use crate::errors::{FailCreateFileEncoder, FailSeekFile, FailWriteFile}; use crate::rmeta::def_path_hash_map::DefPathHashMapRef; use crate::rmeta::table::TableBuilder; use crate::rmeta::*; use rustc_ast::Attribute; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::{FxHashMap, FxIndexSet}; use rustc_data_structures::memmap::{Mmap, MmapMut}; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::sync::{join, par_iter, Lrc, ParallelIterator}; use rustc_data_structures::temp_dir::MaybeTempDir; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::def_id::{ CrateNum, DefId, DefIndex, LocalDefId, CRATE_DEF_ID, CRATE_DEF_INDEX, LOCAL_CRATE, }; use rustc_hir::definitions::DefPathData; use rustc_hir::intravisit::{self, Visitor}; use rustc_hir::lang_items::LangItem; use rustc_middle::hir::nested_filter; use rustc_middle::middle::dependency_format::Linkage; use rustc_middle::middle::exported_symbols::{ metadata_symbol_name, ExportedSymbol, SymbolExportInfo, }; use rustc_middle::mir::interpret; use rustc_middle::traits::specialization_graph; use rustc_middle::ty::codec::TyEncoder; use rustc_middle::ty::fast_reject::{self, SimplifiedType, TreatParams}; use rustc_middle::ty::query::Providers; use rustc_middle::ty::{self, SymbolName, Ty, TyCtxt}; use rustc_middle::util::common::to_readable_str; use rustc_serialize::{opaque, Decodable, Decoder, Encodable, Encoder}; use rustc_session::config::{CrateType, OptLevel}; use rustc_session::cstore::{ForeignModule, LinkagePreference, NativeLib}; use rustc_span::hygiene::{ExpnIndex, HygieneEncodeContext, MacroKind}; use rustc_span::symbol::{sym, Symbol}; use rustc_span::{ self, DebuggerVisualizerFile, ExternalSource, FileName, SourceFile, Span, SyntaxContext, }; use rustc_target::abi::VariantIdx; use std::borrow::Borrow; use std::collections::hash_map::Entry; use std::hash::Hash; use std::io::{Read, Seek, Write}; use std::iter; use std::num::NonZeroUsize; use std::path::{Path, PathBuf}; pub(super) struct EncodeContext<'a, 'tcx> { opaque: opaque::FileEncoder, tcx: TyCtxt<'tcx>, feat: &'tcx rustc_feature::Features, tables: TableBuilders, lazy_state: LazyState, type_shorthands: FxHashMap, usize>, predicate_shorthands: FxHashMap, usize>, interpret_allocs: FxIndexSet, // This is used to speed up Span encoding. // The `usize` is an index into the `MonotonicVec` // that stores the `SourceFile` source_file_cache: (Lrc, usize), // The indices (into the `SourceMap`'s `MonotonicVec`) // of all of the `SourceFiles` that we need to serialize. // When we serialize a `Span`, we insert the index of its // `SourceFile` into the `FxIndexSet`. // The order inside the `FxIndexSet` is used as on-disk // order of `SourceFiles`, and encoded inside `Span`s. required_source_files: Option>, is_proc_macro: bool, hygiene_ctxt: &'a HygieneEncodeContext, symbol_table: FxHashMap, } /// If the current crate is a proc-macro, returns early with `LazyArray::empty()`. /// This is useful for skipping the encoding of things that aren't needed /// for proc-macro crates. macro_rules! empty_proc_macro { ($self:ident) => { if $self.is_proc_macro { return LazyArray::empty(); } }; } macro_rules! encoder_methods { ($($name:ident($ty:ty);)*) => { $(fn $name(&mut self, value: $ty) { self.opaque.$name(value) })* } } impl<'a, 'tcx> Encoder for EncodeContext<'a, 'tcx> { encoder_methods! { emit_usize(usize); emit_u128(u128); emit_u64(u64); emit_u32(u32); emit_u16(u16); emit_u8(u8); emit_isize(isize); emit_i128(i128); emit_i64(i64); emit_i32(i32); emit_i16(i16); emit_i8(i8); emit_bool(bool); emit_f64(f64); emit_f32(f32); emit_char(char); emit_str(&str); emit_raw_bytes(&[u8]); } } impl<'a, 'tcx, T> Encodable> for LazyValue { fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { e.emit_lazy_distance(self.position); } } impl<'a, 'tcx, T> Encodable> for LazyArray { fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { e.emit_usize(self.num_elems); if self.num_elems > 0 { e.emit_lazy_distance(self.position) } } } impl<'a, 'tcx, I, T> Encodable> for LazyTable { fn encode(&self, e: &mut EncodeContext<'a, 'tcx>) { e.emit_usize(self.encoded_size); e.emit_lazy_distance(self.position); } } impl<'a, 'tcx> Encodable> for CrateNum { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { if *self != LOCAL_CRATE && s.is_proc_macro { panic!("Attempted to encode non-local CrateNum {self:?} for proc-macro crate"); } s.emit_u32(self.as_u32()); } } impl<'a, 'tcx> Encodable> for DefIndex { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { s.emit_u32(self.as_u32()); } } impl<'a, 'tcx> Encodable> for ExpnIndex { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { s.emit_u32(self.as_u32()); } } impl<'a, 'tcx> Encodable> for SyntaxContext { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { rustc_span::hygiene::raw_encode_syntax_context(*self, &s.hygiene_ctxt, s); } } impl<'a, 'tcx> Encodable> for ExpnId { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { if self.krate == LOCAL_CRATE { // We will only write details for local expansions. Non-local expansions will fetch // data from the corresponding crate's metadata. // FIXME(#43047) FIXME(#74731) We may eventually want to avoid relying on external // metadata from proc-macro crates. s.hygiene_ctxt.schedule_expn_data_for_encoding(*self); } self.krate.encode(s); self.local_id.encode(s); } } impl<'a, 'tcx> Encodable> for Span { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { let span = self.data(); // Don't serialize any `SyntaxContext`s from a proc-macro crate, // since we don't load proc-macro dependencies during serialization. // This means that any hygiene information from macros used *within* // a proc-macro crate (e.g. invoking a macro that expands to a proc-macro // definition) will be lost. // // This can show up in two ways: // // 1. Any hygiene information associated with identifier of // a proc macro (e.g. `#[proc_macro] pub fn $name`) will be lost. // Since proc-macros can only be invoked from a different crate, // real code should never need to care about this. // // 2. Using `Span::def_site` or `Span::mixed_site` will not // include any hygiene information associated with the definition // site. This means that a proc-macro cannot emit a `$crate` // identifier which resolves to one of its dependencies, // which also should never come up in practice. // // Additionally, this affects `Span::parent`, and any other // span inspection APIs that would otherwise allow traversing // the `SyntaxContexts` associated with a span. // // None of these user-visible effects should result in any // cross-crate inconsistencies (getting one behavior in the same // crate, and a different behavior in another crate) due to the // limited surface that proc-macros can expose. // // IMPORTANT: If this is ever changed, be sure to update // `rustc_span::hygiene::raw_encode_expn_id` to handle // encoding `ExpnData` for proc-macro crates. if s.is_proc_macro { SyntaxContext::root().encode(s); } else { span.ctxt.encode(s); } if self.is_dummy() { return TAG_PARTIAL_SPAN.encode(s); } // The Span infrastructure should make sure that this invariant holds: debug_assert!(span.lo <= span.hi); if !s.source_file_cache.0.contains(span.lo) { let source_map = s.tcx.sess.source_map(); let source_file_index = source_map.lookup_source_file_idx(span.lo); s.source_file_cache = (source_map.files()[source_file_index].clone(), source_file_index); } let (ref source_file, source_file_index) = s.source_file_cache; debug_assert!(source_file.contains(span.lo)); if !source_file.contains(span.hi) { // Unfortunately, macro expansion still sometimes generates Spans // that malformed in this way. return TAG_PARTIAL_SPAN.encode(s); } // There are two possible cases here: // 1. This span comes from a 'foreign' crate - e.g. some crate upstream of the // crate we are writing metadata for. When the metadata for *this* crate gets // deserialized, the deserializer will need to know which crate it originally came // from. We use `TAG_VALID_SPAN_FOREIGN` to indicate that a `CrateNum` should // be deserialized after the rest of the span data, which tells the deserializer // which crate contains the source map information. // 2. This span comes from our own crate. No special handling is needed - we just // write `TAG_VALID_SPAN_LOCAL` to let the deserializer know that it should use // our own source map information. // // If we're a proc-macro crate, we always treat this as a local `Span`. // In `encode_source_map`, we serialize foreign `SourceFile`s into our metadata // if we're a proc-macro crate. // This allows us to avoid loading the dependencies of proc-macro crates: all of // the information we need to decode `Span`s is stored in the proc-macro crate. let (tag, metadata_index) = if source_file.is_imported() && !s.is_proc_macro { // To simplify deserialization, we 'rebase' this span onto the crate it originally came // from (the crate that 'owns' the file it references. These rebased 'lo' and 'hi' // values are relative to the source map information for the 'foreign' crate whose // CrateNum we write into the metadata. This allows `imported_source_files` to binary // search through the 'foreign' crate's source map information, using the // deserialized 'lo' and 'hi' values directly. // // All of this logic ensures that the final result of deserialization is a 'normal' // Span that can be used without any additional trouble. let metadata_index = { // Introduce a new scope so that we drop the 'lock()' temporary match &*source_file.external_src.lock() { ExternalSource::Foreign { metadata_index, .. } => *metadata_index, src => panic!("Unexpected external source {src:?}"), } }; (TAG_VALID_SPAN_FOREIGN, metadata_index) } else { // Record the fact that we need to encode the data for this `SourceFile` let source_files = s.required_source_files.as_mut().expect("Already encoded SourceMap!"); let (metadata_index, _) = source_files.insert_full(source_file_index); let metadata_index: u32 = metadata_index.try_into().expect("cannot export more than U32_MAX files"); (TAG_VALID_SPAN_LOCAL, metadata_index) }; // Encode the start position relative to the file start, so we profit more from the // variable-length integer encoding. let lo = span.lo - source_file.start_pos; // Encode length which is usually less than span.hi and profits more // from the variable-length integer encoding that we use. let len = span.hi - span.lo; tag.encode(s); lo.encode(s); len.encode(s); // Encode the index of the `SourceFile` for the span, in order to make decoding faster. metadata_index.encode(s); if tag == TAG_VALID_SPAN_FOREIGN { // This needs to be two lines to avoid holding the `s.source_file_cache` // while calling `cnum.encode(s)` let cnum = s.source_file_cache.0.cnum; cnum.encode(s); } } } impl<'a, 'tcx> Encodable> for Symbol { fn encode(&self, s: &mut EncodeContext<'a, 'tcx>) { // if symbol preinterned, emit tag and symbol index if self.is_preinterned() { s.opaque.emit_u8(SYMBOL_PREINTERNED); s.opaque.emit_u32(self.as_u32()); } else { // otherwise write it as string or as offset to it match s.symbol_table.entry(*self) { Entry::Vacant(o) => { s.opaque.emit_u8(SYMBOL_STR); let pos = s.opaque.position(); o.insert(pos); s.emit_str(self.as_str()); } Entry::Occupied(o) => { let x = *o.get(); s.emit_u8(SYMBOL_OFFSET); s.emit_usize(x); } } } } } impl<'a, 'tcx> TyEncoder for EncodeContext<'a, 'tcx> { const CLEAR_CROSS_CRATE: bool = true; type I = TyCtxt<'tcx>; fn position(&self) -> usize { self.opaque.position() } fn type_shorthands(&mut self) -> &mut FxHashMap, usize> { &mut self.type_shorthands } fn predicate_shorthands(&mut self) -> &mut FxHashMap, usize> { &mut self.predicate_shorthands } fn encode_alloc_id(&mut self, alloc_id: &rustc_middle::mir::interpret::AllocId) { let (index, _) = self.interpret_allocs.insert_full(*alloc_id); index.encode(self); } } // Shorthand for `$self.$tables.$table.set($def_id.index, $self.lazy_value($value))`, which would // normally need extra variables to avoid errors about multiple mutable borrows. macro_rules! record { ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ { let value = $value; let lazy = $self.lazy(value); $self.$tables.$table.set($def_id.index, lazy); } }}; } // Shorthand for `$self.$tables.$table.set($def_id.index, $self.lazy_value($value))`, which would // normally need extra variables to avoid errors about multiple mutable borrows. macro_rules! record_array { ($self:ident.$tables:ident.$table:ident[$def_id:expr] <- $value:expr) => {{ { let value = $value; let lazy = $self.lazy_array(value); $self.$tables.$table.set($def_id.index, lazy); } }}; } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { fn emit_lazy_distance(&mut self, position: NonZeroUsize) { let pos = position.get(); let distance = match self.lazy_state { LazyState::NoNode => bug!("emit_lazy_distance: outside of a metadata node"), LazyState::NodeStart(start) => { let start = start.get(); assert!(pos <= start); start - pos } LazyState::Previous(last_pos) => { assert!( last_pos <= position, "make sure that the calls to `lazy*` \ are in the same order as the metadata fields", ); position.get() - last_pos.get() } }; self.lazy_state = LazyState::Previous(NonZeroUsize::new(pos).unwrap()); self.emit_usize(distance); } fn lazy>>(&mut self, value: B) -> LazyValue where T::Value<'tcx>: Encodable>, { let pos = NonZeroUsize::new(self.position()).unwrap(); assert_eq!(self.lazy_state, LazyState::NoNode); self.lazy_state = LazyState::NodeStart(pos); value.borrow().encode(self); self.lazy_state = LazyState::NoNode; assert!(pos.get() <= self.position()); LazyValue::from_position(pos) } fn lazy_array, B: Borrow>>( &mut self, values: I, ) -> LazyArray where T::Value<'tcx>: Encodable>, { let pos = NonZeroUsize::new(self.position()).unwrap(); assert_eq!(self.lazy_state, LazyState::NoNode); self.lazy_state = LazyState::NodeStart(pos); let len = values.into_iter().map(|value| value.borrow().encode(self)).count(); self.lazy_state = LazyState::NoNode; assert!(pos.get() <= self.position()); LazyArray::from_position_and_num_elems(pos, len) } fn encode_info_for_items(&mut self) { self.encode_info_for_mod(CRATE_DEF_ID, self.tcx.hir().root_module()); // Proc-macro crates only export proc-macro items, which are looked // up using `proc_macro_data` if self.is_proc_macro { return; } self.tcx.hir().visit_all_item_likes_in_crate(self); } fn encode_def_path_table(&mut self) { let table = self.tcx.def_path_table(); if self.is_proc_macro { for def_index in std::iter::once(CRATE_DEF_INDEX) .chain(self.tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index)) { let def_key = self.lazy(table.def_key(def_index)); let def_path_hash = table.def_path_hash(def_index); self.tables.def_keys.set(def_index, def_key); self.tables.def_path_hashes.set(def_index, def_path_hash); } } else { for (def_index, def_key, def_path_hash) in table.enumerated_keys_and_path_hashes() { let def_key = self.lazy(def_key); self.tables.def_keys.set(def_index, def_key); self.tables.def_path_hashes.set(def_index, *def_path_hash); } } } fn encode_def_path_hash_map(&mut self) -> LazyValue> { self.lazy(DefPathHashMapRef::BorrowedFromTcx(self.tcx.def_path_hash_to_def_index_map())) } fn encode_source_map(&mut self) -> LazyTable> { let source_map = self.tcx.sess.source_map(); let all_source_files = source_map.files(); // By replacing the `Option` with `None`, we ensure that we can't // accidentally serialize any more `Span`s after the source map encoding // is done. let required_source_files = self.required_source_files.take().unwrap(); let working_directory = &self.tcx.sess.opts.working_dir; let mut adapted = TableBuilder::default(); // Only serialize `SourceFile`s that were used during the encoding of a `Span`. // // The order in which we encode source files is important here: the on-disk format for // `Span` contains the index of the corresponding `SourceFile`. for (on_disk_index, &source_file_index) in required_source_files.iter().enumerate() { let source_file = &all_source_files[source_file_index]; // Don't serialize imported `SourceFile`s, unless we're in a proc-macro crate. assert!(!source_file.is_imported() || self.is_proc_macro); // At export time we expand all source file paths to absolute paths because // downstream compilation sessions can have a different compiler working // directory, so relative paths from this or any other upstream crate // won't be valid anymore. // // At this point we also erase the actual on-disk path and only keep // the remapped version -- as is necessary for reproducible builds. let mut source_file = match source_file.name { FileName::Real(ref original_file_name) => { let adapted_file_name = source_map .path_mapping() .to_embeddable_absolute_path(original_file_name.clone(), working_directory); if adapted_file_name != *original_file_name { let mut adapted: SourceFile = (**source_file).clone(); adapted.name = FileName::Real(adapted_file_name); adapted.name_hash = { let mut hasher: StableHasher = StableHasher::new(); adapted.name.hash(&mut hasher); hasher.finish::() }; Lrc::new(adapted) } else { // Nothing to adapt source_file.clone() } } // expanded code, not from a file _ => source_file.clone(), }; // We're serializing this `SourceFile` into our crate metadata, // so mark it as coming from this crate. // This also ensures that we don't try to deserialize the // `CrateNum` for a proc-macro dependency - since proc macro // dependencies aren't loaded when we deserialize a proc-macro, // trying to remap the `CrateNum` would fail. if self.is_proc_macro { Lrc::make_mut(&mut source_file).cnum = LOCAL_CRATE; } let on_disk_index: u32 = on_disk_index.try_into().expect("cannot export more than U32_MAX files"); adapted.set(on_disk_index, self.lazy(source_file)); } adapted.encode(&mut self.opaque) } fn encode_crate_root(&mut self) -> LazyValue { let tcx = self.tcx; let mut stats: Vec<(&'static str, usize)> = Vec::with_capacity(32); macro_rules! stat { ($label:literal, $f:expr) => {{ let orig_pos = self.position(); let res = $f(); stats.push(($label, self.position() - orig_pos)); res }}; } // We have already encoded some things. Get their combined size from the current position. stats.push(("preamble", self.position())); let (crate_deps, dylib_dependency_formats) = stat!("dep", || (self.encode_crate_deps(), self.encode_dylib_dependency_formats())); let lib_features = stat!("lib-features", || self.encode_lib_features()); let stability_implications = stat!("stability-implications", || self.encode_stability_implications()); let (lang_items, lang_items_missing) = stat!("lang-items", || { (self.encode_lang_items(), self.encode_lang_items_missing()) }); let diagnostic_items = stat!("diagnostic-items", || self.encode_diagnostic_items()); let native_libraries = stat!("native-libs", || self.encode_native_libraries()); let foreign_modules = stat!("foreign-modules", || self.encode_foreign_modules()); _ = stat!("def-path-table", || self.encode_def_path_table()); // Encode the def IDs of traits, for rustdoc and diagnostics. let traits = stat!("traits", || self.encode_traits()); // Encode the def IDs of impls, for coherence checking. let impls = stat!("impls", || self.encode_impls()); let incoherent_impls = stat!("incoherent-impls", || self.encode_incoherent_impls()); _ = stat!("mir", || self.encode_mir()); _ = stat!("items", || { self.encode_def_ids(); self.encode_info_for_items(); }); let interpret_alloc_index = stat!("interpret-alloc-index", || { let mut interpret_alloc_index = Vec::new(); let mut n = 0; trace!("beginning to encode alloc ids"); loop { let new_n = self.interpret_allocs.len(); // if we have found new ids, serialize those, too if n == new_n { // otherwise, abort break; } trace!("encoding {} further alloc ids", new_n - n); for idx in n..new_n { let id = self.interpret_allocs[idx]; let pos = self.position() as u32; interpret_alloc_index.push(pos); interpret::specialized_encode_alloc_id(self, tcx, id); } n = new_n; } self.lazy_array(interpret_alloc_index) }); // Encode the proc macro data. This affects `tables`, so we need to do this before we // encode the tables. This overwrites def_keys, so it must happen after // encode_def_path_table. let proc_macro_data = stat!("proc-macro-data", || self.encode_proc_macros()); let tables = stat!("tables", || self.tables.encode(&mut self.opaque)); let debugger_visualizers = stat!("debugger-visualizers", || self.encode_debugger_visualizers()); // Encode exported symbols info. This is prefetched in `encode_metadata` so we encode // this as late as possible to give the prefetching as much time as possible to complete. let exported_symbols = stat!("exported-symbols", || { self.encode_exported_symbols(&tcx.exported_symbols(LOCAL_CRATE)) }); // Encode the hygiene data. // IMPORTANT: this *must* be the last thing that we encode (other than `SourceMap`). The // process of encoding other items (e.g. `optimized_mir`) may cause us to load data from // the incremental cache. If this causes us to deserialize a `Span`, then we may load // additional `SyntaxContext`s into the global `HygieneData`. Therefore, we need to encode // the hygiene data last to ensure that we encode any `SyntaxContext`s that might be used. let (syntax_contexts, expn_data, expn_hashes) = stat!("hygiene", || self.encode_hygiene()); let def_path_hash_map = stat!("def-path-hash-map", || self.encode_def_path_hash_map()); // Encode source_map. This needs to be done last, because encoding `Span`s tells us which // `SourceFiles` we actually need to encode. let source_map = stat!("source-map", || self.encode_source_map()); let root = stat!("final", || { let attrs = tcx.hir().krate_attrs(); self.lazy(CrateRoot { name: tcx.crate_name(LOCAL_CRATE), extra_filename: tcx.sess.opts.cg.extra_filename.clone(), triple: tcx.sess.opts.target_triple.clone(), hash: tcx.crate_hash(LOCAL_CRATE), stable_crate_id: tcx.def_path_hash(LOCAL_CRATE.as_def_id()).stable_crate_id(), required_panic_strategy: tcx.required_panic_strategy(LOCAL_CRATE), panic_in_drop_strategy: tcx.sess.opts.unstable_opts.panic_in_drop, edition: tcx.sess.edition(), has_global_allocator: tcx.has_global_allocator(LOCAL_CRATE), has_alloc_error_handler: tcx.has_alloc_error_handler(LOCAL_CRATE), has_panic_handler: tcx.has_panic_handler(LOCAL_CRATE), has_default_lib_allocator: tcx .sess .contains_name(&attrs, sym::default_lib_allocator), proc_macro_data, debugger_visualizers, compiler_builtins: tcx.sess.contains_name(&attrs, sym::compiler_builtins), needs_allocator: tcx.sess.contains_name(&attrs, sym::needs_allocator), needs_panic_runtime: tcx.sess.contains_name(&attrs, sym::needs_panic_runtime), no_builtins: tcx.sess.contains_name(&attrs, sym::no_builtins), panic_runtime: tcx.sess.contains_name(&attrs, sym::panic_runtime), profiler_runtime: tcx.sess.contains_name(&attrs, sym::profiler_runtime), symbol_mangling_version: tcx.sess.opts.get_symbol_mangling_version(), crate_deps, dylib_dependency_formats, lib_features, stability_implications, lang_items, diagnostic_items, lang_items_missing, native_libraries, foreign_modules, source_map, traits, impls, incoherent_impls, exported_symbols, interpret_alloc_index, tables, syntax_contexts, expn_data, expn_hashes, def_path_hash_map, }) }); let total_bytes = self.position(); let computed_total_bytes: usize = stats.iter().map(|(_, size)| size).sum(); assert_eq!(total_bytes, computed_total_bytes); if tcx.sess.opts.unstable_opts.meta_stats { self.opaque.flush(); // Rewind and re-read all the metadata to count the zero bytes we wrote. let pos_before_rewind = self.opaque.file().stream_position().unwrap(); let mut zero_bytes = 0; self.opaque.file().rewind().unwrap(); let file = std::io::BufReader::new(self.opaque.file()); for e in file.bytes() { if e.unwrap() == 0 { zero_bytes += 1; } } assert_eq!(self.opaque.file().stream_position().unwrap(), pos_before_rewind); stats.sort_by_key(|&(_, usize)| usize); let prefix = "meta-stats"; let perc = |bytes| (bytes * 100) as f64 / total_bytes as f64; eprintln!("{prefix} METADATA STATS"); eprintln!("{} {:<23}{:>10}", prefix, "Section", "Size"); eprintln!("{prefix} ----------------------------------------------------------------"); for (label, size) in stats { eprintln!( "{} {:<23}{:>10} ({:4.1}%)", prefix, label, to_readable_str(size), perc(size) ); } eprintln!("{prefix} ----------------------------------------------------------------"); eprintln!( "{} {:<23}{:>10} (of which {:.1}% are zero bytes)", prefix, "Total", to_readable_str(total_bytes), perc(zero_bytes) ); eprintln!("{prefix}"); } root } } /// Returns whether an attribute needs to be recorded in metadata, that is, if it's usable and /// useful in downstream crates. Local-only attributes are an obvious example, but some /// rustdoc-specific attributes can equally be of use while documenting the current crate only. /// /// Removing these superfluous attributes speeds up compilation by making the metadata smaller. /// /// Note: the `is_def_id_public` parameter is used to cache whether the given `DefId` has a public /// visibility: this is a piece of data that can be computed once per defid, and not once per /// attribute. Some attributes would only be usable downstream if they are public. #[inline] fn should_encode_attr( tcx: TyCtxt<'_>, attr: &Attribute, def_id: LocalDefId, is_def_id_public: &mut Option, ) -> bool { if rustc_feature::is_builtin_only_local(attr.name_or_empty()) { // Attributes marked local-only don't need to be encoded for downstream crates. false } else if attr.doc_str().is_some() { // We keep all public doc comments because they might be "imported" into downstream crates // if they use `#[doc(inline)]` to copy an item's documentation into their own. *is_def_id_public.get_or_insert_with(|| tcx.effective_visibilities(()).is_exported(def_id)) } else if attr.has_name(sym::doc) { // If this is a `doc` attribute, and it's marked `inline` (as in `#[doc(inline)]`), we can // remove it. It won't be inlinable in downstream crates. attr.meta_item_list().map(|l| l.iter().any(|l| !l.has_name(sym::inline))).unwrap_or(false) } else { true } } fn should_encode_visibility(def_kind: DefKind) -> bool { match def_kind { DefKind::Mod | DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Trait | DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::Fn | DefKind::Const | DefKind::Static(..) | DefKind::Ctor(..) | DefKind::AssocFn | DefKind::AssocConst | DefKind::Macro(..) | DefKind::Use | DefKind::ForeignMod | DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder | DefKind::Impl | DefKind::Field => true, DefKind::TyParam | DefKind::ConstParam | DefKind::LifetimeParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::GlobalAsm | DefKind::Closure | DefKind::Generator | DefKind::ExternCrate => false, } } fn should_encode_stability(def_kind: DefKind) -> bool { match def_kind { DefKind::Mod | DefKind::Ctor(..) | DefKind::Variant | DefKind::Field | DefKind::Struct | DefKind::AssocTy | DefKind::AssocFn | DefKind::AssocConst | DefKind::TyParam | DefKind::ConstParam | DefKind::Static(..) | DefKind::Const | DefKind::Fn | DefKind::ForeignMod | DefKind::TyAlias | DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder | DefKind::Enum | DefKind::Union | DefKind::Impl | DefKind::Trait | DefKind::TraitAlias | DefKind::Macro(..) | DefKind::ForeignTy => true, DefKind::Use | DefKind::LifetimeParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::GlobalAsm | DefKind::Closure | DefKind::Generator | DefKind::ExternCrate => false, } } /// Whether we should encode MIR. /// /// Computing, optimizing and encoding the MIR is a relatively expensive operation. /// We want to avoid this work when not required. Therefore: /// - we only compute `mir_for_ctfe` on items with const-eval semantics; /// - we skip `optimized_mir` for check runs. /// /// Return a pair, resp. for CTFE and for LLVM. fn should_encode_mir(tcx: TyCtxt<'_>, def_id: LocalDefId) -> (bool, bool) { match tcx.def_kind(def_id) { // Constructors DefKind::Ctor(_, _) => { let mir_opt_base = tcx.sess.opts.output_types.should_codegen() || tcx.sess.opts.unstable_opts.always_encode_mir; (true, mir_opt_base) } // Constants DefKind::AnonConst | DefKind::InlineConst | DefKind::AssocConst | DefKind::Static(..) | DefKind::Const => (true, false), // Full-fledged functions + closures DefKind::AssocFn | DefKind::Fn | DefKind::Closure => { let generics = tcx.generics_of(def_id); let needs_inline = (generics.requires_monomorphization(tcx) || tcx.codegen_fn_attrs(def_id).requests_inline()) && tcx.sess.opts.output_types.should_codegen(); // The function has a `const` modifier or is in a `#[const_trait]`. let is_const_fn = tcx.is_const_fn_raw(def_id.to_def_id()) || tcx.is_const_default_method(def_id.to_def_id()); let always_encode_mir = tcx.sess.opts.unstable_opts.always_encode_mir; (is_const_fn, needs_inline || always_encode_mir) } // Generators require optimized MIR to compute layout. DefKind::Generator => (false, true), // The others don't have MIR. _ => (false, false), } } fn should_encode_variances(def_kind: DefKind) -> bool { match def_kind { DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder | DefKind::Fn | DefKind::Ctor(..) | DefKind::AssocFn => true, DefKind::Mod | DefKind::Field | DefKind::AssocTy | DefKind::AssocConst | DefKind::TyParam | DefKind::ConstParam | DefKind::Static(..) | DefKind::Const | DefKind::ForeignMod | DefKind::TyAlias | DefKind::Impl | DefKind::Trait | DefKind::TraitAlias | DefKind::Macro(..) | DefKind::ForeignTy | DefKind::Use | DefKind::LifetimeParam | DefKind::AnonConst | DefKind::InlineConst | DefKind::GlobalAsm | DefKind::Closure | DefKind::Generator | DefKind::ExternCrate => false, } } fn should_encode_generics(def_kind: DefKind) -> bool { match def_kind { DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Trait | DefKind::TyAlias | DefKind::ForeignTy | DefKind::TraitAlias | DefKind::AssocTy | DefKind::Fn | DefKind::Const | DefKind::Static(..) | DefKind::Ctor(..) | DefKind::AssocFn | DefKind::AssocConst | DefKind::AnonConst | DefKind::InlineConst | DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder | DefKind::Impl | DefKind::Field | DefKind::TyParam | DefKind::Closure | DefKind::Generator => true, DefKind::Mod | DefKind::ForeignMod | DefKind::ConstParam | DefKind::Macro(..) | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate => false, } } fn should_encode_type(tcx: TyCtxt<'_>, def_id: LocalDefId, def_kind: DefKind) -> bool { match def_kind { DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Ctor(..) | DefKind::Field | DefKind::Fn | DefKind::Const | DefKind::Static(..) | DefKind::TyAlias | DefKind::OpaqueTy | DefKind::ForeignTy | DefKind::Impl | DefKind::AssocFn | DefKind::AssocConst | DefKind::Closure | DefKind::Generator | DefKind::ConstParam | DefKind::AnonConst | DefKind::InlineConst => true, DefKind::ImplTraitPlaceholder => { let parent_def_id = tcx.impl_trait_in_trait_parent(def_id.to_def_id()); let assoc_item = tcx.associated_item(parent_def_id); match assoc_item.container { // Always encode an RPIT in an impl fn, since it always has a body ty::AssocItemContainer::ImplContainer => true, ty::AssocItemContainer::TraitContainer => { // Encode an RPIT for a trait only if the trait has a default body assoc_item.defaultness(tcx).has_value() } } } DefKind::AssocTy => { let assoc_item = tcx.associated_item(def_id); match assoc_item.container { ty::AssocItemContainer::ImplContainer => true, ty::AssocItemContainer::TraitContainer => assoc_item.defaultness(tcx).has_value(), } } DefKind::TyParam => { let hir::Node::GenericParam(param) = tcx.hir().get_by_def_id(def_id) else { bug!() }; let hir::GenericParamKind::Type { default, .. } = param.kind else { bug!() }; default.is_some() } DefKind::Trait | DefKind::TraitAlias | DefKind::Mod | DefKind::ForeignMod | DefKind::Macro(..) | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate => false, } } fn should_encode_const(def_kind: DefKind) -> bool { match def_kind { DefKind::Const | DefKind::AssocConst | DefKind::AnonConst => true, DefKind::Struct | DefKind::Union | DefKind::Enum | DefKind::Variant | DefKind::Ctor(..) | DefKind::Field | DefKind::Fn | DefKind::Static(..) | DefKind::TyAlias | DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder | DefKind::ForeignTy | DefKind::Impl | DefKind::AssocFn | DefKind::Closure | DefKind::Generator | DefKind::ConstParam | DefKind::InlineConst | DefKind::AssocTy | DefKind::TyParam | DefKind::Trait | DefKind::TraitAlias | DefKind::Mod | DefKind::ForeignMod | DefKind::Macro(..) | DefKind::Use | DefKind::LifetimeParam | DefKind::GlobalAsm | DefKind::ExternCrate => false, } } fn should_encode_trait_impl_trait_tys(tcx: TyCtxt<'_>, def_id: DefId) -> bool { if tcx.def_kind(def_id) != DefKind::AssocFn { return false; } let Some(item) = tcx.opt_associated_item(def_id) else { return false; }; if item.container != ty::AssocItemContainer::ImplContainer { return false; } let Some(trait_item_def_id) = item.trait_item_def_id else { return false; }; // FIXME(RPITIT): This does a somewhat manual walk through the signature // of the trait fn to look for any RPITITs, but that's kinda doing a lot // of work. We can probably remove this when we refactor RPITITs to be // associated types. tcx.fn_sig(trait_item_def_id).skip_binder().output().walk().any(|arg| { if let ty::GenericArgKind::Type(ty) = arg.unpack() && let ty::Alias(ty::Projection, data) = ty.kind() && tcx.def_kind(data.def_id) == DefKind::ImplTraitPlaceholder { true } else { false } }) } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { fn encode_attrs(&mut self, def_id: LocalDefId) { let tcx = self.tcx; let mut is_public: Option = None; let mut attrs = tcx .hir() .attrs(tcx.hir().local_def_id_to_hir_id(def_id)) .iter() .filter(move |attr| should_encode_attr(tcx, attr, def_id, &mut is_public)); record_array!(self.tables.attributes[def_id.to_def_id()] <- attrs.clone()); if attrs.any(|attr| attr.may_have_doc_links()) { self.tables.may_have_doc_links.set(def_id.local_def_index, ()); } } fn encode_def_ids(&mut self) { if self.is_proc_macro { return; } let tcx = self.tcx; for local_id in tcx.iter_local_def_id() { let def_id = local_id.to_def_id(); let def_kind = tcx.opt_def_kind(local_id); let Some(def_kind) = def_kind else { continue }; self.tables.opt_def_kind.set(def_id.index, def_kind); let def_span = tcx.def_span(local_id); record!(self.tables.def_span[def_id] <- def_span); self.encode_attrs(local_id); record!(self.tables.expn_that_defined[def_id] <- self.tcx.expn_that_defined(def_id)); if let Some(ident_span) = tcx.def_ident_span(def_id) { record!(self.tables.def_ident_span[def_id] <- ident_span); } if def_kind.has_codegen_attrs() { record!(self.tables.codegen_fn_attrs[def_id] <- self.tcx.codegen_fn_attrs(def_id)); } if should_encode_visibility(def_kind) { let vis = self.tcx.local_visibility(local_id).map_id(|def_id| def_id.local_def_index); record!(self.tables.visibility[def_id] <- vis); } if should_encode_stability(def_kind) { self.encode_stability(def_id); self.encode_const_stability(def_id); self.encode_default_body_stability(def_id); self.encode_deprecation(def_id); } if should_encode_variances(def_kind) { let v = self.tcx.variances_of(def_id); record_array!(self.tables.variances_of[def_id] <- v); } if should_encode_generics(def_kind) { let g = tcx.generics_of(def_id); record!(self.tables.generics_of[def_id] <- g); record!(self.tables.explicit_predicates_of[def_id] <- self.tcx.explicit_predicates_of(def_id)); let inferred_outlives = self.tcx.inferred_outlives_of(def_id); if !inferred_outlives.is_empty() { record_array!(self.tables.inferred_outlives_of[def_id] <- inferred_outlives); } } if should_encode_type(tcx, local_id, def_kind) { record!(self.tables.type_of[def_id] <- self.tcx.type_of(def_id)); } if let DefKind::TyParam = def_kind { let default = self.tcx.object_lifetime_default(def_id); record!(self.tables.object_lifetime_default[def_id] <- default); } if let DefKind::Trait | DefKind::TraitAlias = def_kind { record!(self.tables.super_predicates_of[def_id] <- self.tcx.super_predicates_of(def_id)); } if let DefKind::Enum | DefKind::Struct | DefKind::Union = def_kind { let params_in_repr = self.tcx.params_in_repr(def_id); record!(self.tables.params_in_repr[def_id] <- params_in_repr); } if should_encode_trait_impl_trait_tys(tcx, def_id) && let Ok(table) = self.tcx.collect_return_position_impl_trait_in_trait_tys(def_id) { record!(self.tables.trait_impl_trait_tys[def_id] <- table); } } let inherent_impls = tcx.with_stable_hashing_context(|hcx| { tcx.crate_inherent_impls(()).inherent_impls.to_sorted(&hcx, true) }); for (def_id, implementations) in inherent_impls { if implementations.is_empty() { continue; } record_array!(self.tables.inherent_impls[def_id.to_def_id()] <- implementations.iter().map(|&def_id| { assert!(def_id.is_local()); def_id.index })); } } fn encode_enum_variant_info(&mut self, def: ty::AdtDef<'tcx>, index: VariantIdx) { let tcx = self.tcx; let variant = &def.variant(index); let def_id = variant.def_id; debug!("EncodeContext::encode_enum_variant_info({:?})", def_id); let data = VariantData { discr: variant.discr, ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)), is_non_exhaustive: variant.is_field_list_non_exhaustive(), }; record!(self.tables.variant_data[def_id] <- data); self.tables.constness.set(def_id.index, hir::Constness::Const); record_array!(self.tables.children[def_id] <- variant.fields.iter().map(|f| { assert!(f.did.is_local()); f.did.index })); if let Some((CtorKind::Fn, ctor_def_id)) = variant.ctor { // FIXME(eddyb) encode signature only in `encode_enum_variant_ctor`. record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(ctor_def_id)); } } fn encode_enum_variant_ctor(&mut self, def: ty::AdtDef<'tcx>, index: VariantIdx) { let variant = &def.variant(index); let Some((ctor_kind, def_id)) = variant.ctor else { return }; debug!("EncodeContext::encode_enum_variant_ctor({:?})", def_id); // FIXME(eddyb) encode only the `CtorKind` for constructors. let data = VariantData { discr: variant.discr, ctor: Some((ctor_kind, def_id.index)), is_non_exhaustive: variant.is_field_list_non_exhaustive(), }; record!(self.tables.variant_data[def_id] <- data); self.tables.constness.set(def_id.index, hir::Constness::Const); if ctor_kind == CtorKind::Fn { record!(self.tables.fn_sig[def_id] <- self.tcx.fn_sig(def_id)); } } fn encode_info_for_mod(&mut self, local_def_id: LocalDefId, md: &hir::Mod<'_>) { let tcx = self.tcx; let def_id = local_def_id.to_def_id(); debug!("EncodeContext::encode_info_for_mod({:?})", def_id); // If we are encoding a proc-macro crates, `encode_info_for_mod` will // only ever get called for the crate root. We still want to encode // the crate root for consistency with other crates (some of the resolver // code uses it). However, we skip encoding anything relating to child // items - we encode information about proc-macros later on. if self.is_proc_macro { // Encode this here because we don't do it in encode_def_ids. record!(self.tables.expn_that_defined[def_id] <- tcx.expn_that_defined(local_def_id)); } else { record_array!(self.tables.children[def_id] <- iter::from_generator(|| { for item_id in md.item_ids { match tcx.hir().item(*item_id).kind { // Foreign items are planted into their parent modules // from name resolution point of view. hir::ItemKind::ForeignMod { items, .. } => { for foreign_item in items { yield foreign_item.id.owner_id.def_id.local_def_index; } } // Only encode named non-reexport children, reexports are encoded // separately and unnamed items are not used by name resolution. hir::ItemKind::ExternCrate(..) => continue, hir::ItemKind::Struct(ref vdata, _) => { yield item_id.owner_id.def_id.local_def_index; // Encode constructors which take a separate slot in value namespace. if let Some(ctor_hir_id) = vdata.ctor_hir_id() { yield tcx.hir().local_def_id(ctor_hir_id).local_def_index; } } _ if tcx.def_key(item_id.owner_id.to_def_id()).get_opt_name().is_some() => { yield item_id.owner_id.def_id.local_def_index; } _ => continue, } } })); if let Some(reexports) = tcx.module_reexports(local_def_id) { assert!(!reexports.is_empty()); record_array!(self.tables.module_reexports[def_id] <- reexports); } } } fn encode_struct_ctor(&mut self, adt_def: ty::AdtDef<'tcx>) { let variant = adt_def.non_enum_variant(); let Some((ctor_kind, def_id)) = variant.ctor else { return }; debug!("EncodeContext::encode_struct_ctor({:?})", def_id); let data = VariantData { discr: variant.discr, ctor: Some((ctor_kind, def_id.index)), is_non_exhaustive: variant.is_field_list_non_exhaustive(), }; record!(self.tables.repr_options[def_id] <- adt_def.repr()); record!(self.tables.variant_data[def_id] <- data); self.tables.constness.set(def_id.index, hir::Constness::Const); if ctor_kind == CtorKind::Fn { record!(self.tables.fn_sig[def_id] <- self.tcx.fn_sig(def_id)); } } fn encode_explicit_item_bounds(&mut self, def_id: DefId) { debug!("EncodeContext::encode_explicit_item_bounds({:?})", def_id); let bounds = self.tcx.explicit_item_bounds(def_id); if !bounds.is_empty() { record_array!(self.tables.explicit_item_bounds[def_id] <- bounds); } } fn encode_info_for_trait_item(&mut self, def_id: DefId) { debug!("EncodeContext::encode_info_for_trait_item({:?})", def_id); let tcx = self.tcx; let impl_defaultness = tcx.impl_defaultness(def_id.expect_local()); self.tables.impl_defaultness.set(def_id.index, impl_defaultness); let trait_item = tcx.associated_item(def_id); self.tables.assoc_container.set(def_id.index, trait_item.container); match trait_item.kind { ty::AssocKind::Const => {} ty::AssocKind::Fn => { record_array!(self.tables.fn_arg_names[def_id] <- tcx.fn_arg_names(def_id)); self.tables.asyncness.set(def_id.index, tcx.asyncness(def_id)); self.tables.constness.set(def_id.index, hir::Constness::NotConst); } ty::AssocKind::Type => { self.encode_explicit_item_bounds(def_id); } } if trait_item.kind == ty::AssocKind::Fn { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); } } fn encode_info_for_impl_item(&mut self, def_id: DefId) { debug!("EncodeContext::encode_info_for_impl_item({:?})", def_id); let tcx = self.tcx; let ast_item = self.tcx.hir().expect_impl_item(def_id.expect_local()); self.tables.impl_defaultness.set(def_id.index, ast_item.defaultness); let impl_item = self.tcx.associated_item(def_id); self.tables.assoc_container.set(def_id.index, impl_item.container); match impl_item.kind { ty::AssocKind::Fn => { let hir::ImplItemKind::Fn(ref sig, body) = ast_item.kind else { bug!() }; self.tables.asyncness.set(def_id.index, sig.header.asyncness); record_array!(self.tables.fn_arg_names[def_id] <- self.tcx.hir().body_param_names(body)); // Can be inside `impl const Trait`, so using sig.header.constness is not reliable let constness = if self.tcx.is_const_fn_raw(def_id) { hir::Constness::Const } else { hir::Constness::NotConst }; self.tables.constness.set(def_id.index, constness); } ty::AssocKind::Const | ty::AssocKind::Type => {} } if let Some(trait_item_def_id) = impl_item.trait_item_def_id { self.tables.trait_item_def_id.set(def_id.index, trait_item_def_id.into()); } if impl_item.kind == ty::AssocKind::Fn { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); if tcx.is_intrinsic(def_id) { self.tables.is_intrinsic.set(def_id.index, ()); } } } fn encode_mir(&mut self) { if self.is_proc_macro { return; } let tcx = self.tcx; let keys_and_jobs = tcx.mir_keys(()).iter().filter_map(|&def_id| { let (encode_const, encode_opt) = should_encode_mir(tcx, def_id); if encode_const || encode_opt { Some((def_id, encode_const, encode_opt)) } else { None } }); for (def_id, encode_const, encode_opt) in keys_and_jobs { debug_assert!(encode_const || encode_opt); debug!("EntryBuilder::encode_mir({:?})", def_id); if encode_opt { record!(self.tables.optimized_mir[def_id.to_def_id()] <- tcx.optimized_mir(def_id)); } if encode_const { record!(self.tables.mir_for_ctfe[def_id.to_def_id()] <- tcx.mir_for_ctfe(def_id)); // FIXME(generic_const_exprs): this feels wrong to have in `encode_mir` let abstract_const = tcx.thir_abstract_const(def_id); if let Ok(Some(abstract_const)) = abstract_const { record!(self.tables.thir_abstract_const[def_id.to_def_id()] <- abstract_const); } if should_encode_const(tcx.def_kind(def_id)) { let qualifs = tcx.mir_const_qualif(def_id); record!(self.tables.mir_const_qualif[def_id.to_def_id()] <- qualifs); let body_id = tcx.hir().maybe_body_owned_by(def_id); if let Some(body_id) = body_id { let const_data = self.encode_rendered_const_for_body(body_id); record!(self.tables.rendered_const[def_id.to_def_id()] <- const_data); } } } record!(self.tables.promoted_mir[def_id.to_def_id()] <- tcx.promoted_mir(def_id)); let instance = ty::InstanceDef::Item(ty::WithOptConstParam::unknown(def_id.to_def_id())); let unused = tcx.unused_generic_params(instance); if !unused.all_used() { record!(self.tables.unused_generic_params[def_id.to_def_id()] <- unused); } } // Encode all the deduced parameter attributes for everything that has MIR, even for items // that can't be inlined. But don't if we aren't optimizing in non-incremental mode, to // save the query traffic. if tcx.sess.opts.output_types.should_codegen() && tcx.sess.opts.optimize != OptLevel::No && tcx.sess.opts.incremental.is_none() { for &local_def_id in tcx.mir_keys(()) { if let DefKind::AssocFn | DefKind::Fn = tcx.def_kind(local_def_id) { record_array!(self.tables.deduced_param_attrs[local_def_id.to_def_id()] <- self.tcx.deduced_param_attrs(local_def_id.to_def_id())); } } } } fn encode_stability(&mut self, def_id: DefId) { debug!("EncodeContext::encode_stability({:?})", def_id); // The query lookup can take a measurable amount of time in crates with many items. Check if // the stability attributes are even enabled before using their queries. if self.feat.staged_api || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { if let Some(stab) = self.tcx.lookup_stability(def_id) { record!(self.tables.lookup_stability[def_id] <- stab) } } } fn encode_const_stability(&mut self, def_id: DefId) { debug!("EncodeContext::encode_const_stability({:?})", def_id); // The query lookup can take a measurable amount of time in crates with many items. Check if // the stability attributes are even enabled before using their queries. if self.feat.staged_api || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { if let Some(stab) = self.tcx.lookup_const_stability(def_id) { record!(self.tables.lookup_const_stability[def_id] <- stab) } } } fn encode_default_body_stability(&mut self, def_id: DefId) { debug!("EncodeContext::encode_default_body_stability({:?})", def_id); // The query lookup can take a measurable amount of time in crates with many items. Check if // the stability attributes are even enabled before using their queries. if self.feat.staged_api || self.tcx.sess.opts.unstable_opts.force_unstable_if_unmarked { if let Some(stab) = self.tcx.lookup_default_body_stability(def_id) { record!(self.tables.lookup_default_body_stability[def_id] <- stab) } } } fn encode_deprecation(&mut self, def_id: DefId) { debug!("EncodeContext::encode_deprecation({:?})", def_id); if let Some(depr) = self.tcx.lookup_deprecation(def_id) { record!(self.tables.lookup_deprecation_entry[def_id] <- depr); } } fn encode_rendered_const_for_body(&mut self, body_id: hir::BodyId) -> String { let hir = self.tcx.hir(); let body = hir.body(body_id); rustc_hir_pretty::to_string(&(&hir as &dyn intravisit::Map<'_>), |s| { s.print_expr(&body.value) }) } fn encode_info_for_item(&mut self, def_id: DefId, item: &'tcx hir::Item<'tcx>) { let tcx = self.tcx; debug!("EncodeContext::encode_info_for_item({:?})", def_id); match item.kind { hir::ItemKind::Fn(ref sig, .., body) => { self.tables.asyncness.set(def_id.index, sig.header.asyncness); record_array!(self.tables.fn_arg_names[def_id] <- self.tcx.hir().body_param_names(body)); self.tables.constness.set(def_id.index, sig.header.constness); } hir::ItemKind::Macro(ref macro_def, _) => { if macro_def.macro_rules { self.tables.macro_rules.set(def_id.index, ()); } record!(self.tables.macro_definition[def_id] <- &*macro_def.body); } hir::ItemKind::Mod(ref m) => { return self.encode_info_for_mod(item.owner_id.def_id, m); } hir::ItemKind::OpaqueTy(ref opaque) => { self.encode_explicit_item_bounds(def_id); if matches!(opaque.origin, hir::OpaqueTyOrigin::TyAlias) { self.tables.is_type_alias_impl_trait.set(def_id.index, ()); } } hir::ItemKind::Enum(..) => { let adt_def = self.tcx.adt_def(def_id); record!(self.tables.repr_options[def_id] <- adt_def.repr()); } hir::ItemKind::Struct(..) => { let adt_def = self.tcx.adt_def(def_id); record!(self.tables.repr_options[def_id] <- adt_def.repr()); self.tables.constness.set(def_id.index, hir::Constness::Const); let variant = adt_def.non_enum_variant(); record!(self.tables.variant_data[def_id] <- VariantData { discr: variant.discr, ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)), is_non_exhaustive: variant.is_field_list_non_exhaustive(), }); } hir::ItemKind::Union(..) => { let adt_def = self.tcx.adt_def(def_id); record!(self.tables.repr_options[def_id] <- adt_def.repr()); let variant = adt_def.non_enum_variant(); record!(self.tables.variant_data[def_id] <- VariantData { discr: variant.discr, ctor: variant.ctor.map(|(kind, def_id)| (kind, def_id.index)), is_non_exhaustive: variant.is_field_list_non_exhaustive(), }); } hir::ItemKind::Impl(hir::Impl { defaultness, constness, .. }) => { self.tables.impl_defaultness.set(def_id.index, *defaultness); self.tables.constness.set(def_id.index, *constness); let trait_ref = self.tcx.impl_trait_ref(def_id).map(ty::EarlyBinder::skip_binder); if let Some(trait_ref) = trait_ref { let trait_def = self.tcx.trait_def(trait_ref.def_id); if let Ok(mut an) = trait_def.ancestors(self.tcx, def_id) { if let Some(specialization_graph::Node::Impl(parent)) = an.nth(1) { self.tables.impl_parent.set(def_id.index, parent.into()); } } // if this is an impl of `CoerceUnsized`, create its // "unsized info", else just store None if Some(trait_ref.def_id) == self.tcx.lang_items().coerce_unsized_trait() { let coerce_unsized_info = self.tcx.at(item.span).coerce_unsized_info(def_id); record!(self.tables.coerce_unsized_info[def_id] <- coerce_unsized_info); } } let polarity = self.tcx.impl_polarity(def_id); self.tables.impl_polarity.set(def_id.index, polarity); } hir::ItemKind::Trait(..) => { let trait_def = self.tcx.trait_def(def_id); record!(self.tables.trait_def[def_id] <- trait_def); } hir::ItemKind::TraitAlias(..) => { let trait_def = self.tcx.trait_def(def_id); record!(self.tables.trait_def[def_id] <- trait_def); } hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) => { bug!("cannot encode info for item {:?}", item) } hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::ForeignMod { .. } | hir::ItemKind::GlobalAsm(..) | hir::ItemKind::TyAlias(..) => {} }; // FIXME(eddyb) there should be a nicer way to do this. match item.kind { hir::ItemKind::Enum(..) => { record_array!(self.tables.children[def_id] <- iter::from_generator(|| for variant in tcx.adt_def(def_id).variants() { yield variant.def_id.index; // Encode constructors which take a separate slot in value namespace. if let Some(ctor_def_id) = variant.ctor_def_id() { yield ctor_def_id.index; } } )) } hir::ItemKind::Struct(..) | hir::ItemKind::Union(..) => { record_array!(self.tables.children[def_id] <- self.tcx.adt_def(def_id).non_enum_variant().fields.iter().map(|f| { assert!(f.did.is_local()); f.did.index }) ) } hir::ItemKind::Impl { .. } | hir::ItemKind::Trait(..) => { let associated_item_def_ids = self.tcx.associated_item_def_ids(def_id); record_array!(self.tables.children[def_id] <- associated_item_def_ids.iter().map(|&def_id| { assert!(def_id.is_local()); def_id.index }) ); } _ => {} } if let hir::ItemKind::Fn(..) = item.kind { record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); if tcx.is_intrinsic(def_id) { self.tables.is_intrinsic.set(def_id.index, ()); } } if let hir::ItemKind::Impl { .. } = item.kind { if let Some(trait_ref) = self.tcx.impl_trait_ref(def_id) { record!(self.tables.impl_trait_ref[def_id] <- trait_ref); } } // In some cases, along with the item itself, we also // encode some sub-items. Usually we want some info from the item // so it's easier to do that here then to wait until we would encounter // normally in the visitor walk. match item.kind { hir::ItemKind::Enum(..) => { let def = self.tcx.adt_def(item.owner_id.to_def_id()); for (i, _) in def.variants().iter_enumerated() { self.encode_enum_variant_info(def, i); self.encode_enum_variant_ctor(def, i); } } hir::ItemKind::Struct(..) => { let def = self.tcx.adt_def(item.owner_id.to_def_id()); self.encode_struct_ctor(def); } hir::ItemKind::Impl { .. } => { for &trait_item_def_id in self.tcx.associated_item_def_ids(item.owner_id.to_def_id()).iter() { self.encode_info_for_impl_item(trait_item_def_id); } } hir::ItemKind::Trait(..) => { for &item_def_id in self.tcx.associated_item_def_ids(item.owner_id.to_def_id()).iter() { self.encode_info_for_trait_item(item_def_id); } } _ => {} } } #[instrument(level = "debug", skip(self))] fn encode_info_for_closure(&mut self, def_id: LocalDefId) { // NOTE(eddyb) `tcx.type_of(def_id)` isn't used because it's fully generic, // including on the signature, which is inferred in `typeck. let typeck_result: &'tcx ty::TypeckResults<'tcx> = self.tcx.typeck(def_id); let hir_id = self.tcx.hir().local_def_id_to_hir_id(def_id); let ty = typeck_result.node_type(hir_id); match ty.kind() { ty::Generator(..) => { let data = self.tcx.generator_kind(def_id).unwrap(); let generator_diagnostic_data = typeck_result.get_generator_diagnostic_data(); record!(self.tables.generator_kind[def_id.to_def_id()] <- data); record!(self.tables.generator_diagnostic_data[def_id.to_def_id()] <- generator_diagnostic_data); } ty::Closure(_, substs) => { let constness = self.tcx.constness(def_id.to_def_id()); self.tables.constness.set(def_id.to_def_id().index, constness); record!(self.tables.fn_sig[def_id.to_def_id()] <- substs.as_closure().sig()); } _ => bug!("closure that is neither generator nor closure"), } } fn encode_native_libraries(&mut self) -> LazyArray { empty_proc_macro!(self); let used_libraries = self.tcx.native_libraries(LOCAL_CRATE); self.lazy_array(used_libraries.iter()) } fn encode_foreign_modules(&mut self) -> LazyArray { empty_proc_macro!(self); let foreign_modules = self.tcx.foreign_modules(LOCAL_CRATE); self.lazy_array(foreign_modules.iter().map(|(_, m)| m).cloned()) } fn encode_hygiene(&mut self) -> (SyntaxContextTable, ExpnDataTable, ExpnHashTable) { let mut syntax_contexts: TableBuilder<_, _> = Default::default(); let mut expn_data_table: TableBuilder<_, _> = Default::default(); let mut expn_hash_table: TableBuilder<_, _> = Default::default(); self.hygiene_ctxt.encode( &mut (&mut *self, &mut syntax_contexts, &mut expn_data_table, &mut expn_hash_table), |(this, syntax_contexts, _, _), index, ctxt_data| { syntax_contexts.set(index, this.lazy(ctxt_data)); }, |(this, _, expn_data_table, expn_hash_table), index, expn_data, hash| { if let Some(index) = index.as_local() { expn_data_table.set(index.as_raw(), this.lazy(expn_data)); expn_hash_table.set(index.as_raw(), this.lazy(hash)); } }, ); ( syntax_contexts.encode(&mut self.opaque), expn_data_table.encode(&mut self.opaque), expn_hash_table.encode(&mut self.opaque), ) } fn encode_proc_macros(&mut self) -> Option { let is_proc_macro = self.tcx.sess.crate_types().contains(&CrateType::ProcMacro); if is_proc_macro { let tcx = self.tcx; let hir = tcx.hir(); let proc_macro_decls_static = tcx.proc_macro_decls_static(()).unwrap().local_def_index; let stability = tcx.lookup_stability(CRATE_DEF_ID); let macros = self.lazy_array(tcx.resolutions(()).proc_macros.iter().map(|p| p.local_def_index)); let spans = self.tcx.sess.parse_sess.proc_macro_quoted_spans(); for (i, span) in spans.into_iter().enumerate() { let span = self.lazy(span); self.tables.proc_macro_quoted_spans.set(i, span); } self.tables.opt_def_kind.set(LOCAL_CRATE.as_def_id().index, DefKind::Mod); record!(self.tables.def_span[LOCAL_CRATE.as_def_id()] <- tcx.def_span(LOCAL_CRATE.as_def_id())); self.encode_attrs(LOCAL_CRATE.as_def_id().expect_local()); let vis = tcx.local_visibility(CRATE_DEF_ID).map_id(|def_id| def_id.local_def_index); record!(self.tables.visibility[LOCAL_CRATE.as_def_id()] <- vis); if let Some(stability) = stability { record!(self.tables.lookup_stability[LOCAL_CRATE.as_def_id()] <- stability); } self.encode_deprecation(LOCAL_CRATE.as_def_id()); // Normally, this information is encoded when we walk the items // defined in this crate. However, we skip doing that for proc-macro crates, // so we manually encode just the information that we need for &proc_macro in &tcx.resolutions(()).proc_macros { let id = proc_macro; let proc_macro = hir.local_def_id_to_hir_id(proc_macro); let mut name = hir.name(proc_macro); let span = hir.span(proc_macro); // Proc-macros may have attributes like `#[allow_internal_unstable]`, // so downstream crates need access to them. let attrs = hir.attrs(proc_macro); let macro_kind = if tcx.sess.contains_name(attrs, sym::proc_macro) { MacroKind::Bang } else if tcx.sess.contains_name(attrs, sym::proc_macro_attribute) { MacroKind::Attr } else if let Some(attr) = tcx.sess.find_by_name(attrs, sym::proc_macro_derive) { // This unwrap chain should have been checked by the proc-macro harness. name = attr.meta_item_list().unwrap()[0] .meta_item() .unwrap() .ident() .unwrap() .name; MacroKind::Derive } else { bug!("Unknown proc-macro type for item {:?}", id); }; let mut def_key = self.tcx.hir().def_key(id); def_key.disambiguated_data.data = DefPathData::MacroNs(name); let def_id = id.to_def_id(); self.tables.opt_def_kind.set(def_id.index, DefKind::Macro(macro_kind)); self.tables.proc_macro.set(def_id.index, macro_kind); self.encode_attrs(id); record!(self.tables.def_keys[def_id] <- def_key); record!(self.tables.def_ident_span[def_id] <- span); record!(self.tables.def_span[def_id] <- span); record!(self.tables.visibility[def_id] <- ty::Visibility::Public); if let Some(stability) = stability { record!(self.tables.lookup_stability[def_id] <- stability); } } Some(ProcMacroData { proc_macro_decls_static, stability, macros }) } else { None } } fn encode_debugger_visualizers(&mut self) -> LazyArray { empty_proc_macro!(self); self.lazy_array(self.tcx.debugger_visualizers(LOCAL_CRATE).iter()) } fn encode_crate_deps(&mut self) -> LazyArray { empty_proc_macro!(self); let deps = self .tcx .crates(()) .iter() .map(|&cnum| { let dep = CrateDep { name: self.tcx.crate_name(cnum), hash: self.tcx.crate_hash(cnum), host_hash: self.tcx.crate_host_hash(cnum), kind: self.tcx.dep_kind(cnum), extra_filename: self.tcx.extra_filename(cnum).clone(), }; (cnum, dep) }) .collect::>(); { // Sanity-check the crate numbers let mut expected_cnum = 1; for &(n, _) in &deps { assert_eq!(n, CrateNum::new(expected_cnum)); expected_cnum += 1; } } // We're just going to write a list of crate 'name-hash-version's, with // the assumption that they are numbered 1 to n. // FIXME (#2166): This is not nearly enough to support correct versioning // but is enough to get transitive crate dependencies working. self.lazy_array(deps.iter().map(|(_, dep)| dep)) } fn encode_lib_features(&mut self) -> LazyArray<(Symbol, Option)> { empty_proc_macro!(self); let tcx = self.tcx; let lib_features = tcx.lib_features(()); self.lazy_array(lib_features.to_vec()) } fn encode_stability_implications(&mut self) -> LazyArray<(Symbol, Symbol)> { empty_proc_macro!(self); let tcx = self.tcx; let implications = tcx.stability_implications(LOCAL_CRATE); self.lazy_array(implications.iter().map(|(k, v)| (*k, *v))) } fn encode_diagnostic_items(&mut self) -> LazyArray<(Symbol, DefIndex)> { empty_proc_macro!(self); let tcx = self.tcx; let diagnostic_items = &tcx.diagnostic_items(LOCAL_CRATE).name_to_id; self.lazy_array(diagnostic_items.iter().map(|(&name, def_id)| (name, def_id.index))) } fn encode_lang_items(&mut self) -> LazyArray<(DefIndex, LangItem)> { empty_proc_macro!(self); let lang_items = self.tcx.lang_items().iter(); self.lazy_array(lang_items.filter_map(|(lang_item, def_id)| { def_id.as_local().map(|id| (id.local_def_index, lang_item)) })) } fn encode_lang_items_missing(&mut self) -> LazyArray { empty_proc_macro!(self); let tcx = self.tcx; self.lazy_array(&tcx.lang_items().missing) } fn encode_traits(&mut self) -> LazyArray { empty_proc_macro!(self); self.lazy_array(self.tcx.traits_in_crate(LOCAL_CRATE).iter().map(|def_id| def_id.index)) } /// Encodes an index, mapping each trait to its (local) implementations. fn encode_impls(&mut self) -> LazyArray { debug!("EncodeContext::encode_traits_and_impls()"); empty_proc_macro!(self); let tcx = self.tcx; let mut fx_hash_map: FxHashMap)>> = FxHashMap::default(); for id in tcx.hir().items() { if matches!(tcx.def_kind(id.owner_id), DefKind::Impl) { if let Some(trait_ref) = tcx.impl_trait_ref(id.owner_id) { let trait_ref = trait_ref.subst_identity(); let simplified_self_ty = fast_reject::simplify_type( self.tcx, trait_ref.self_ty(), TreatParams::AsInfer, ); fx_hash_map .entry(trait_ref.def_id) .or_default() .push((id.owner_id.def_id.local_def_index, simplified_self_ty)); } } } let mut all_impls: Vec<_> = fx_hash_map.into_iter().collect(); // Bring everything into deterministic order for hashing all_impls.sort_by_cached_key(|&(trait_def_id, _)| tcx.def_path_hash(trait_def_id)); let all_impls: Vec<_> = all_impls .into_iter() .map(|(trait_def_id, mut impls)| { // Bring everything into deterministic order for hashing impls.sort_by_cached_key(|&(index, _)| { tcx.hir().def_path_hash(LocalDefId { local_def_index: index }) }); TraitImpls { trait_id: (trait_def_id.krate.as_u32(), trait_def_id.index), impls: self.lazy_array(&impls), } }) .collect(); self.lazy_array(&all_impls) } fn encode_incoherent_impls(&mut self) -> LazyArray { debug!("EncodeContext::encode_traits_and_impls()"); empty_proc_macro!(self); let tcx = self.tcx; let mut all_impls: Vec<_> = tcx.crate_inherent_impls(()).incoherent_impls.iter().collect(); tcx.with_stable_hashing_context(|mut ctx| { all_impls.sort_by_cached_key(|&(&simp, _)| { let mut hasher = StableHasher::new(); simp.hash_stable(&mut ctx, &mut hasher); hasher.finish::() }) }); let all_impls: Vec<_> = all_impls .into_iter() .map(|(&simp, impls)| { let mut impls: Vec<_> = impls.into_iter().map(|def_id| def_id.local_def_index).collect(); impls.sort_by_cached_key(|&local_def_index| { tcx.hir().def_path_hash(LocalDefId { local_def_index }) }); IncoherentImpls { self_ty: simp, impls: self.lazy_array(impls) } }) .collect(); self.lazy_array(&all_impls) } // Encodes all symbols exported from this crate into the metadata. // // This pass is seeded off the reachability list calculated in the // middle::reachable module but filters out items that either don't have a // symbol associated with them (they weren't translated) or if they're an FFI // definition (as that's not defined in this crate). fn encode_exported_symbols( &mut self, exported_symbols: &[(ExportedSymbol<'tcx>, SymbolExportInfo)], ) -> LazyArray<(ExportedSymbol<'static>, SymbolExportInfo)> { empty_proc_macro!(self); // The metadata symbol name is special. It should not show up in // downstream crates. let metadata_symbol_name = SymbolName::new(self.tcx, &metadata_symbol_name(self.tcx)); self.lazy_array( exported_symbols .iter() .filter(|&(exported_symbol, _)| match *exported_symbol { ExportedSymbol::NoDefId(symbol_name) => symbol_name != metadata_symbol_name, _ => true, }) .cloned(), ) } fn encode_dylib_dependency_formats(&mut self) -> LazyArray> { empty_proc_macro!(self); let formats = self.tcx.dependency_formats(()); for (ty, arr) in formats.iter() { if *ty != CrateType::Dylib { continue; } return self.lazy_array(arr.iter().map(|slot| match *slot { Linkage::NotLinked | Linkage::IncludedFromDylib => None, Linkage::Dynamic => Some(LinkagePreference::RequireDynamic), Linkage::Static => Some(LinkagePreference::RequireStatic), })); } LazyArray::empty() } fn encode_info_for_foreign_item(&mut self, def_id: DefId, nitem: &hir::ForeignItem<'_>) { let tcx = self.tcx; debug!("EncodeContext::encode_info_for_foreign_item({:?})", def_id); match nitem.kind { hir::ForeignItemKind::Fn(_, ref names, _) => { self.tables.asyncness.set(def_id.index, hir::IsAsync::NotAsync); record_array!(self.tables.fn_arg_names[def_id] <- *names); let constness = if self.tcx.is_const_fn_raw(def_id) { hir::Constness::Const } else { hir::Constness::NotConst }; self.tables.constness.set(def_id.index, constness); record!(self.tables.fn_sig[def_id] <- tcx.fn_sig(def_id)); } hir::ForeignItemKind::Static(..) | hir::ForeignItemKind::Type => {} } if let hir::ForeignItemKind::Fn(..) = nitem.kind { if tcx.is_intrinsic(def_id) { self.tables.is_intrinsic.set(def_id.index, ()); } } } } // FIXME(eddyb) make metadata encoding walk over all definitions, instead of HIR. impl<'a, 'tcx> Visitor<'tcx> for EncodeContext<'a, 'tcx> { type NestedFilter = nested_filter::OnlyBodies; fn nested_visit_map(&mut self) -> Self::Map { self.tcx.hir() } fn visit_expr(&mut self, ex: &'tcx hir::Expr<'tcx>) { intravisit::walk_expr(self, ex); self.encode_info_for_expr(ex); } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { intravisit::walk_item(self, item); match item.kind { hir::ItemKind::ExternCrate(_) | hir::ItemKind::Use(..) => {} // ignore these _ => self.encode_info_for_item(item.owner_id.to_def_id(), item), } } fn visit_foreign_item(&mut self, ni: &'tcx hir::ForeignItem<'tcx>) { intravisit::walk_foreign_item(self, ni); self.encode_info_for_foreign_item(ni.owner_id.to_def_id(), ni); } fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) { intravisit::walk_generics(self, generics); self.encode_info_for_generics(generics); } } impl<'a, 'tcx> EncodeContext<'a, 'tcx> { fn encode_info_for_generics(&mut self, generics: &hir::Generics<'tcx>) { for param in generics.params { match param.kind { hir::GenericParamKind::Lifetime { .. } | hir::GenericParamKind::Type { .. } => {} hir::GenericParamKind::Const { ref default, .. } => { let def_id = param.def_id.to_def_id(); if default.is_some() { record!(self.tables.const_param_default[def_id] <- self.tcx.const_param_default(def_id)) } } } } } fn encode_info_for_expr(&mut self, expr: &hir::Expr<'_>) { if let hir::ExprKind::Closure(closure) = expr.kind { self.encode_info_for_closure(closure.def_id); } } } /// Used to prefetch queries which will be needed later by metadata encoding. /// Only a subset of the queries are actually prefetched to keep this code smaller. fn prefetch_mir(tcx: TyCtxt<'_>) { if !tcx.sess.opts.output_types.should_codegen() { // We won't emit MIR, so don't prefetch it. return; } par_iter(tcx.mir_keys(())).for_each(|&def_id| { let (encode_const, encode_opt) = should_encode_mir(tcx, def_id); if encode_const { tcx.ensure().mir_for_ctfe(def_id); } if encode_opt { tcx.ensure().optimized_mir(def_id); } if encode_opt || encode_const { tcx.ensure().promoted_mir(def_id); } }) } // NOTE(eddyb) The following comment was preserved for posterity, even // though it's no longer relevant as EBML (which uses nested & tagged // "documents") was replaced with a scheme that can't go out of bounds. // // And here we run into yet another obscure archive bug: in which metadata // loaded from archives may have trailing garbage bytes. Awhile back one of // our tests was failing sporadically on the macOS 64-bit builders (both nopt // and opt) by having ebml generate an out-of-bounds panic when looking at // metadata. // // Upon investigation it turned out that the metadata file inside of an rlib // (and ar archive) was being corrupted. Some compilations would generate a // metadata file which would end in a few extra bytes, while other // compilations would not have these extra bytes appended to the end. These // extra bytes were interpreted by ebml as an extra tag, so they ended up // being interpreted causing the out-of-bounds. // // The root cause of why these extra bytes were appearing was never // discovered, and in the meantime the solution we're employing is to insert // the length of the metadata to the start of the metadata. Later on this // will allow us to slice the metadata to the precise length that we just // generated regardless of trailing bytes that end up in it. pub struct EncodedMetadata { // The declaration order matters because `mmap` should be dropped before `_temp_dir`. mmap: Option, // We need to carry MaybeTempDir to avoid deleting the temporary // directory while accessing the Mmap. _temp_dir: Option, } impl EncodedMetadata { #[inline] pub fn from_path(path: PathBuf, temp_dir: Option) -> std::io::Result { let file = std::fs::File::open(&path)?; let file_metadata = file.metadata()?; if file_metadata.len() == 0 { return Ok(Self { mmap: None, _temp_dir: None }); } let mmap = unsafe { Some(Mmap::map(file)?) }; Ok(Self { mmap, _temp_dir: temp_dir }) } #[inline] pub fn raw_data(&self) -> &[u8] { self.mmap.as_deref().unwrap_or_default() } } impl Encodable for EncodedMetadata { fn encode(&self, s: &mut S) { let slice = self.raw_data(); slice.encode(s) } } impl Decodable for EncodedMetadata { fn decode(d: &mut D) -> Self { let len = d.read_usize(); let mmap = if len > 0 { let mut mmap = MmapMut::map_anon(len).unwrap(); for _ in 0..len { (&mut mmap[..]).write(&[d.read_u8()]).unwrap(); } mmap.flush().unwrap(); Some(mmap.make_read_only().unwrap()) } else { None }; Self { mmap, _temp_dir: None } } } pub fn encode_metadata(tcx: TyCtxt<'_>, path: &Path) { let _prof_timer = tcx.prof.verbose_generic_activity("generate_crate_metadata"); // Since encoding metadata is not in a query, and nothing is cached, // there's no need to do dep-graph tracking for any of it. tcx.dep_graph.assert_ignored(); join( || encode_metadata_impl(tcx, path), || { if tcx.sess.threads() == 1 { return; } // Prefetch some queries used by metadata encoding. // This is not necessary for correctness, but is only done for performance reasons. // It can be removed if it turns out to cause trouble or be detrimental to performance. join(|| prefetch_mir(tcx), || tcx.exported_symbols(LOCAL_CRATE)); }, ); } fn encode_metadata_impl(tcx: TyCtxt<'_>, path: &Path) { let mut encoder = opaque::FileEncoder::new(path) .unwrap_or_else(|err| tcx.sess.emit_fatal(FailCreateFileEncoder { err })); encoder.emit_raw_bytes(METADATA_HEADER); // Will be filled with the root position after encoding everything. encoder.emit_raw_bytes(&[0, 0, 0, 0]); let source_map_files = tcx.sess.source_map().files(); let source_file_cache = (source_map_files[0].clone(), 0); let required_source_files = Some(FxIndexSet::default()); drop(source_map_files); let hygiene_ctxt = HygieneEncodeContext::default(); let mut ecx = EncodeContext { opaque: encoder, tcx, feat: tcx.features(), tables: Default::default(), lazy_state: LazyState::NoNode, type_shorthands: Default::default(), predicate_shorthands: Default::default(), source_file_cache, interpret_allocs: Default::default(), required_source_files, is_proc_macro: tcx.sess.crate_types().contains(&CrateType::ProcMacro), hygiene_ctxt: &hygiene_ctxt, symbol_table: Default::default(), }; // Encode the rustc version string in a predictable location. rustc_version().encode(&mut ecx); // Encode all the entries and extra information in the crate, // culminating in the `CrateRoot` which points to all of it. let root = ecx.encode_crate_root(); ecx.opaque.flush(); let mut file = ecx.opaque.file(); // We will return to this position after writing the root position. let pos_before_seek = file.stream_position().unwrap(); // Encode the root position. let header = METADATA_HEADER.len(); file.seek(std::io::SeekFrom::Start(header as u64)) .unwrap_or_else(|err| tcx.sess.emit_fatal(FailSeekFile { err })); let pos = root.position.get(); file.write_all(&[(pos >> 24) as u8, (pos >> 16) as u8, (pos >> 8) as u8, (pos >> 0) as u8]) .unwrap_or_else(|err| tcx.sess.emit_fatal(FailWriteFile { err })); // Return to the position where we are before writing the root position. file.seek(std::io::SeekFrom::Start(pos_before_seek)).unwrap(); // Record metadata size for self-profiling tcx.prof.artifact_size( "crate_metadata", "crate_metadata", file.metadata().unwrap().len() as u64, ); } pub fn provide(providers: &mut Providers) { *providers = Providers { traits_in_crate: |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); let mut traits = Vec::new(); for id in tcx.hir().items() { if matches!(tcx.def_kind(id.owner_id), DefKind::Trait | DefKind::TraitAlias) { traits.push(id.owner_id.to_def_id()) } } // Bring everything into deterministic order. traits.sort_by_cached_key(|&def_id| tcx.def_path_hash(def_id)); tcx.arena.alloc_slice(&traits) }, ..*providers } }