use crate::lints::{NonFmtPanicBraces, NonFmtPanicUnused}; use crate::{LateContext, LateLintPass, LintContext}; use rustc_ast as ast; use rustc_errors::{fluent, Applicability}; use rustc_hir as hir; use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::lint::in_external_macro; use rustc_middle::ty; use rustc_parse_format::{ParseMode, Parser, Piece}; use rustc_session::lint::FutureIncompatibilityReason; use rustc_span::edition::Edition; use rustc_span::{hygiene, sym, symbol::kw, InnerSpan, Span, Symbol}; use rustc_trait_selection::infer::InferCtxtExt; declare_lint! { /// The `non_fmt_panics` lint detects `panic!(..)` invocations where the first /// argument is not a formatting string. /// /// ### Example /// /// ```rust,no_run,edition2018 /// panic!("{}"); /// panic!(123); /// ``` /// /// {{produces}} /// /// ### Explanation /// /// In Rust 2018 and earlier, `panic!(x)` directly uses `x` as the message. /// That means that `panic!("{}")` panics with the message `"{}"` instead /// of using it as a formatting string, and `panic!(123)` will panic with /// an `i32` as message. /// /// Rust 2021 always interprets the first argument as format string. NON_FMT_PANICS, Warn, "detect single-argument panic!() invocations in which the argument is not a format string", @future_incompatible = FutureIncompatibleInfo { reason: FutureIncompatibilityReason::EditionSemanticsChange(Edition::Edition2021), explain_reason: false, }; report_in_external_macro } declare_lint_pass!(NonPanicFmt => [NON_FMT_PANICS]); impl<'tcx> LateLintPass<'tcx> for NonPanicFmt { fn check_expr(&mut self, cx: &LateContext<'tcx>, expr: &'tcx hir::Expr<'tcx>) { if let hir::ExprKind::Call(f, [arg]) = &expr.kind { if let &ty::FnDef(def_id, _) = cx.typeck_results().expr_ty(f).kind() { let f_diagnostic_name = cx.tcx.get_diagnostic_name(def_id); if Some(def_id) == cx.tcx.lang_items().begin_panic_fn() || Some(def_id) == cx.tcx.lang_items().panic_fn() || f_diagnostic_name == Some(sym::panic_str) { if let Some(id) = f.span.ctxt().outer_expn_data().macro_def_id { if matches!( cx.tcx.get_diagnostic_name(id), Some(sym::core_panic_2015_macro | sym::std_panic_2015_macro) ) { check_panic(cx, f, arg); } } } else if f_diagnostic_name == Some(sym::unreachable_display) { if let Some(id) = f.span.ctxt().outer_expn_data().macro_def_id { if cx.tcx.is_diagnostic_item(sym::unreachable_2015_macro, id) { check_panic( cx, f, // This is safe because we checked above that the callee is indeed // unreachable_display match &arg.kind { // Get the borrowed arg not the borrow hir::ExprKind::AddrOf(ast::BorrowKind::Ref, _, arg) => arg, _ => bug!("call to unreachable_display without borrow"), }, ); } } } } } } } fn check_panic<'tcx>(cx: &LateContext<'tcx>, f: &'tcx hir::Expr<'tcx>, arg: &'tcx hir::Expr<'tcx>) { if let hir::ExprKind::Lit(lit) = &arg.kind { if let ast::LitKind::Str(sym, _) = lit.node { // The argument is a string literal. check_panic_str(cx, f, arg, sym.as_str()); return; } } // The argument is *not* a string literal. let (span, panic, symbol) = panic_call(cx, f); if in_external_macro(cx.sess(), span) { // Nothing that can be done about it in the current crate. return; } // Find the span of the argument to `panic!()` or `unreachable!`, before expansion in the // case of `panic!(some_macro!())` or `unreachable!(some_macro!())`. // We don't use source_callsite(), because this `panic!(..)` might itself // be expanded from another macro, in which case we want to stop at that // expansion. let mut arg_span = arg.span; let mut arg_macro = None; while !span.contains(arg_span) { let expn = arg_span.ctxt().outer_expn_data(); if expn.is_root() { break; } arg_macro = expn.macro_def_id; arg_span = expn.call_site; } #[allow(rustc::diagnostic_outside_of_impl)] cx.struct_span_lint(NON_FMT_PANICS, arg_span, fluent::lint_non_fmt_panic, |lint| { lint.set_arg("name", symbol); lint.note(fluent::note); lint.note(fluent::more_info_note); if !is_arg_inside_call(arg_span, span) { // No clue where this argument is coming from. return lint; } if arg_macro.map_or(false, |id| cx.tcx.is_diagnostic_item(sym::format_macro, id)) { // A case of `panic!(format!(..))`. lint.note(fluent::supports_fmt_note); if let Some((open, close, _)) = find_delimiters(cx, arg_span) { lint.multipart_suggestion( fluent::supports_fmt_suggestion, vec![ (arg_span.until(open.shrink_to_hi()), "".into()), (close.until(arg_span.shrink_to_hi()), "".into()), ], Applicability::MachineApplicable, ); } } else { let ty = cx.typeck_results().expr_ty(arg); // If this is a &str or String, we can confidently give the `"{}", ` suggestion. let is_str = matches!( ty.kind(), ty::Ref(_, r, _) if *r.kind() == ty::Str, ) || matches!( ty.ty_adt_def(), Some(ty_def) if Some(ty_def.did()) == cx.tcx.lang_items().string(), ); let infcx = cx.tcx.infer_ctxt().build(); let suggest_display = is_str || cx .tcx .get_diagnostic_item(sym::Display) .map(|t| infcx.type_implements_trait(t, [ty], cx.param_env).may_apply()) == Some(true); let suggest_debug = !suggest_display && cx .tcx .get_diagnostic_item(sym::Debug) .map(|t| infcx.type_implements_trait(t, [ty], cx.param_env).may_apply()) == Some(true); let suggest_panic_any = !is_str && panic == sym::std_panic_macro; let fmt_applicability = if suggest_panic_any { // If we can use panic_any, use that as the MachineApplicable suggestion. Applicability::MaybeIncorrect } else { // If we don't suggest panic_any, using a format string is our best bet. Applicability::MachineApplicable }; if suggest_display { lint.span_suggestion_verbose( arg_span.shrink_to_lo(), fluent::display_suggestion, "\"{}\", ", fmt_applicability, ); } else if suggest_debug { lint.set_arg("ty", ty); lint.span_suggestion_verbose( arg_span.shrink_to_lo(), fluent::debug_suggestion, "\"{:?}\", ", fmt_applicability, ); } if suggest_panic_any { if let Some((open, close, del)) = find_delimiters(cx, span) { lint.set_arg("already_suggested", suggest_display || suggest_debug); lint.multipart_suggestion( fluent::panic_suggestion, if del == '(' { vec![(span.until(open), "std::panic::panic_any".into())] } else { vec![ (span.until(open.shrink_to_hi()), "std::panic::panic_any(".into()), (close, ")".into()), ] }, Applicability::MachineApplicable, ); } } } lint }); } fn check_panic_str<'tcx>( cx: &LateContext<'tcx>, f: &'tcx hir::Expr<'tcx>, arg: &'tcx hir::Expr<'tcx>, fmt: &str, ) { if !fmt.contains(&['{', '}']) { // No brace, no problem. return; } let (span, _, _) = panic_call(cx, f); if in_external_macro(cx.sess(), span) && in_external_macro(cx.sess(), arg.span) { // Nothing that can be done about it in the current crate. return; } let fmt_span = arg.span.source_callsite(); let (snippet, style) = match cx.sess().parse_sess.source_map().span_to_snippet(fmt_span) { Ok(snippet) => { // Count the number of `#`s between the `r` and `"`. let style = snippet.strip_prefix('r').and_then(|s| s.find('"')); (Some(snippet), style) } Err(_) => (None, None), }; let mut fmt_parser = Parser::new(fmt, style, snippet.clone(), false, ParseMode::Format); let n_arguments = (&mut fmt_parser).filter(|a| matches!(a, Piece::NextArgument(_))).count(); if n_arguments > 0 && fmt_parser.errors.is_empty() { let arg_spans: Vec<_> = match &fmt_parser.arg_places[..] { [] => vec![fmt_span], v => v .iter() .map(|span| fmt_span.from_inner(InnerSpan::new(span.start, span.end))) .collect(), }; cx.emit_spanned_lint( NON_FMT_PANICS, arg_spans, NonFmtPanicUnused { count: n_arguments, suggestion: is_arg_inside_call(arg.span, span).then_some(arg.span), }, ); } else { let brace_spans: Option> = snippet.filter(|s| s.starts_with('"') || s.starts_with("r#")).map(|s| { s.char_indices() .filter(|&(_, c)| c == '{' || c == '}') .map(|(i, _)| fmt_span.from_inner(InnerSpan { start: i, end: i + 1 })) .collect() }); let count = brace_spans.as_ref().map(|v| v.len()).unwrap_or(/* any number >1 */ 2); cx.emit_spanned_lint( NON_FMT_PANICS, brace_spans.unwrap_or_else(|| vec![span]), NonFmtPanicBraces { count, suggestion: is_arg_inside_call(arg.span, span).then_some(arg.span.shrink_to_lo()), }, ); } } /// Given the span of `some_macro!(args);`, gives the span of `(` and `)`, /// and the type of (opening) delimiter used. fn find_delimiters(cx: &LateContext<'_>, span: Span) -> Option<(Span, Span, char)> { let snippet = cx.sess().parse_sess.source_map().span_to_snippet(span).ok()?; let (open, open_ch) = snippet.char_indices().find(|&(_, c)| "([{".contains(c))?; let close = snippet.rfind(|c| ")]}".contains(c))?; Some(( span.from_inner(InnerSpan { start: open, end: open + 1 }), span.from_inner(InnerSpan { start: close, end: close + 1 }), open_ch, )) } fn panic_call<'tcx>(cx: &LateContext<'tcx>, f: &'tcx hir::Expr<'tcx>) -> (Span, Symbol, Symbol) { let mut expn = f.span.ctxt().outer_expn_data(); let mut panic_macro = kw::Empty; // Unwrap more levels of macro expansion, as panic_2015!() // was likely expanded from panic!() and possibly from // [debug_]assert!(). loop { let parent = expn.call_site.ctxt().outer_expn_data(); let Some(id) = parent.macro_def_id else { break }; let Some(name) = cx.tcx.get_diagnostic_name(id) else { break }; if !matches!( name, sym::core_panic_macro | sym::std_panic_macro | sym::assert_macro | sym::debug_assert_macro | sym::unreachable_macro ) { break; } expn = parent; panic_macro = name; } let macro_symbol = if let hygiene::ExpnKind::Macro(_, symbol) = expn.kind { symbol } else { sym::panic }; (expn.call_site, panic_macro, macro_symbol) } fn is_arg_inside_call(arg: Span, call: Span) -> bool { // We only add suggestions if the argument we're looking at appears inside the // panic call in the source file, to avoid invalid suggestions when macros are involved. // We specifically check for the spans to not be identical, as that happens sometimes when // proc_macros lie about spans and apply the same span to all the tokens they produce. call.contains(arg) && !call.source_equal(arg) }