind { let inferred_outlives = cx.tcx.inferred_outlives_of(def_id); if inferred_outlives.is_empty() { return; } let ty_generics = cx.tcx.generics_of(def_id); let mut bound_count = 0; let mut lint_spans = Vec::new(); let mut where_lint_spans = Vec::new(); let mut dropped_predicate_count = 0; let num_predicates = hir_generics.predicates.len(); for (i, where_predicate) in hir_generics.predicates.iter().enumerate() { let (relevant_lifetimes, bounds, predicate_span, in_where_clause) = match where_predicate { hir::WherePredicate::RegionPredicate(predicate) => { if let Some(Region::EarlyBound(region_def_id)) = cx.tcx.named_region(predicate.lifetime.hir_id) { ( Self::lifetimes_outliving_lifetime( inferred_outlives, region_def_id, ), &predicate.bounds, predicate.span, predicate.in_where_clause, ) } else { continue; } } hir::WherePredicate::BoundPredicate(predicate) => { // FIXME we can also infer bounds on associated types, // and should check for them here. match predicate.bounded_ty.kind { hir::TyKind::Path(hir::QPath::Resolved(None, path)) => { let Res::Def(DefKind::TyParam, def_id) = path.res else { continue; }; let index = ty_generics.param_def_id_to_index[&def_id]; ( Self::lifetimes_outliving_type(inferred_outlives, index), &predicate.bounds, predicate.span, predicate.origin == PredicateOrigin::WhereClause, ) } _ => { continue; } } } _ => continue, }; if relevant_lifetimes.is_empty() { continue; } let bound_spans = self.collect_outlives_bound_spans( cx.tcx, bounds, &relevant_lifetimes, predicate_span, ); bound_count += bound_spans.len(); let drop_predicate = bound_spans.len() == bounds.len(); if drop_predicate { dropped_predicate_count += 1; } if drop_predicate && !in_where_clause { lint_spans.push(predicate_span); } else if drop_predicate && i + 1 < num_predicates { // If all the bounds on a predicate were inferable and there are // further predicates, we want to eat the trailing comma. let next_predicate_span = hir_generics.predicates[i + 1].span(); where_lint_spans.push(predicate_span.to(next_predicate_span.shrink_to_lo())); } else { where_lint_spans.extend(self.consolidate_outlives_bound_spans( predicate_span.shrink_to_lo(), bounds, bound_spans, )); } } // If all predicates are inferable, drop the entire clause // (including the `where`) if hir_generics.has_where_clause_predicates && dropped_predicate_count == num_predicates { let where_span = hir_generics.where_clause_span; // Extend the where clause back to the closing `>` of the // generics, except for tuple struct, which have the `where` // after the fields of the struct. let full_where_span = if let hir::ItemKind::Struct(hir::VariantData::Tuple(..), _) = item.kind { where_span } else { hir_generics.span.shrink_to_hi().to(where_span) }; // Due to macro expansions, the `full_where_span` might not actually contain all predicates. if where_lint_spans.iter().all(|&sp| full_where_span.contains(sp)) { lint_spans.push(full_where_span); } else { lint_spans.extend(where_lint_spans); } } else { lint_spans.extend(where_lint_spans); } if !lint_spans.is_empty() { // Do not automatically delete outlives requirements from macros. let applicability = if lint_spans.iter().all(|sp| sp.can_be_used_for_suggestions()) { Applicability::MachineApplicable } else { Applicability::MaybeIncorrect }; cx.emit_spanned_lint( EXPLICIT_OUTLIVES_REQUIREMENTS, lint_spans.clone(), BuiltinExplicitOutlives { count: bound_count, suggestion: BuiltinExplicitOutlivesSuggestion { spans: lint_spans, applicability, }, }, ); } } } } declare_lint! { /// The `incomplete_features` lint detects unstable features enabled with /// the [`feature` attribute] that may function improperly in some or all /// cases. /// /// [`feature` attribute]: https://doc.rust-lang.org/nightly/unstable-book/ /// /// ### Example /// /// ```rust /// #![feature(generic_const_exprs)] /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Although it is encouraged for people to experiment with unstable /// features, some of them are known to be incomplete or faulty. This lint /// is a signal that the feature has not yet been finished, and you may /// experience problems with it. pub INCOMPLETE_FEATURES, Warn, "incomplete features that may function improperly in some or all cases" } declare_lint_pass!( /// Check for used feature gates in `INCOMPLETE_FEATURES` in `rustc_feature/src/active.rs`. IncompleteFeatures => [INCOMPLETE_FEATURES] ); impl EarlyLintPass for IncompleteFeatures { fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) { let features = cx.sess().features_untracked(); features .declared_lang_features .iter() .map(|(name, span, _)| (name, span)) .chain(features.declared_lib_features.iter().map(|(name, span)| (name, span))) .filter(|(&name, _)| features.incomplete(name)) .for_each(|(&name, &span)| { let note = rustc_feature::find_feature_issue(name, GateIssue::Language) .map(|n| BuiltinIncompleteFeaturesNote { n }); let help = if HAS_MIN_FEATURES.contains(&name) { Some(BuiltinIncompleteFeaturesHelp) } else { None }; cx.emit_spanned_lint( INCOMPLETE_FEATURES, span, BuiltinIncompleteFeatures { name, note, help }, ); }); } } const HAS_MIN_FEATURES: &[Symbol] = &[sym::specialization]; declare_lint! { /// The `invalid_value` lint detects creating a value that is not valid, /// such as a null reference. /// /// ### Example /// /// ```rust,no_run /// # #![allow(unused)] /// unsafe { /// let x: &'static i32 = std::mem::zeroed(); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// In some situations the compiler can detect that the code is creating /// an invalid value, which should be avoided. /// /// In particular, this lint will check for improper use of /// [`mem::zeroed`], [`mem::uninitialized`], [`mem::transmute`], and /// [`MaybeUninit::assume_init`] that can cause [undefined behavior]. The /// lint should provide extra information to indicate what the problem is /// and a possible solution. /// /// [`mem::zeroed`]: https://doc.rust-lang.org/std/mem/fn.zeroed.html /// [`mem::uninitialized`]: https://doc.rust-lang.org/std/mem/fn.uninitialized.html /// [`mem::transmute`]: https://doc.rust-lang.org/std/mem/fn.transmute.html /// [`MaybeUninit::assume_init`]: https://doc.rust-lang.org/std/mem/union.MaybeUninit.html#method.assume_init /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html pub INVALID_VALUE, Warn, "an invalid value is being created (such as a null reference)" } declare_lint_pass!(InvalidValue => [INVALID_VALUE]); /// Information about why a type cannot be initialized this way. pub struct InitError { pub(crate) message: String, /// Spans from struct fields and similar that can be obtained from just the type. pub(crate) span: Option, /// Used to report a trace through adts. pub(crate) nested: Option>, } impl InitError { fn spanned(self, span: Span) -> InitError { Self { span: Some(span), ..self } } fn nested(self, nested: impl Into>) -> InitError { assert!(self.nested.is_none()); Self { nested: nested.into().map(Box::new), ..self } } } impl<'a> From<&'a str> for InitError { fn from(s: &'a str) -> Self { s.to_owned().into() } } impl From for InitError { fn from(message: String) -> Self { Self { message, span: None, nested: None } } } impl<'tcx> LateLintPass<'tcx> for InvalidValue { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { #[derive(Debug, Copy, Clone, PartialEq)] enum InitKind { Zeroed, Uninit, } /// Test if this constant is all-0. fn is_zero(expr: &hir::Expr<'_>) -> bool { use hir::ExprKind::*; use rustc_ast::LitKind::*; match &expr.kind { Lit(lit) => { if let Int(i, _) = lit.node { i == 0 } else { false } } Tup(tup) => tup.iter().all(is_zero), _ => false, } } /// Determine if this expression is a "dangerous initialization". fn is_dangerous_init(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> Option { if let hir::ExprKind::Call(ref path_expr, ref args) = expr.kind { // Find calls to `mem::{uninitialized,zeroed}` methods. if let hir::ExprKind::Path(ref qpath) = path_expr.kind { let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; match cx.tcx.get_diagnostic_name(def_id) { Some(sym::mem_zeroed) => return Some(InitKind::Zeroed), Some(sym::mem_uninitialized) => return Some(InitKind::Uninit), Some(sym::transmute) if is_zero(&args[0]) => return Some(InitKind::Zeroed), _ => {} } } } else if let hir::ExprKind::MethodCall(_, receiver, ..) = expr.kind { // Find problematic calls to `MaybeUninit::assume_init`. let def_id = cx.typeck_results().type_dependent_def_id(expr.hir_id)?; if cx.tcx.is_diagnostic_item(sym::assume_init, def_id) { // This is a call to *some* method named `assume_init`. // See if the `self` parameter is one of the dangerous constructors. if let hir::ExprKind::Call(ref path_expr, _) = receiver.kind { if let hir::ExprKind::Path(ref qpath) = path_expr.kind { let def_id = cx.qpath_res(qpath, path_expr.hir_id).opt_def_id()?; match cx.tcx.get_diagnostic_name(def_id) { Some(sym::maybe_uninit_zeroed) => return Some(InitKind::Zeroed), Some(sym::maybe_uninit_uninit) => return Some(InitKind::Uninit), _ => {} } } } } } None } fn variant_find_init_error<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, variant: &VariantDef, substs: ty::SubstsRef<'tcx>, descr: &str, init: InitKind, ) -> Option { let mut field_err = variant.fields.iter().find_map(|field| { ty_find_init_error(cx, field.ty(cx.tcx, substs), init).map(|mut err| { if !field.did.is_local() { err } else if err.span.is_none() { err.span = Some(cx.tcx.def_span(field.did)); write!(&mut err.message, " (in this {descr})").unwrap(); err } else { InitError::from(format!("in this {descr}")) .spanned(cx.tcx.def_span(field.did)) .nested(err) } }) }); // Check if this ADT has a constrained layout (like `NonNull` and friends). if let Ok(layout) = cx.tcx.layout_of(cx.param_env.and(ty)) { if let Abi::Scalar(scalar) | Abi::ScalarPair(scalar, _) = &layout.abi { let range = scalar.valid_range(cx); let msg = if !range.contains(0) { "must be non-null" } else if init == InitKind::Uninit && !scalar.is_always_valid(cx) { // Prefer reporting on the fields over the entire struct for uninit, // as the information bubbles out and it may be unclear why the type can't // be null from just its outside signature. "must be initialized inside its custom valid range" } else { return field_err; }; if let Some(field_err) = &mut field_err { // Most of the time, if the field error is the same as the struct error, // the struct error only happens because of the field error. if field_err.message.contains(msg) { field_err.message = format!("because {}", field_err.message); } } return Some(InitError::from(format!("`{ty}` {msg}")).nested(field_err)); } } field_err } /// Return `Some` only if we are sure this type does *not* /// allow zero initialization. fn ty_find_init_error<'tcx>( cx: &LateContext<'tcx>, ty: Ty<'tcx>, init: InitKind, ) -> Option { use rustc_type_ir::sty::TyKind::*; match ty.kind() { // Primitive types that don't like 0 as a value. Ref(..) => Some("references must be non-null".into()), Adt(..) if ty.is_box() => Some("`Box` must be non-null".into()), FnPtr(..) => Some("function pointers must be non-null".into()), Never => Some("the `!` type has no valid value".into()), RawPtr(tm) if matches!(tm.ty.kind(), Dynamic(..)) => // raw ptr to dyn Trait { Some("the vtable of a wide raw pointer must be non-null".into()) } // Primitive types with other constraints. Bool if init == InitKind::Uninit => { Some("booleans must be either `true` or `false`".into()) } Char if init == InitKind::Uninit => { Some("characters must be a valid Unicode codepoint".into()) } Int(_) | Uint(_) if init == InitKind::Uninit => { Some("integers must be initialized".into()) } Float(_) if init == InitKind::Uninit => Some("floats must be initialized".into()), RawPtr(_) if init == InitKind::Uninit => { Some("raw pointers must be initialized".into()) } // Recurse and checks for some compound types. (but not unions) Adt(adt_def, substs) if !adt_def.is_union() => { // Handle structs. if adt_def.is_struct() { return variant_find_init_error( cx, ty, adt_def.non_enum_variant(), substs, "struct field", init, ); } // And now, enums. let span = cx.tcx.def_span(adt_def.did()); let mut potential_variants = adt_def.variants().iter().filter_map(|variant| { let definitely_inhabited = match variant .inhabited_predicate(cx.tcx, *adt_def) .subst(cx.tcx, substs) .apply_any_module(cx.tcx, cx.param_env) { // Entirely skip uninhbaited variants. Some(false) => return None, // Forward the others, but remember which ones are definitely inhabited. Some(true) => true, None => false, }; Some((variant, definitely_inhabited)) }); let Some(first_variant) = potential_variants.next() else { return Some(InitError::from("enums with no inhabited variants have no valid value").spanned(span)); }; // So we have at least one potentially inhabited variant. Might we have two? let Some(second_variant) = potential_variants.next() else { // There is only one potentially inhabited variant. So we can recursively check that variant! return variant_find_init_error( cx, ty, &first_variant.0, substs, "field of the only potentially inhabited enum variant", init, ); }; // So we have at least two potentially inhabited variants. // If we can prove that we have at least two *definitely* inhabited variants, // then we have a tag and hence leaving this uninit is definitely disallowed. // (Leaving it zeroed could be okay, depending on which variant is encoded as zero tag.) if init == InitKind::Uninit { let definitely_inhabited = (first_variant.1 as usize) + (second_variant.1 as usize) + potential_variants .filter(|(_variant, definitely_inhabited)| *definitely_inhabited) .count(); if definitely_inhabited > 1 { return Some(InitError::from( "enums with multiple inhabited variants have to be initialized to a variant", ).spanned(span)); } } // We couldn't find anything wrong here. None } Tuple(..) => { // Proceed recursively, check all fields. ty.tuple_fields().iter().find_map(|field| ty_find_init_error(cx, field, init)) } Array(ty, len) => { if matches!(len.try_eval_usize(cx.tcx, cx.param_env), Some(v) if v > 0) { // Array length known at array non-empty -- recurse. ty_find_init_error(cx, *ty, init) } else { // Empty array or size unknown. None } } // Conservative fallback. _ => None, } } if let Some(init) = is_dangerous_init(cx, expr) { // This conjures an instance of a type out of nothing, // using zeroed or uninitialized memory. // We are extremely conservative with what we warn about. let conjured_ty = cx.typeck_results().expr_ty(expr); if let Some(err) = with_no_trimmed_paths!(ty_find_init_error(cx, conjured_ty, init)) { let msg = match init { InitKind::Zeroed => fluent::lint_builtin_unpermitted_type_init_zeroed, InitKind::Uninit => fluent::lint_builtin_unpermitted_type_init_unint, }; let sub = BuiltinUnpermittedTypeInitSub { err }; cx.emit_spanned_lint( INVALID_VALUE, expr.span, BuiltinUnpermittedTypeInit { msg, ty: conjured_ty, label: expr.span, sub }, ); } } } } declare_lint! { /// The `clashing_extern_declarations` lint detects when an `extern fn` /// has been declared with the same name but different types. /// /// ### Example /// /// ```rust /// mod m { /// extern "C" { /// fn foo(); /// } /// } /// /// extern "C" { /// fn foo(_: u32); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Because two symbols of the same name cannot be resolved to two /// different functions at link time, and one function cannot possibly /// have two types, a clashing extern declaration is almost certainly a /// mistake. Check to make sure that the `extern` definitions are correct /// and equivalent, and possibly consider unifying them in one location. /// /// This lint does not run between crates because a project may have /// dependencies which both rely on the same extern function, but declare /// it in a different (but valid) way. For example, they may both declare /// an opaque type for one or more of the arguments (which would end up /// distinct types), or use types that are valid conversions in the /// language the `extern fn` is defined in. In these cases, the compiler /// can't say that the clashing declaration is incorrect. pub CLASHING_EXTERN_DECLARATIONS, Warn, "detects when an extern fn has been declared with the same name but different types" } pub struct ClashingExternDeclarations { /// Map of function symbol name to the first-seen hir id for that symbol name.. If seen_decls /// contains an entry for key K, it means a symbol with name K has been seen by this lint and /// the symbol should be reported as a clashing declaration. // FIXME: Technically, we could just store a &'tcx str here without issue; however, the // `impl_lint_pass` macro doesn't currently support lints parametric over a lifetime. seen_decls: FxHashMap, } /// Differentiate between whether the name for an extern decl came from the link_name attribute or /// just from declaration itself. This is important because we don't want to report clashes on /// symbol name if they don't actually clash because one or the other links against a symbol with a /// different name. enum SymbolName { /// The name of the symbol + the span of the annotation which introduced the link name. Link(Symbol, Span), /// No link name, so just the name of the symbol. Normal(Symbol), } impl SymbolName { fn get_name(&self) -> Symbol { match self { SymbolName::Link(s, _) | SymbolName::Normal(s) => *s, } } } impl ClashingExternDeclarations { pub(crate) fn new() -> Self { ClashingExternDeclarations { seen_decls: FxHashMap::default() } } /// Insert a new foreign item into the seen set. If a symbol with the same name already exists /// for the item, return its HirId without updating the set. fn insert(&mut self, tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> Option { let did = fi.owner_id.to_def_id(); let instance = Instance::new(did, ty::List::identity_for_item(tcx, did)); let name = Symbol::intern(tcx.symbol_name(instance).name); if let Some(&hir_id) = self.seen_decls.get(&name) { // Avoid updating the map with the new entry when we do find a collision. We want to // make sure we're always pointing to the first definition as the previous declaration. // This lets us avoid emitting "knock-on" diagnostics. Some(hir_id) } else { self.seen_decls.insert(name, fi.hir_id()) } } /// Get the name of the symbol that's linked against for a given extern declaration. That is, /// the name specified in a #[link_name = ...] attribute if one was specified, else, just the /// symbol's name. fn name_of_extern_decl(tcx: TyCtxt<'_>, fi: &hir::ForeignItem<'_>) -> SymbolName { if let Some((overridden_link_name, overridden_link_name_span)) = tcx.codegen_fn_attrs(fi.owner_id).link_name.map(|overridden_link_name| { // FIXME: Instead of searching through the attributes again to get span // information, we could have codegen_fn_attrs also give span information back for // where the attribute was defined. However, until this is found to be a // bottleneck, this does just fine. ( overridden_link_name, tcx.get_attr(fi.owner_id.to_def_id(), sym::link_name).unwrap().span, ) }) { SymbolName::Link(overridden_link_name, overridden_link_name_span) } else { SymbolName::Normal(fi.ident.name) } } /// Checks whether two types are structurally the same enough that the declarations shouldn't /// clash. We need this so we don't emit a lint when two modules both declare an extern struct, /// with the same members (as the declarations shouldn't clash). fn structurally_same_type<'tcx>( cx: &LateContext<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>, ckind: CItemKind, ) -> bool { fn structurally_same_type_impl<'tcx>( seen_types: &mut FxHashSet<(Ty<'tcx>, Ty<'tcx>)>, cx: &LateContext<'tcx>, a: Ty<'tcx>, b: Ty<'tcx>, ckind: CItemKind, ) -> bool { debug!("structurally_same_type_impl(cx, a = {:?}, b = {:?})", a, b); let tcx = cx.tcx; // Given a transparent newtype, reach through and grab the inner // type unless the newtype makes the type non-null. let non_transparent_ty = |ty: Ty<'tcx>| -> Ty<'tcx> { let mut ty = ty; loop { if let ty::Adt(def, substs) = *ty.kind() { let is_transparent = def.repr().transparent(); let is_non_null = crate::types::nonnull_optimization_guaranteed(tcx, def); debug!( "non_transparent_ty({:?}) -- type is transparent? {}, type is non-null? {}", ty, is_transparent, is_non_null ); if is_transparent && !is_non_null { debug_assert!(def.variants().len() == 1); let v = &def.variant(VariantIdx::new(0)); ty = transparent_newtype_field(tcx, v) .expect( "single-variant transparent structure with zero-sized field", ) .ty(tcx, substs); continue; } } debug!("non_transparent_ty -> {:?}", ty); return ty; } }; let a = non_transparent_ty(a); let b = non_transparent_ty(b); if !seen_types.insert((a, b)) { // We've encountered a cycle. There's no point going any further -- the types are // structurally the same. return true; } let tcx = cx.tcx; if a == b { // All nominally-same types are structurally same, too. true } else { // Do a full, depth-first comparison between the two. use rustc_type_ir::sty::TyKind::*; let a_kind = a.kind(); let b_kind = b.kind(); let compare_layouts = |a, b| -> Result> { debug!("compare_layouts({:?}, {:?})", a, b); let a_layout = &cx.layout_of(a)?.layout.abi(); let b_layout = &cx.layout_of(b)?.layout.abi(); debug!( "comparing layouts: {:?} == {:?} = {}", a_layout, b_layout, a_layout == b_layout ); Ok(a_layout == b_layout) }; #[allow(rustc::usage_of_ty_tykind)] let is_primitive_or_pointer = |kind: &ty::TyKind<'_>| { kind.is_primitive() || matches!(kind, RawPtr(..) | Ref(..)) }; ensure_sufficient_stack(|| { match (a_kind, b_kind) { (Adt(a_def, _), Adt(b_def, _)) => { // We can immediately rule out these types as structurally same if // their layouts differ. match compare_layouts(a, b) { Ok(false) => return false, _ => (), // otherwise, continue onto the full, fields comparison } // Grab a flattened representation of all fields. let a_fields = a_def.variants().iter().flat_map(|v| v.fields.iter()); let b_fields = b_def.variants().iter().flat_map(|v| v.fields.iter()); // Perform a structural comparison for each field. a_fields.eq_by( b_fields, |&ty::FieldDef { did: a_did, .. }, &ty::FieldDef { did: b_did, .. }| { structurally_same_type_impl( seen_types, cx, tcx.type_of(a_did), tcx.type_of(b_did), ckind, ) }, ) } (Array(a_ty, a_const), Array(b_ty, b_const)) => { // For arrays, we also check the constness of the type. a_const.kind() == b_const.kind() && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind) } (Slice(a_ty), Slice(b_ty)) => { structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind) } (RawPtr(a_tymut), RawPtr(b_tymut)) => { a_tymut.mutbl == b_tymut.mutbl && structurally_same_type_impl( seen_types, cx, a_tymut.ty, b_tymut.ty, ckind, ) } (Ref(_a_region, a_ty, a_mut), Ref(_b_region, b_ty, b_mut)) => { // For structural sameness, we don't need the region to be same. a_mut == b_mut && structurally_same_type_impl(seen_types, cx, *a_ty, *b_ty, ckind) } (FnDef(..), FnDef(..)) => { let a_poly_sig = a.fn_sig(tcx); let b_poly_sig = b.fn_sig(tcx); // We don't compare regions, but leaving bound regions around ICEs, so // we erase them. let a_sig = tcx.erase_late_bound_regions(a_poly_sig); let b_sig = tcx.erase_late_bound_regions(b_poly_sig); (a_sig.abi, a_sig.unsafety, a_sig.c_variadic) == (b_sig.abi, b_sig.unsafety, b_sig.c_variadic) && a_sig.inputs().iter().eq_by(b_sig.inputs().iter(), |a, b| { structurally_same_type_impl(seen_types, cx, *a, *b, ckind) }) && structurally_same_type_impl( seen_types, cx, a_sig.output(), b_sig.output(), ckind, ) } (Tuple(a_substs), Tuple(b_substs)) => { a_substs.iter().eq_by(b_substs.iter(), |a_ty, b_ty| { structurally_same_type_impl(seen_types, cx, a_ty, b_ty, ckind) }) } // For these, it's not quite as easy to define structural-sameness quite so easily. // For the purposes of this lint, take the conservative approach and mark them as // not structurally same. (Dynamic(..), Dynamic(..)) | (Error(..), Error(..)) | (Closure(..), Closure(..)) | (Generator(..), Generator(..)) | (GeneratorWitness(..), GeneratorWitness(..)) | (Alias(ty::Projection, ..), Alias(ty::Projection, ..)) | (Alias(ty::Opaque, ..), Alias(ty::Opaque, ..)) => false, // These definitely should have been caught above. (Bool, Bool) | (Char, Char) | (Never, Never) | (Str, Str) => unreachable!(), // An Adt and a primitive or pointer type. This can be FFI-safe if non-null // enum layout optimisation is being applied. (Adt(..), other_kind) | (other_kind, Adt(..)) if is_primitive_or_pointer(other_kind) => { let (primitive, adt) = if is_primitive_or_pointer(a.kind()) { (a, b) } else { (b, a) }; if let Some(ty) = crate::types::repr_nullable_ptr(cx, adt, ckind) { ty == primitive } else { compare_layouts(a, b).unwrap_or(false) } } // Otherwise, just compare the layouts. This may fail to lint for some // incompatible types, but at the very least, will stop reads into // uninitialised memory. _ => compare_layouts(a, b).unwrap_or(false), } }) } } let mut seen_types = FxHashSet::default(); structurally_same_type_impl(&mut seen_types, cx, a, b, ckind) } } impl_lint_pass!(ClashingExternDeclarations => [CLASHING_EXTERN_DECLARATIONS]); impl<'tcx> LateLintPass<'tcx> for ClashingExternDeclarations { fn check_foreign_item(&mut self, cx: &LateContext<'tcx>, this_fi: &hir::ForeignItem<'_>) { trace!("ClashingExternDeclarations: check_foreign_item: {:?}", this_fi); if let ForeignItemKind::Fn(..) = this_fi.kind { let tcx = cx.tcx; if let Some(existing_hid) = self.insert(tcx, this_fi) { let existing_decl_ty = tcx.type_of(tcx.hir().local_def_id(existing_hid)); let this_decl_ty = tcx.type_of(this_fi.owner_id); debug!( "ClashingExternDeclarations: Comparing existing {:?}: {:?} to this {:?}: {:?}", existing_hid, existing_decl_ty, this_fi.owner_id, this_decl_ty ); // Check that the declarations match. if !Self::structurally_same_type( cx, existing_decl_ty, this_decl_ty, CItemKind::Declaration, ) { let orig_fi = tcx.hir().expect_foreign_item(existing_hid.expect_owner()); let orig = Self::name_of_extern_decl(tcx, orig_fi); // We want to ensure that we use spans for both decls that include where the // name was defined, whether that was from the link_name attribute or not. let get_relevant_span = |fi: &hir::ForeignItem<'_>| match Self::name_of_extern_decl(tcx, fi) { SymbolName::Normal(_) => fi.span, SymbolName::Link(_, annot_span) => fi.span.to(annot_span), }; // Finally, emit the diagnostic. let this = this_fi.ident.name; let orig = orig.get_name(); let previous_decl_label = get_relevant_span(orig_fi); let mismatch_label = get_relevant_span(this_fi); let sub = BuiltinClashingExternSub { tcx, expected: existing_decl_ty, found: this_decl_ty, }; let decorator = if orig == this { BuiltinClashingExtern::SameName { this, orig, previous_decl_label, mismatch_label, sub, } } else { BuiltinClashingExtern::DiffName { this, orig, previous_decl_label, mismatch_label, sub, } }; tcx.emit_spanned_lint( CLASHING_EXTERN_DECLARATIONS, this_fi.hir_id(), get_relevant_span(this_fi), decorator, ); } } } } } declare_lint! { /// The `deref_nullptr` lint detects when an null pointer is dereferenced, /// which causes [undefined behavior]. /// /// ### Example /// /// ```rust,no_run /// # #![allow(unused)] /// use std::ptr; /// unsafe { /// let x = &*ptr::null::(); /// let x = ptr::addr_of!(*ptr::null::()); /// let x = *(0 as *const i32); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Dereferencing a null pointer causes [undefined behavior] even as a place expression, /// like `&*(0 as *const i32)` or `addr_of!(*(0 as *const i32))`. /// /// [undefined behavior]: https://doc.rust-lang.org/reference/behavior-considered-undefined.html pub DEREF_NULLPTR, Warn, "detects when an null pointer is dereferenced" } declare_lint_pass!(DerefNullPtr => [DEREF_NULLPTR]); impl<'tcx> LateLintPass<'tcx> for DerefNullPtr { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &hir::Expr<'_>) { /// test if expression is a null ptr fn is_null_ptr(cx: &LateContext<'_>, expr: &hir::Expr<'_>) -> bool { match &expr.kind { rustc_hir::ExprKind::Cast(ref expr, ref ty) => { if let rustc_hir::TyKind::Ptr(_) = ty.kind { return is_zero(expr) || is_null_ptr(cx, expr); } } // check for call to `core::ptr::null` or `core::ptr::null_mut` rustc_hir::ExprKind::Call(ref path, _) => { if let rustc_hir::ExprKind::Path(ref qpath) = path.kind { if let Some(def_id) = cx.qpath_res(qpath, path.hir_id).opt_def_id() { return matches!( cx.tcx.get_diagnostic_name(def_id), Some(sym::ptr_null | sym::ptr_null_mut) ); } } } _ => {} } false } /// test if expression is the literal `0` fn is_zero(expr: &hir::Expr<'_>) -> bool { match &expr.kind { rustc_hir::ExprKind::Lit(ref lit) => { if let LitKind::Int(a, _) = lit.node { return a == 0; } } _ => {} } false } if let rustc_hir::ExprKind::Unary(rustc_hir::UnOp::Deref, expr_deref) = expr.kind { if is_null_ptr(cx, expr_deref) { cx.emit_spanned_lint( DEREF_NULLPTR, expr.span, BuiltinDerefNullptr { label: expr.span }, ); } } } } declare_lint! { /// The `named_asm_labels` lint detects the use of named labels in the /// inline `asm!` macro. /// /// ### Example /// /// ```rust,compile_fail /// # #![feature(asm_experimental_arch)] /// use std::arch::asm; /// /// fn main() { /// unsafe { /// asm!("foo: bar"); /// } /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// LLVM is allowed to duplicate inline assembly blocks for any /// reason, for example when it is in a function that gets inlined. Because /// of this, GNU assembler [local labels] *must* be used instead of labels /// with a name. Using named labels might cause assembler or linker errors. /// /// See the explanation in [Rust By Example] for more details. /// /// [local labels]: https://sourceware.org/binutils/docs/as/Symbol-Names.html#Local-Labels /// [Rust By Example]: https://doc.rust-lang.org/nightly/rust-by-example/unsafe/asm.html#labels pub NAMED_ASM_LABELS, Deny, "named labels in inline assembly", } declare_lint_pass!(NamedAsmLabels => [NAMED_ASM_LABELS]); impl<'tcx> LateLintPass<'tcx> for NamedAsmLabels { #[allow(rustc::diagnostic_outside_of_impl)] fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) { if let hir::Expr { kind: hir::ExprKind::InlineAsm(hir::InlineAsm { template_strs, .. }), .. } = expr { for (template_sym, template_snippet, template_span) in template_strs.iter() { let template_str = template_sym.as_str(); let find_label_span = |needle: &str| -> Option { if let Some(template_snippet) = template_snippet { let snippet = template_snippet.as_str(); if let Some(pos) = snippet.find(needle) { let end = pos + snippet[pos..] .find(|c| c == ':') .unwrap_or(snippet[pos..].len() - 1); let inner = InnerSpan::new(pos, end); return Some(template_span.from_inner(inner)); } } None }; let mut found_labels = Vec::new(); // A semicolon might not actually be specified as a separator for all targets, but it seems like LLVM accepts it always let statements = template_str.split(|c| matches!(c, '\n' | ';')); for statement in statements { // If there's a comment, trim it from the statement let statement = statement.find("//").map_or(statement, |idx| &statement[..idx]); let mut start_idx = 0; for (idx, _) in statement.match_indices(':') { let possible_label = statement[start_idx..idx].trim(); let mut chars = possible_label.chars(); let Some(c) = chars.next() else { // Empty string means a leading ':' in this section, which is not a label break }; // A label starts with an alphabetic character or . or _ and continues with alphanumeric characters, _, or $ if (c.is_alphabetic() || matches!(c, '.' | '_')) && chars.all(|c| c.is_alphanumeric() || matches!(c, '_' | '$')) { found_labels.push(possible_label); } else { // If we encounter a non-label, there cannot be any further labels, so stop checking break; } start_idx = idx + 1; } } debug!("NamedAsmLabels::check_expr(): found_labels: {:#?}", &found_labels); if found_labels.len() > 0 { let spans = found_labels .into_iter() .filter_map(|label| find_label_span(label)) .collect::>(); // If there were labels but we couldn't find a span, combine the warnings and use the template span let target_spans: MultiSpan = if spans.len() > 0 { spans.into() } else { (*template_span).into() }; cx.lookup_with_diagnostics( NAMED_ASM_LABELS, Some(target_spans), fluent::lint_builtin_asm_labels, |lint| lint, BuiltinLintDiagnostics::NamedAsmLabel( "only local labels of the form `:` should be used in inline asm" .to_string(), ), ); } } } } } declare_lint! { /// The `special_module_name` lint detects module /// declarations for files that have a special meaning. /// /// ### Example /// /// ```rust,compile_fail /// mod lib; /// /// fn main() { /// lib::run(); /// } /// ``` /// /// {{produces}} /// /// ### Explanation /// /// Cargo recognizes `lib.rs` and `main.rs` as the root of a /// library or binary crate, so declaring them as modules /// will lead to miscompilation of the crate unless configured /// explicitly. /// /// To access a library from a binary target within the same crate, /// use `your_crate_name::` as the path instead of `lib::`: /// /// ```rust,compile_fail /// // bar/src/lib.rs /// fn run() { /// // ... /// } /// /// // bar/src/main.rs /// fn main() { /// bar::run(); /// } /// ``` /// /// Binary targets cannot be used as libraries and so declaring /// one as a module is not allowed. pub SPECIAL_MODULE_NAME, Warn, "module declarations for files with a special meaning", } declare_lint_pass!(SpecialModuleName => [SPECIAL_MODULE_NAME]); impl EarlyLintPass for SpecialModuleName { fn check_crate(&mut self, cx: &EarlyContext<'_>, krate: &ast::Crate) { for item in &krate.items { if let ast::ItemKind::Mod( _, ast::ModKind::Unloaded | ast::ModKind::Loaded(_, ast::Inline::No, _), ) = item.kind { if item.attrs.iter().any(|a| a.has_name(sym::path)) { continue; } match item.ident.name.as_str() { "lib" => cx.emit_spanned_lint( SPECIAL_MODULE_NAME, item.span, BuiltinSpecialModuleNameUsed::Lib, ), "main" => cx.emit_spanned_lint( SPECIAL_MODULE_NAME, item.span, BuiltinSpecialModuleNameUsed::Main, ), _ => continue, } } } } } pub use rustc_session::lint::builtin::UNEXPECTED_CFGS; declare_lint_pass!(UnexpectedCfgs => [UNEXPECTED_CFGS]); impl EarlyLintPass for UnexpectedCfgs { fn check_crate(&mut self, cx: &EarlyContext<'_>, _: &ast::Crate) { let cfg = &cx.sess().parse_sess.config; let check_cfg = &cx.sess().parse_sess.check_config; for &(name, value) in cfg { if let Some(names_valid) = &check_cfg.names_valid && !names_valid.contains(&name){ cx.emit_lint(UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigName { name, }); } if let Some(value) = value && let Some(values) = check_cfg.values_valid.get(&name) && !values.contains(&value) { cx.emit_lint( UNEXPECTED_CFGS, BuiltinUnexpectedCliConfigValue { name, value }, ); } } } }