#![feature(allow_internal_unstable)] #![feature(if_let_guard)] #![feature(let_chains)] #![feature(never_type)] #![feature(proc_macro_diagnostic)] #![feature(proc_macro_span)] #![allow(rustc::default_hash_types)] #![deny(rustc::untranslatable_diagnostic)] #![deny(rustc::diagnostic_outside_of_impl)] #![recursion_limit = "128"] use synstructure::decl_derive; use proc_macro::TokenStream; mod diagnostics; mod hash_stable; mod lift; mod newtype; mod query; mod serialize; mod symbols; mod type_foldable; mod type_visitable; #[proc_macro] pub fn rustc_queries(input: TokenStream) -> TokenStream { query::rustc_queries(input) } #[proc_macro] pub fn symbols(input: TokenStream) -> TokenStream { symbols::symbols(input.into()).into() } /// Creates a struct type `S` that can be used as an index with /// `IndexVec` and so on. /// /// There are two ways of interacting with these indices: /// /// - The `From` impls are the preferred way. So you can do /// `S::from(v)` with a `usize` or `u32`. And you can convert back /// to an integer with `u32::from(s)`. /// /// - Alternatively, you can use the methods `S::new(v)` and `s.index()` /// to create/return a value. /// /// Internally, the index uses a u32, so the index must not exceed /// `u32::MAX`. You can also customize things like the `Debug` impl, /// what traits are derived, and so forth via the macro. #[proc_macro] #[allow_internal_unstable(step_trait, rustc_attrs, trusted_step, spec_option_partial_eq)] pub fn newtype_index(input: TokenStream) -> TokenStream { newtype::newtype(input) } /// Implements the `fluent_messages` macro, which performs compile-time validation of the /// compiler's Fluent resources (i.e. that the resources parse and don't multiply define the same /// messages) and generates constants that make using those messages in diagnostics more ergonomic. /// /// For example, given the following invocation of the macro.. /// /// ```ignore (rust) /// fluent_messages! { /// typeck => "./typeck.ftl", /// } /// ``` /// ..where `typeck.ftl` has the following contents.. /// /// ```fluent /// typeck_field_multiply_specified_in_initializer = /// field `{$ident}` specified more than once /// .label = used more than once /// .label_previous_use = first use of `{$ident}` /// ``` /// ...then the macro parse the Fluent resource, emitting a diagnostic if it fails to do so, and /// will generate the following code: /// /// ```ignore (rust) /// pub static DEFAULT_LOCALE_RESOURCES: &'static [&'static str] = &[ /// include_str!("./typeck.ftl"), /// ]; /// /// mod fluent_generated { /// mod typeck { /// pub const field_multiply_specified_in_initializer: DiagnosticMessage = /// DiagnosticMessage::fluent("typeck_field_multiply_specified_in_initializer"); /// pub const field_multiply_specified_in_initializer_label_previous_use: DiagnosticMessage = /// DiagnosticMessage::fluent_attr( /// "typeck_field_multiply_specified_in_initializer", /// "previous_use_label" /// ); /// } /// } /// ``` /// When emitting a diagnostic, the generated constants can be used as follows: /// /// ```ignore (rust) /// let mut err = sess.struct_span_err( /// span, /// fluent::typeck::field_multiply_specified_in_initializer /// ); /// err.span_default_label(span); /// err.span_label( /// previous_use_span, /// fluent::typeck::field_multiply_specified_in_initializer_label_previous_use /// ); /// err.emit(); /// ``` #[proc_macro] pub fn fluent_messages(input: TokenStream) -> TokenStream { diagnostics::fluent_messages(input) } decl_derive!([HashStable, attributes(stable_hasher)] => hash_stable::hash_stable_derive); decl_derive!( [HashStable_Generic, attributes(stable_hasher)] => hash_stable::hash_stable_generic_derive ); decl_derive!([Decodable] => serialize::decodable_derive); decl_derive!([Encodable] => serialize::encodable_derive); decl_derive!([TyDecodable] => serialize::type_decodable_derive); decl_derive!([TyEncodable] => serialize::type_encodable_derive); decl_derive!([MetadataDecodable] => serialize::meta_decodable_derive); decl_derive!([MetadataEncodable] => serialize::meta_encodable_derive); decl_derive!([TypeFoldable, attributes(type_foldable)] => type_foldable::type_foldable_derive); decl_derive!([TypeVisitable, attributes(type_visitable)] => type_visitable::type_visitable_derive); decl_derive!([Lift, attributes(lift)] => lift::lift_derive); decl_derive!( [Diagnostic, attributes( // struct attributes diag, help, note, warning, // field attributes skip_arg, primary_span, label, subdiagnostic, suggestion, suggestion_short, suggestion_hidden, suggestion_verbose)] => diagnostics::session_diagnostic_derive ); decl_derive!( [LintDiagnostic, attributes( // struct attributes diag, help, note, warning, // field attributes skip_arg, primary_span, label, subdiagnostic, suggestion, suggestion_short, suggestion_hidden, suggestion_verbose)] => diagnostics::lint_diagnostic_derive ); decl_derive!( [Subdiagnostic, attributes( // struct/variant attributes label, help, note, warning, suggestion, suggestion_short, suggestion_hidden, suggestion_verbose, multipart_suggestion, multipart_suggestion_short, multipart_suggestion_hidden, multipart_suggestion_verbose, // field attributes skip_arg, primary_span, suggestion_part, applicability)] => diagnostics::session_subdiagnostic_derive );