//! The virtual memory representation of the MIR interpreter. use std::borrow::Cow; use std::convert::{TryFrom, TryInto}; use std::fmt; use std::hash; use std::iter; use std::ops::{Deref, Range}; use std::ptr; use rustc_ast::Mutability; use rustc_data_structures::intern::Interned; use rustc_data_structures::sorted_map::SortedMap; use rustc_span::DUMMY_SP; use rustc_target::abi::{Align, HasDataLayout, Size}; use super::{ read_target_uint, write_target_uint, AllocId, InterpError, InterpResult, Pointer, Provenance, ResourceExhaustionInfo, Scalar, ScalarMaybeUninit, ScalarSizeMismatch, UndefinedBehaviorInfo, UninitBytesAccess, UnsupportedOpInfo, }; use crate::ty; /// This type represents an Allocation in the Miri/CTFE core engine. /// /// Its public API is rather low-level, working directly with allocation offsets and a custom error /// type to account for the lack of an AllocId on this level. The Miri/CTFE core engine `memory` /// module provides higher-level access. // Note: for performance reasons when interning, some of the `Allocation` fields can be partially // hashed. (see the `Hash` impl below for more details), so the impl is not derived. #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable)] #[derive(HashStable)] pub struct Allocation { /// The actual bytes of the allocation. /// Note that the bytes of a pointer represent the offset of the pointer. bytes: Box<[u8]>, /// Maps from byte addresses to extra data for each pointer. /// Only the first byte of a pointer is inserted into the map; i.e., /// every entry in this map applies to `pointer_size` consecutive bytes starting /// at the given offset. relocations: Relocations, /// Denotes which part of this allocation is initialized. init_mask: InitMask, /// The alignment of the allocation to detect unaligned reads. /// (`Align` guarantees that this is a power of two.) pub align: Align, /// `true` if the allocation is mutable. /// Also used by codegen to determine if a static should be put into mutable memory, /// which happens for `static mut` and `static` with interior mutability. pub mutability: Mutability, /// Extra state for the machine. pub extra: Extra, } /// This is the maximum size we will hash at a time, when interning an `Allocation` and its /// `InitMask`. Note, we hash that amount of bytes twice: at the start, and at the end of a buffer. /// Used when these two structures are large: we only partially hash the larger fields in that /// situation. See the comment at the top of their respective `Hash` impl for more details. const MAX_BYTES_TO_HASH: usize = 64; /// This is the maximum size (in bytes) for which a buffer will be fully hashed, when interning. /// Otherwise, it will be partially hashed in 2 slices, requiring at least 2 `MAX_BYTES_TO_HASH` /// bytes. const MAX_HASHED_BUFFER_LEN: usize = 2 * MAX_BYTES_TO_HASH; // Const allocations are only hashed for interning. However, they can be large, making the hashing // expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially // big buffers like the actual bytes of allocation. We can partially hash some fields when they're // large. impl hash::Hash for Allocation { fn hash(&self, state: &mut H) { // Partially hash the `bytes` buffer when it is large. To limit collisions with common // prefixes and suffixes, we hash the length and some slices of the buffer. let byte_count = self.bytes.len(); if byte_count > MAX_HASHED_BUFFER_LEN { // Hash the buffer's length. byte_count.hash(state); // And its head and tail. self.bytes[..MAX_BYTES_TO_HASH].hash(state); self.bytes[byte_count - MAX_BYTES_TO_HASH..].hash(state); } else { self.bytes.hash(state); } // Hash the other fields as usual. self.relocations.hash(state); self.init_mask.hash(state); self.align.hash(state); self.mutability.hash(state); self.extra.hash(state); } } /// Interned types generally have an `Outer` type and an `Inner` type, where /// `Outer` is a newtype around `Interned`, and all the operations are /// done on `Outer`, because all occurrences are interned. E.g. `Ty` is an /// outer type and `TyS` is its inner type. /// /// Here things are different because only const allocations are interned. This /// means that both the inner type (`Allocation`) and the outer type /// (`ConstAllocation`) are used quite a bit. #[derive(Copy, Clone, PartialEq, Eq, PartialOrd, Ord, Hash, HashStable)] #[rustc_pass_by_value] pub struct ConstAllocation<'tcx, Prov = AllocId, Extra = ()>( pub Interned<'tcx, Allocation>, ); impl<'tcx> fmt::Debug for ConstAllocation<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // This matches how `Allocation` is printed. We print it like this to // avoid having to update expected output in a lot of tests. write!(f, "{:?}", self.inner()) } } impl<'tcx, Prov, Extra> ConstAllocation<'tcx, Prov, Extra> { pub fn inner(self) -> &'tcx Allocation { self.0.0 } } /// We have our own error type that does not know about the `AllocId`; that information /// is added when converting to `InterpError`. #[derive(Debug)] pub enum AllocError { /// A scalar had the wrong size. ScalarSizeMismatch(ScalarSizeMismatch), /// Encountered a pointer where we needed raw bytes. ReadPointerAsBytes, /// Partially overwriting a pointer. PartialPointerOverwrite(Size), /// Using uninitialized data where it is not allowed. InvalidUninitBytes(Option), } pub type AllocResult = Result; impl From for AllocError { fn from(s: ScalarSizeMismatch) -> Self { AllocError::ScalarSizeMismatch(s) } } impl AllocError { pub fn to_interp_error<'tcx>(self, alloc_id: AllocId) -> InterpError<'tcx> { use AllocError::*; match self { ScalarSizeMismatch(s) => { InterpError::UndefinedBehavior(UndefinedBehaviorInfo::ScalarSizeMismatch(s)) } ReadPointerAsBytes => InterpError::Unsupported(UnsupportedOpInfo::ReadPointerAsBytes), PartialPointerOverwrite(offset) => InterpError::Unsupported( UnsupportedOpInfo::PartialPointerOverwrite(Pointer::new(alloc_id, offset)), ), InvalidUninitBytes(info) => InterpError::UndefinedBehavior( UndefinedBehaviorInfo::InvalidUninitBytes(info.map(|b| (alloc_id, b))), ), } } } /// The information that makes up a memory access: offset and size. #[derive(Copy, Clone)] pub struct AllocRange { pub start: Size, pub size: Size, } impl fmt::Debug for AllocRange { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "[{:#x}..{:#x}]", self.start.bytes(), self.end().bytes()) } } /// Free-starting constructor for less syntactic overhead. #[inline(always)] pub fn alloc_range(start: Size, size: Size) -> AllocRange { AllocRange { start, size } } impl AllocRange { #[inline] pub fn from(r: Range) -> Self { alloc_range(r.start, r.end - r.start) // `Size` subtraction (overflow-checked) } #[inline(always)] pub fn end(self) -> Size { self.start + self.size // This does overflow checking. } /// Returns the `subrange` within this range; panics if it is not a subrange. #[inline] pub fn subrange(self, subrange: AllocRange) -> AllocRange { let sub_start = self.start + subrange.start; let range = alloc_range(sub_start, subrange.size); assert!(range.end() <= self.end(), "access outside the bounds for given AllocRange"); range } } // The constructors are all without extra; the extra gets added by a machine hook later. impl Allocation { /// Creates an allocation initialized by the given bytes pub fn from_bytes<'a>( slice: impl Into>, align: Align, mutability: Mutability, ) -> Self { let bytes = Box::<[u8]>::from(slice.into()); let size = Size::from_bytes(bytes.len()); Self { bytes, relocations: Relocations::new(), init_mask: InitMask::new(size, true), align, mutability, extra: (), } } pub fn from_bytes_byte_aligned_immutable<'a>(slice: impl Into>) -> Self { Allocation::from_bytes(slice, Align::ONE, Mutability::Not) } /// Try to create an Allocation of `size` bytes, failing if there is not enough memory /// available to the compiler to do so. /// /// If `panic_on_fail` is true, this will never return `Err`. pub fn uninit<'tcx>(size: Size, align: Align, panic_on_fail: bool) -> InterpResult<'tcx, Self> { let bytes = Box::<[u8]>::try_new_zeroed_slice(size.bytes_usize()).map_err(|_| { // This results in an error that can happen non-deterministically, since the memory // available to the compiler can change between runs. Normally queries are always // deterministic. However, we can be non-deterministic here because all uses of const // evaluation (including ConstProp!) will make compilation fail (via hard error // or ICE) upon encountering a `MemoryExhausted` error. if panic_on_fail { panic!("Allocation::uninit called with panic_on_fail had allocation failure") } ty::tls::with(|tcx| { tcx.sess.delay_span_bug(DUMMY_SP, "exhausted memory during interpretation") }); InterpError::ResourceExhaustion(ResourceExhaustionInfo::MemoryExhausted) })?; // SAFETY: the box was zero-allocated, which is a valid initial value for Box<[u8]> let bytes = unsafe { bytes.assume_init() }; Ok(Allocation { bytes, relocations: Relocations::new(), init_mask: InitMask::new(size, false), align, mutability: Mutability::Mut, extra: (), }) } } impl Allocation { /// Adjust allocation from the ones in tcx to a custom Machine instance /// with a different Provenance and Extra type. pub fn adjust_from_tcx( self, cx: &impl HasDataLayout, extra: Extra, mut adjust_ptr: impl FnMut(Pointer) -> Result, Err>, ) -> Result, Err> { // Compute new pointer provenance, which also adjusts the bytes. let mut bytes = self.bytes; let mut new_relocations = Vec::with_capacity(self.relocations.0.len()); let ptr_size = cx.data_layout().pointer_size.bytes_usize(); let endian = cx.data_layout().endian; for &(offset, alloc_id) in self.relocations.iter() { let idx = offset.bytes_usize(); let ptr_bytes = &mut bytes[idx..idx + ptr_size]; let bits = read_target_uint(endian, ptr_bytes).unwrap(); let (ptr_prov, ptr_offset) = adjust_ptr(Pointer::new(alloc_id, Size::from_bytes(bits)))?.into_parts(); write_target_uint(endian, ptr_bytes, ptr_offset.bytes().into()).unwrap(); new_relocations.push((offset, ptr_prov)); } // Create allocation. Ok(Allocation { bytes, relocations: Relocations::from_presorted(new_relocations), init_mask: self.init_mask, align: self.align, mutability: self.mutability, extra, }) } } /// Raw accessors. Provide access to otherwise private bytes. impl Allocation { pub fn len(&self) -> usize { self.bytes.len() } pub fn size(&self) -> Size { Size::from_bytes(self.len()) } /// Looks at a slice which may describe uninitialized bytes or describe a relocation. This differs /// from `get_bytes_with_uninit_and_ptr` in that it does no relocation checks (even on the /// edges) at all. /// This must not be used for reads affecting the interpreter execution. pub fn inspect_with_uninit_and_ptr_outside_interpreter(&self, range: Range) -> &[u8] { &self.bytes[range] } /// Returns the mask indicating which bytes are initialized. pub fn init_mask(&self) -> &InitMask { &self.init_mask } /// Returns the relocation list. pub fn relocations(&self) -> &Relocations { &self.relocations } } /// Byte accessors. impl Allocation { /// This is the entirely abstraction-violating way to just grab the raw bytes without /// caring about relocations. It just deduplicates some code between `read_scalar` /// and `get_bytes_internal`. fn get_bytes_even_more_internal(&self, range: AllocRange) -> &[u8] { &self.bytes[range.start.bytes_usize()..range.end().bytes_usize()] } /// The last argument controls whether we error out when there are uninitialized or pointer /// bytes. However, we *always* error when there are relocations overlapping the edges of the /// range. /// /// You should never call this, call `get_bytes` or `get_bytes_with_uninit_and_ptr` instead, /// /// This function also guarantees that the resulting pointer will remain stable /// even when new allocations are pushed to the `HashMap`. `mem_copy_repeatedly` relies /// on that. /// /// It is the caller's responsibility to check bounds and alignment beforehand. fn get_bytes_internal( &self, cx: &impl HasDataLayout, range: AllocRange, check_init_and_ptr: bool, ) -> AllocResult<&[u8]> { if check_init_and_ptr { self.check_init(range)?; self.check_relocations(cx, range)?; } else { // We still don't want relocations on the *edges*. self.check_relocation_edges(cx, range)?; } Ok(self.get_bytes_even_more_internal(range)) } /// Checks that these bytes are initialized and not pointer bytes, and then return them /// as a slice. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods /// on `InterpCx` instead. #[inline] pub fn get_bytes(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult<&[u8]> { self.get_bytes_internal(cx, range, true) } /// It is the caller's responsibility to handle uninitialized and pointer bytes. /// However, this still checks that there are no relocations on the *edges*. /// /// It is the caller's responsibility to check bounds and alignment beforehand. #[inline] pub fn get_bytes_with_uninit_and_ptr( &self, cx: &impl HasDataLayout, range: AllocRange, ) -> AllocResult<&[u8]> { self.get_bytes_internal(cx, range, false) } /// Just calling this already marks everything as defined and removes relocations, /// so be sure to actually put data there! /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to use the `PlaceTy` and `OperandTy`-based methods /// on `InterpCx` instead. pub fn get_bytes_mut( &mut self, cx: &impl HasDataLayout, range: AllocRange, ) -> AllocResult<&mut [u8]> { self.mark_init(range, true); self.clear_relocations(cx, range)?; Ok(&mut self.bytes[range.start.bytes_usize()..range.end().bytes_usize()]) } /// A raw pointer variant of `get_bytes_mut` that avoids invalidating existing aliases into this memory. pub fn get_bytes_mut_ptr( &mut self, cx: &impl HasDataLayout, range: AllocRange, ) -> AllocResult<*mut [u8]> { self.mark_init(range, true); self.clear_relocations(cx, range)?; assert!(range.end().bytes_usize() <= self.bytes.len()); // need to do our own bounds-check let begin_ptr = self.bytes.as_mut_ptr().wrapping_add(range.start.bytes_usize()); let len = range.end().bytes_usize() - range.start.bytes_usize(); Ok(ptr::slice_from_raw_parts_mut(begin_ptr, len)) } } /// Reading and writing. impl Allocation { /// Validates that `ptr.offset` and `ptr.offset + size` do not point to the middle of a /// relocation. If `allow_uninit`/`allow_ptr` is `false`, also enforces that the memory in the /// given range contains no uninitialized bytes/relocations. pub fn check_bytes( &self, cx: &impl HasDataLayout, range: AllocRange, allow_uninit: bool, allow_ptr: bool, ) -> AllocResult { // Check bounds and relocations on the edges. self.get_bytes_with_uninit_and_ptr(cx, range)?; // Check uninit and ptr. if !allow_uninit { self.check_init(range)?; } if !allow_ptr { self.check_relocations(cx, range)?; } Ok(()) } /// Reads a *non-ZST* scalar. /// /// If `read_provenance` is `true`, this will also read provenance; otherwise (if the machine /// supports that) provenance is entirely ignored. /// /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check /// for ZSTness anyway due to integer pointers being valid for ZSTs. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to call `InterpCx::read_scalar` instead of this method. pub fn read_scalar( &self, cx: &impl HasDataLayout, range: AllocRange, read_provenance: bool, ) -> AllocResult> { if read_provenance { assert_eq!(range.size, cx.data_layout().pointer_size); } // First and foremost, if anything is uninit, bail. if self.is_init(range).is_err() { // This inflates uninitialized bytes to the entire scalar, even if only a few // bytes are uninitialized. return Ok(ScalarMaybeUninit::Uninit); } // If we are doing a pointer read, and there is a relocation exactly where we // are reading, then we can put data and relocation back together and return that. if read_provenance && let Some(&prov) = self.relocations.get(&range.start) { // We already checked init and relocations, so we can use this function. let bytes = self.get_bytes_even_more_internal(range); let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap(); let ptr = Pointer::new(prov, Size::from_bytes(bits)); return Ok(ScalarMaybeUninit::from_pointer(ptr, cx)); } // If we are *not* reading a pointer, and we can just ignore relocations, // then do exactly that. if !read_provenance && Prov::OFFSET_IS_ADDR { // We just strip provenance. let bytes = self.get_bytes_even_more_internal(range); let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap(); return Ok(ScalarMaybeUninit::Scalar(Scalar::from_uint(bits, range.size))); } // It's complicated. Better make sure there is no provenance anywhere. // FIXME: If !OFFSET_IS_ADDR, this is the best we can do. But if OFFSET_IS_ADDR, then // `read_pointer` is true and we ideally would distinguish the following two cases: // - The entire `range` is covered by 2 relocations for the same provenance. // Then we should return a pointer with that provenance. // - The range has inhomogeneous provenance. Then we should return just the // underlying bits. let bytes = self.get_bytes(cx, range)?; let bits = read_target_uint(cx.data_layout().endian, bytes).unwrap(); Ok(ScalarMaybeUninit::Scalar(Scalar::from_uint(bits, range.size))) } /// Writes a *non-ZST* scalar. /// /// ZSTs can't be read because in order to obtain a `Pointer`, we need to check /// for ZSTness anyway due to integer pointers being valid for ZSTs. /// /// It is the caller's responsibility to check bounds and alignment beforehand. /// Most likely, you want to call `InterpCx::write_scalar` instead of this method. #[instrument(skip(self, cx), level = "debug")] pub fn write_scalar( &mut self, cx: &impl HasDataLayout, range: AllocRange, val: ScalarMaybeUninit, ) -> AllocResult { assert!(self.mutability == Mutability::Mut); let val = match val { ScalarMaybeUninit::Scalar(scalar) => scalar, ScalarMaybeUninit::Uninit => { return self.write_uninit(cx, range); } }; // `to_bits_or_ptr_internal` is the right method because we just want to store this data // as-is into memory. let (bytes, provenance) = match val.to_bits_or_ptr_internal(range.size)? { Err(val) => { let (provenance, offset) = val.into_parts(); (u128::from(offset.bytes()), Some(provenance)) } Ok(data) => (data, None), }; let endian = cx.data_layout().endian; let dst = self.get_bytes_mut(cx, range)?; write_target_uint(endian, dst, bytes).unwrap(); // See if we have to also write a relocation. if let Some(provenance) = provenance { self.relocations.0.insert(range.start, provenance); } Ok(()) } /// Write "uninit" to the given memory range. pub fn write_uninit(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult { self.mark_init(range, false); self.clear_relocations(cx, range)?; return Ok(()); } } /// Relocations. impl Allocation { /// Returns all relocations overlapping with the given pointer-offset pair. fn get_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> &[(Size, Prov)] { // We have to go back `pointer_size - 1` bytes, as that one would still overlap with // the beginning of this range. let start = range.start.bytes().saturating_sub(cx.data_layout().pointer_size.bytes() - 1); self.relocations.range(Size::from_bytes(start)..range.end()) } /// Returns whether this allocation has relocations overlapping with the given range. /// /// Note: this function exists to allow `get_relocations` to be private, in order to somewhat /// limit access to relocations outside of the `Allocation` abstraction. /// pub fn has_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> bool { !self.get_relocations(cx, range).is_empty() } /// Checks that there are no relocations overlapping with the given range. #[inline(always)] fn check_relocations(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult { if self.has_relocations(cx, range) { Err(AllocError::ReadPointerAsBytes) } else { Ok(()) } } /// Removes all relocations inside the given range. /// If there are relocations overlapping with the edges, they /// are removed as well *and* the bytes they cover are marked as /// uninitialized. This is a somewhat odd "spooky action at a distance", /// but it allows strictly more code to run than if we would just error /// immediately in that case. fn clear_relocations(&mut self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult where Prov: Provenance, { // Find the start and end of the given range and its outermost relocations. let (first, last) = { // Find all relocations overlapping the given range. let relocations = self.get_relocations(cx, range); if relocations.is_empty() { return Ok(()); } ( relocations.first().unwrap().0, relocations.last().unwrap().0 + cx.data_layout().pointer_size, ) }; let start = range.start; let end = range.end(); // We need to handle clearing the relocations from parts of a pointer. // FIXME: Miri should preserve partial relocations; see // https://github.com/rust-lang/miri/issues/2181. if first < start { if Prov::ERR_ON_PARTIAL_PTR_OVERWRITE { return Err(AllocError::PartialPointerOverwrite(first)); } warn!( "Partial pointer overwrite! De-initializing memory at offsets {first:?}..{start:?}." ); self.init_mask.set_range(first, start, false); } if last > end { if Prov::ERR_ON_PARTIAL_PTR_OVERWRITE { return Err(AllocError::PartialPointerOverwrite( last - cx.data_layout().pointer_size, )); } warn!( "Partial pointer overwrite! De-initializing memory at offsets {end:?}..{last:?}." ); self.init_mask.set_range(end, last, false); } // Forget all the relocations. // Since relocations do not overlap, we know that removing until `last` (exclusive) is fine, // i.e., this will not remove any other relocations just after the ones we care about. self.relocations.0.remove_range(first..last); Ok(()) } /// Errors if there are relocations overlapping with the edges of the /// given memory range. #[inline] fn check_relocation_edges(&self, cx: &impl HasDataLayout, range: AllocRange) -> AllocResult { self.check_relocations(cx, alloc_range(range.start, Size::ZERO))?; self.check_relocations(cx, alloc_range(range.end(), Size::ZERO))?; Ok(()) } } /// "Relocations" stores the provenance information of pointers stored in memory. #[derive(Clone, PartialEq, Eq, PartialOrd, Ord, Hash, Debug, TyEncodable, TyDecodable)] pub struct Relocations(SortedMap); impl Relocations { pub fn new() -> Self { Relocations(SortedMap::new()) } // The caller must guarantee that the given relocations are already sorted // by address and contain no duplicates. pub fn from_presorted(r: Vec<(Size, Prov)>) -> Self { Relocations(SortedMap::from_presorted_elements(r)) } } impl Deref for Relocations { type Target = SortedMap; fn deref(&self) -> &Self::Target { &self.0 } } /// A partial, owned list of relocations to transfer into another allocation. /// /// Offsets are already adjusted to the destination allocation. pub struct AllocationRelocations { dest_relocations: Vec<(Size, Prov)>, } impl Allocation { pub fn prepare_relocation_copy( &self, cx: &impl HasDataLayout, src: AllocRange, dest: Size, count: u64, ) -> AllocationRelocations { let relocations = self.get_relocations(cx, src); if relocations.is_empty() { return AllocationRelocations { dest_relocations: Vec::new() }; } let size = src.size; let mut new_relocations = Vec::with_capacity(relocations.len() * (count as usize)); // If `count` is large, this is rather wasteful -- we are allocating a big array here, which // is mostly filled with redundant information since it's just N copies of the same `Prov`s // at slightly adjusted offsets. The reason we do this is so that in `mark_relocation_range` // we can use `insert_presorted`. That wouldn't work with an `Iterator` that just produces // the right sequence of relocations for all N copies. for i in 0..count { new_relocations.extend(relocations.iter().map(|&(offset, reloc)| { // compute offset for current repetition let dest_offset = dest + size * i; // `Size` operations ( // shift offsets from source allocation to destination allocation (offset + dest_offset) - src.start, // `Size` operations reloc, ) })); } AllocationRelocations { dest_relocations: new_relocations } } /// Applies a relocation copy. /// The affected range, as defined in the parameters to `prepare_relocation_copy` is expected /// to be clear of relocations. /// /// This is dangerous to use as it can violate internal `Allocation` invariants! /// It only exists to support an efficient implementation of `mem_copy_repeatedly`. pub fn mark_relocation_range(&mut self, relocations: AllocationRelocations) { self.relocations.0.insert_presorted(relocations.dest_relocations); } } //////////////////////////////////////////////////////////////////////////////// // Uninitialized byte tracking //////////////////////////////////////////////////////////////////////////////// type Block = u64; /// A bitmask where each bit refers to the byte with the same index. If the bit is `true`, the byte /// is initialized. If it is `false` the byte is uninitialized. // Note: for performance reasons when interning, some of the `InitMask` fields can be partially // hashed. (see the `Hash` impl below for more details), so the impl is not derived. #[derive(Clone, Debug, Eq, PartialEq, PartialOrd, Ord, TyEncodable, TyDecodable)] #[derive(HashStable)] pub struct InitMask { blocks: Vec, len: Size, } // Const allocations are only hashed for interning. However, they can be large, making the hashing // expensive especially since it uses `FxHash`: it's better suited to short keys, not potentially // big buffers like the allocation's init mask. We can partially hash some fields when they're // large. impl hash::Hash for InitMask { fn hash(&self, state: &mut H) { const MAX_BLOCKS_TO_HASH: usize = MAX_BYTES_TO_HASH / std::mem::size_of::(); const MAX_BLOCKS_LEN: usize = MAX_HASHED_BUFFER_LEN / std::mem::size_of::(); // Partially hash the `blocks` buffer when it is large. To limit collisions with common // prefixes and suffixes, we hash the length and some slices of the buffer. let block_count = self.blocks.len(); if block_count > MAX_BLOCKS_LEN { // Hash the buffer's length. block_count.hash(state); // And its head and tail. self.blocks[..MAX_BLOCKS_TO_HASH].hash(state); self.blocks[block_count - MAX_BLOCKS_TO_HASH..].hash(state); } else { self.blocks.hash(state); } // Hash the other fields as usual. self.len.hash(state); } } impl InitMask { pub const BLOCK_SIZE: u64 = 64; #[inline] fn bit_index(bits: Size) -> (usize, usize) { // BLOCK_SIZE is the number of bits that can fit in a `Block`. // Each bit in a `Block` represents the initialization state of one byte of an allocation, // so we use `.bytes()` here. let bits = bits.bytes(); let a = bits / InitMask::BLOCK_SIZE; let b = bits % InitMask::BLOCK_SIZE; (usize::try_from(a).unwrap(), usize::try_from(b).unwrap()) } #[inline] fn size_from_bit_index(block: impl TryInto, bit: impl TryInto) -> Size { let block = block.try_into().ok().unwrap(); let bit = bit.try_into().ok().unwrap(); Size::from_bytes(block * InitMask::BLOCK_SIZE + bit) } pub fn new(size: Size, state: bool) -> Self { let mut m = InitMask { blocks: vec![], len: Size::ZERO }; m.grow(size, state); m } pub fn set_range(&mut self, start: Size, end: Size, new_state: bool) { let len = self.len; if end > len { self.grow(end - len, new_state); } self.set_range_inbounds(start, end, new_state); } pub fn set_range_inbounds(&mut self, start: Size, end: Size, new_state: bool) { let (blocka, bita) = Self::bit_index(start); let (blockb, bitb) = Self::bit_index(end); if blocka == blockb { // First set all bits except the first `bita`, // then unset the last `64 - bitb` bits. let range = if bitb == 0 { u64::MAX << bita } else { (u64::MAX << bita) & (u64::MAX >> (64 - bitb)) }; if new_state { self.blocks[blocka] |= range; } else { self.blocks[blocka] &= !range; } return; } // across block boundaries if new_state { // Set `bita..64` to `1`. self.blocks[blocka] |= u64::MAX << bita; // Set `0..bitb` to `1`. if bitb != 0 { self.blocks[blockb] |= u64::MAX >> (64 - bitb); } // Fill in all the other blocks (much faster than one bit at a time). for block in (blocka + 1)..blockb { self.blocks[block] = u64::MAX; } } else { // Set `bita..64` to `0`. self.blocks[blocka] &= !(u64::MAX << bita); // Set `0..bitb` to `0`. if bitb != 0 { self.blocks[blockb] &= !(u64::MAX >> (64 - bitb)); } // Fill in all the other blocks (much faster than one bit at a time). for block in (blocka + 1)..blockb { self.blocks[block] = 0; } } } #[inline] pub fn get(&self, i: Size) -> bool { let (block, bit) = Self::bit_index(i); (self.blocks[block] & (1 << bit)) != 0 } #[inline] pub fn set(&mut self, i: Size, new_state: bool) { let (block, bit) = Self::bit_index(i); self.set_bit(block, bit, new_state); } #[inline] fn set_bit(&mut self, block: usize, bit: usize, new_state: bool) { if new_state { self.blocks[block] |= 1 << bit; } else { self.blocks[block] &= !(1 << bit); } } pub fn grow(&mut self, amount: Size, new_state: bool) { if amount.bytes() == 0 { return; } let unused_trailing_bits = u64::try_from(self.blocks.len()).unwrap() * Self::BLOCK_SIZE - self.len.bytes(); if amount.bytes() > unused_trailing_bits { let additional_blocks = amount.bytes() / Self::BLOCK_SIZE + 1; self.blocks.extend( // FIXME(oli-obk): optimize this by repeating `new_state as Block`. iter::repeat(0).take(usize::try_from(additional_blocks).unwrap()), ); } let start = self.len; self.len += amount; self.set_range_inbounds(start, start + amount, new_state); // `Size` operation } /// Returns the index of the first bit in `start..end` (end-exclusive) that is equal to is_init. fn find_bit(&self, start: Size, end: Size, is_init: bool) -> Option { /// A fast implementation of `find_bit`, /// which skips over an entire block at a time if it's all 0s (resp. 1s), /// and finds the first 1 (resp. 0) bit inside a block using `trailing_zeros` instead of a loop. /// /// Note that all examples below are written with 8 (instead of 64) bit blocks for simplicity, /// and with the least significant bit (and lowest block) first: /// ```text /// 00000000|00000000 /// ^ ^ ^ ^ /// index: 0 7 8 15 /// ``` /// Also, if not stated, assume that `is_init = true`, that is, we are searching for the first 1 bit. fn find_bit_fast( init_mask: &InitMask, start: Size, end: Size, is_init: bool, ) -> Option { /// Search one block, returning the index of the first bit equal to `is_init`. fn search_block( bits: Block, block: usize, start_bit: usize, is_init: bool, ) -> Option { // For the following examples, assume this function was called with: // bits = 0b00111011 // start_bit = 3 // is_init = false // Note that, for the examples in this function, the most significant bit is written first, // which is backwards compared to the comments in `find_bit`/`find_bit_fast`. // Invert bits so we're always looking for the first set bit. // ! 0b00111011 // bits = 0b11000100 let bits = if is_init { bits } else { !bits }; // Mask off unused start bits. // 0b11000100 // & 0b11111000 // bits = 0b11000000 let bits = bits & (!0 << start_bit); // Find set bit, if any. // bit = trailing_zeros(0b11000000) // bit = 6 if bits == 0 { None } else { let bit = bits.trailing_zeros(); Some(InitMask::size_from_bit_index(block, bit)) } } if start >= end { return None; } // Convert `start` and `end` to block indexes and bit indexes within each block. // We must convert `end` to an inclusive bound to handle block boundaries correctly. // // For example: // // (a) 00000000|00000000 (b) 00000000| // ^~~~~~~~~~~^ ^~~~~~~~~^ // start end start end // // In both cases, the block index of `end` is 1. // But we do want to search block 1 in (a), and we don't in (b). // // We subtract 1 from both end positions to make them inclusive: // // (a) 00000000|00000000 (b) 00000000| // ^~~~~~~~~~^ ^~~~~~~^ // start end_inclusive start end_inclusive // // For (a), the block index of `end_inclusive` is 1, and for (b), it's 0. // This provides the desired behavior of searching blocks 0 and 1 for (a), // and searching only block 0 for (b). // There is no concern of overflows since we checked for `start >= end` above. let (start_block, start_bit) = InitMask::bit_index(start); let end_inclusive = Size::from_bytes(end.bytes() - 1); let (end_block_inclusive, _) = InitMask::bit_index(end_inclusive); // Handle first block: need to skip `start_bit` bits. // // We need to handle the first block separately, // because there may be bits earlier in the block that should be ignored, // such as the bit marked (1) in this example: // // (1) // -|------ // (c) 01000000|00000000|00000001 // ^~~~~~~~~~~~~~~~~~^ // start end if let Some(i) = search_block(init_mask.blocks[start_block], start_block, start_bit, is_init) { // If the range is less than a block, we may find a matching bit after `end`. // // For example, we shouldn't successfully find bit (2), because it's after `end`: // // (2) // -------| // (d) 00000001|00000000|00000001 // ^~~~~^ // start end // // An alternative would be to mask off end bits in the same way as we do for start bits, // but performing this check afterwards is faster and simpler to implement. if i < end { return Some(i); } else { return None; } } // Handle remaining blocks. // // We can skip over an entire block at once if it's all 0s (resp. 1s). // The block marked (3) in this example is the first block that will be handled by this loop, // and it will be skipped for that reason: // // (3) // -------- // (e) 01000000|00000000|00000001 // ^~~~~~~~~~~~~~~~~~^ // start end if start_block < end_block_inclusive { // This loop is written in a specific way for performance. // Notably: `..end_block_inclusive + 1` is used for an inclusive range instead of `..=end_block_inclusive`, // and `.zip(start_block + 1..)` is used to track the index instead of `.enumerate().skip().take()`, // because both alternatives result in significantly worse codegen. // `end_block_inclusive + 1` is guaranteed not to wrap, because `end_block_inclusive <= end / BLOCK_SIZE`, // and `BLOCK_SIZE` (the number of bits per block) will always be at least 8 (1 byte). for (&bits, block) in init_mask.blocks[start_block + 1..end_block_inclusive + 1] .iter() .zip(start_block + 1..) { if let Some(i) = search_block(bits, block, 0, is_init) { // If this is the last block, we may find a matching bit after `end`. // // For example, we shouldn't successfully find bit (4), because it's after `end`: // // (4) // -------| // (f) 00000001|00000000|00000001 // ^~~~~~~~~~~~~~~~~~^ // start end // // As above with example (d), we could handle the end block separately and mask off end bits, // but unconditionally searching an entire block at once and performing this check afterwards // is faster and much simpler to implement. if i < end { return Some(i); } else { return None; } } } } None } #[cfg_attr(not(debug_assertions), allow(dead_code))] fn find_bit_slow( init_mask: &InitMask, start: Size, end: Size, is_init: bool, ) -> Option { (start..end).find(|&i| init_mask.get(i) == is_init) } let result = find_bit_fast(self, start, end, is_init); debug_assert_eq!( result, find_bit_slow(self, start, end, is_init), "optimized implementation of find_bit is wrong for start={:?} end={:?} is_init={} init_mask={:#?}", start, end, is_init, self ); result } } /// A contiguous chunk of initialized or uninitialized memory. pub enum InitChunk { Init(Range), Uninit(Range), } impl InitChunk { #[inline] pub fn is_init(&self) -> bool { match self { Self::Init(_) => true, Self::Uninit(_) => false, } } #[inline] pub fn range(&self) -> Range { match self { Self::Init(r) => r.clone(), Self::Uninit(r) => r.clone(), } } } impl InitMask { /// Checks whether the range `start..end` (end-exclusive) is entirely initialized. /// /// Returns `Ok(())` if it's initialized. Otherwise returns a range of byte /// indexes for the first contiguous span of the uninitialized access. #[inline] pub fn is_range_initialized(&self, start: Size, end: Size) -> Result<(), AllocRange> { if end > self.len { return Err(AllocRange::from(self.len..end)); } let uninit_start = self.find_bit(start, end, false); match uninit_start { Some(uninit_start) => { let uninit_end = self.find_bit(uninit_start, end, true).unwrap_or(end); Err(AllocRange::from(uninit_start..uninit_end)) } None => Ok(()), } } /// Returns an iterator, yielding a range of byte indexes for each contiguous region /// of initialized or uninitialized bytes inside the range `start..end` (end-exclusive). /// /// The iterator guarantees the following: /// - Chunks are nonempty. /// - Chunks are adjacent (each range's start is equal to the previous range's end). /// - Chunks span exactly `start..end` (the first starts at `start`, the last ends at `end`). /// - Chunks alternate between [`InitChunk::Init`] and [`InitChunk::Uninit`]. #[inline] pub fn range_as_init_chunks(&self, start: Size, end: Size) -> InitChunkIter<'_> { assert!(end <= self.len); let is_init = if start < end { self.get(start) } else { // `start..end` is empty: there are no chunks, so use some arbitrary value false }; InitChunkIter { init_mask: self, is_init, start, end } } } /// Yields [`InitChunk`]s. See [`InitMask::range_as_init_chunks`]. #[derive(Clone)] pub struct InitChunkIter<'a> { init_mask: &'a InitMask, /// Whether the next chunk we will return is initialized. /// If there are no more chunks, contains some arbitrary value. is_init: bool, /// The current byte index into `init_mask`. start: Size, /// The end byte index into `init_mask`. end: Size, } impl<'a> Iterator for InitChunkIter<'a> { type Item = InitChunk; #[inline] fn next(&mut self) -> Option { if self.start >= self.end { return None; } let end_of_chunk = self.init_mask.find_bit(self.start, self.end, !self.is_init).unwrap_or(self.end); let range = self.start..end_of_chunk; let ret = Some(if self.is_init { InitChunk::Init(range) } else { InitChunk::Uninit(range) }); self.is_init = !self.is_init; self.start = end_of_chunk; ret } } /// Uninitialized bytes. impl Allocation { /// Checks whether the given range is entirely initialized. /// /// Returns `Ok(())` if it's initialized. Otherwise returns the range of byte /// indexes of the first contiguous uninitialized access. fn is_init(&self, range: AllocRange) -> Result<(), AllocRange> { self.init_mask.is_range_initialized(range.start, range.end()) // `Size` addition } /// Checks that a range of bytes is initialized. If not, returns the `InvalidUninitBytes` /// error which will report the first range of bytes which is uninitialized. fn check_init(&self, range: AllocRange) -> AllocResult { self.is_init(range).map_err(|uninit_range| { AllocError::InvalidUninitBytes(Some(UninitBytesAccess { access: range, uninit: uninit_range, })) }) } fn mark_init(&mut self, range: AllocRange, is_init: bool) { if range.size.bytes() == 0 { return; } assert!(self.mutability == Mutability::Mut); self.init_mask.set_range(range.start, range.end(), is_init); } } /// Run-length encoding of the uninit mask. /// Used to copy parts of a mask multiple times to another allocation. pub struct InitMaskCompressed { /// Whether the first range is initialized. initial: bool, /// The lengths of ranges that are run-length encoded. /// The initialization state of the ranges alternate starting with `initial`. ranges: smallvec::SmallVec<[u64; 1]>, } impl InitMaskCompressed { pub fn no_bytes_init(&self) -> bool { // The `ranges` are run-length encoded and of alternating initialization state. // So if `ranges.len() > 1` then the second block is an initialized range. !self.initial && self.ranges.len() == 1 } } /// Transferring the initialization mask to other allocations. impl Allocation { /// Creates a run-length encoding of the initialization mask; panics if range is empty. /// /// This is essentially a more space-efficient version of /// `InitMask::range_as_init_chunks(...).collect::>()`. pub fn compress_uninit_range(&self, range: AllocRange) -> InitMaskCompressed { // Since we are copying `size` bytes from `src` to `dest + i * size` (`for i in 0..repeat`), // a naive initialization mask copying algorithm would repeatedly have to read the initialization mask from // the source and write it to the destination. Even if we optimized the memory accesses, // we'd be doing all of this `repeat` times. // Therefore we precompute a compressed version of the initialization mask of the source value and // then write it back `repeat` times without computing any more information from the source. // A precomputed cache for ranges of initialized / uninitialized bits // 0000010010001110 will become // `[5, 1, 2, 1, 3, 3, 1]`, // where each element toggles the state. let mut ranges = smallvec::SmallVec::<[u64; 1]>::new(); let mut chunks = self.init_mask.range_as_init_chunks(range.start, range.end()).peekable(); let initial = chunks.peek().expect("range should be nonempty").is_init(); // Here we rely on `range_as_init_chunks` to yield alternating init/uninit chunks. for chunk in chunks { let len = chunk.range().end.bytes() - chunk.range().start.bytes(); ranges.push(len); } InitMaskCompressed { ranges, initial } } /// Applies multiple instances of the run-length encoding to the initialization mask. /// /// This is dangerous to use as it can violate internal `Allocation` invariants! /// It only exists to support an efficient implementation of `mem_copy_repeatedly`. pub fn mark_compressed_init_range( &mut self, defined: &InitMaskCompressed, range: AllocRange, repeat: u64, ) { // An optimization where we can just overwrite an entire range of initialization // bits if they are going to be uniformly `1` or `0`. if defined.ranges.len() <= 1 { self.init_mask.set_range_inbounds( range.start, range.start + range.size * repeat, // `Size` operations defined.initial, ); return; } for mut j in 0..repeat { j *= range.size.bytes(); j += range.start.bytes(); let mut cur = defined.initial; for range in &defined.ranges { let old_j = j; j += range; self.init_mask.set_range_inbounds( Size::from_bytes(old_j), Size::from_bytes(j), cur, ); cur = !cur; } } } }