use std::collections::BTreeSet; use std::fmt::Display; use std::fmt::Write as _; use std::fs; use std::io::{self, Write}; use std::path::{Path, PathBuf}; use super::graphviz::write_mir_fn_graphviz; use super::spanview::write_mir_fn_spanview; use either::Either; use rustc_data_structures::fx::FxHashMap; use rustc_hir::def_id::DefId; use rustc_index::vec::Idx; use rustc_middle::mir::interpret::{ alloc_range, read_target_uint, AllocBytes, AllocId, Allocation, ConstAllocation, ConstValue, GlobalAlloc, Pointer, Provenance, }; use rustc_middle::mir::visit::Visitor; use rustc_middle::mir::*; use rustc_middle::ty::{self, TyCtxt}; use rustc_target::abi::Size; const INDENT: &str = " "; /// Alignment for lining up comments following MIR statements pub(crate) const ALIGN: usize = 40; /// An indication of where we are in the control flow graph. Used for printing /// extra information in `dump_mir` pub enum PassWhere { /// We have not started dumping the control flow graph, but we are about to. BeforeCFG, /// We just finished dumping the control flow graph. This is right before EOF AfterCFG, /// We are about to start dumping the given basic block. BeforeBlock(BasicBlock), /// We are just about to dump the given statement or terminator. BeforeLocation(Location), /// We just dumped the given statement or terminator. AfterLocation(Location), /// We just dumped the terminator for a block but not the closing `}`. AfterTerminator(BasicBlock), } /// If the session is properly configured, dumps a human-readable /// representation of the mir into: /// /// ```text /// rustc.node... /// ``` /// /// Output from this function is controlled by passing `-Z dump-mir=`, /// where `` takes the following forms: /// /// - `all` -- dump MIR for all fns, all passes, all everything /// - a filter defined by a set of substrings combined with `&` and `|` /// (`&` has higher precedence). At least one of the `|`-separated groups /// must match; an `|`-separated group matches if all of its `&`-separated /// substrings are matched. /// /// Example: /// /// - `nll` == match if `nll` appears in the name /// - `foo & nll` == match if `foo` and `nll` both appear in the name /// - `foo & nll | typeck` == match if `foo` and `nll` both appear in the name /// or `typeck` appears in the name. /// - `foo & nll | bar & typeck` == match if `foo` and `nll` both appear in the name /// or `typeck` and `bar` both appear in the name. #[inline] pub fn dump_mir<'tcx, F>( tcx: TyCtxt<'tcx>, pass_num: bool, pass_name: &str, disambiguator: &dyn Display, body: &Body<'tcx>, extra_data: F, ) where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { if !dump_enabled(tcx, pass_name, body.source.def_id()) { return; } dump_matched_mir_node(tcx, pass_num, pass_name, disambiguator, body, extra_data); } pub fn dump_enabled(tcx: TyCtxt<'_>, pass_name: &str, def_id: DefId) -> bool { let Some(ref filters) = tcx.sess.opts.unstable_opts.dump_mir else { return false; }; // see notes on #41697 below let node_path = ty::print::with_forced_impl_filename_line!(tcx.def_path_str(def_id)); filters.split('|').any(|or_filter| { or_filter.split('&').all(|and_filter| { let and_filter_trimmed = and_filter.trim(); and_filter_trimmed == "all" || pass_name.contains(and_filter_trimmed) || node_path.contains(and_filter_trimmed) }) }) } // #41697 -- we use `with_forced_impl_filename_line()` because // `def_path_str()` would otherwise trigger `type_of`, and this can // run while we are already attempting to evaluate `type_of`. fn dump_matched_mir_node<'tcx, F>( tcx: TyCtxt<'tcx>, pass_num: bool, pass_name: &str, disambiguator: &dyn Display, body: &Body<'tcx>, mut extra_data: F, ) where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { let _: io::Result<()> = try { let mut file = create_dump_file(tcx, "mir", pass_num, pass_name, disambiguator, body)?; // see notes on #41697 above let def_path = ty::print::with_forced_impl_filename_line!(tcx.def_path_str(body.source.def_id())); write!(file, "// MIR for `{}", def_path)?; match body.source.promoted { None => write!(file, "`")?, Some(promoted) => write!(file, "::{:?}`", promoted)?, } writeln!(file, " {} {}", disambiguator, pass_name)?; if let Some(ref layout) = body.generator_layout() { writeln!(file, "/* generator_layout = {:#?} */", layout)?; } writeln!(file)?; extra_data(PassWhere::BeforeCFG, &mut file)?; write_user_type_annotations(tcx, body, &mut file)?; write_mir_fn(tcx, body, &mut extra_data, &mut file)?; extra_data(PassWhere::AfterCFG, &mut file)?; }; if tcx.sess.opts.unstable_opts.dump_mir_graphviz { let _: io::Result<()> = try { let mut file = create_dump_file(tcx, "dot", pass_num, pass_name, disambiguator, body)?; write_mir_fn_graphviz(tcx, body, false, &mut file)?; }; } if let Some(spanview) = tcx.sess.opts.unstable_opts.dump_mir_spanview { let _: io::Result<()> = try { let file_basename = dump_file_basename(tcx, pass_num, pass_name, disambiguator, body); let mut file = create_dump_file_with_basename(tcx, &file_basename, "html")?; if body.source.def_id().is_local() { write_mir_fn_spanview(tcx, body, spanview, &file_basename, &mut file)?; } }; } } /// Returns the file basename portion (without extension) of a filename path /// where we should dump a MIR representation output files. fn dump_file_basename<'tcx>( tcx: TyCtxt<'tcx>, pass_num: bool, pass_name: &str, disambiguator: &dyn Display, body: &Body<'tcx>, ) -> String { let source = body.source; let promotion_id = match source.promoted { Some(id) => format!("-{:?}", id), None => String::new(), }; let pass_num = if tcx.sess.opts.unstable_opts.dump_mir_exclude_pass_number { String::new() } else { if pass_num { format!(".{:03}-{:03}", body.phase.phase_index(), body.pass_count) } else { ".-------".to_string() } }; let crate_name = tcx.crate_name(source.def_id().krate); let item_name = tcx.def_path(source.def_id()).to_filename_friendly_no_crate(); // All drop shims have the same DefId, so we have to add the type // to get unique file names. let shim_disambiguator = match source.instance { ty::InstanceDef::DropGlue(_, Some(ty)) => { // Unfortunately, pretty-printed typed are not very filename-friendly. // We dome some filtering. let mut s = ".".to_owned(); s.extend(ty.to_string().chars().filter_map(|c| match c { ' ' => None, ':' | '<' | '>' => Some('_'), c => Some(c), })); s } _ => String::new(), }; format!( "{}.{}{}{}{}.{}.{}", crate_name, item_name, shim_disambiguator, promotion_id, pass_num, pass_name, disambiguator, ) } /// Returns the path to the filename where we should dump a given MIR. /// Also used by other bits of code (e.g., NLL inference) that dump /// graphviz data or other things. fn dump_path(tcx: TyCtxt<'_>, basename: &str, extension: &str) -> PathBuf { let mut file_path = PathBuf::new(); file_path.push(Path::new(&tcx.sess.opts.unstable_opts.dump_mir_dir)); let file_name = format!("{}.{}", basename, extension,); file_path.push(&file_name); file_path } /// Attempts to open the MIR dump file with the given name and extension. fn create_dump_file_with_basename( tcx: TyCtxt<'_>, file_basename: &str, extension: &str, ) -> io::Result> { let file_path = dump_path(tcx, file_basename, extension); if let Some(parent) = file_path.parent() { fs::create_dir_all(parent).map_err(|e| { io::Error::new( e.kind(), format!("IO error creating MIR dump directory: {:?}; {}", parent, e), ) })?; } Ok(io::BufWriter::new(fs::File::create(&file_path).map_err(|e| { io::Error::new(e.kind(), format!("IO error creating MIR dump file: {:?}; {}", file_path, e)) })?)) } /// Attempts to open a file where we should dump a given MIR or other /// bit of MIR-related data. Used by `mir-dump`, but also by other /// bits of code (e.g., NLL inference) that dump graphviz data or /// other things, and hence takes the extension as an argument. pub fn create_dump_file<'tcx>( tcx: TyCtxt<'tcx>, extension: &str, pass_num: bool, pass_name: &str, disambiguator: &dyn Display, body: &Body<'tcx>, ) -> io::Result> { create_dump_file_with_basename( tcx, &dump_file_basename(tcx, pass_num, pass_name, disambiguator, body), extension, ) } /// Write out a human-readable textual representation for the given MIR. pub fn write_mir_pretty<'tcx>( tcx: TyCtxt<'tcx>, single: Option, w: &mut dyn Write, ) -> io::Result<()> { writeln!(w, "// WARNING: This output format is intended for human consumers only")?; writeln!(w, "// and is subject to change without notice. Knock yourself out.")?; let mut first = true; for def_id in dump_mir_def_ids(tcx, single) { if first { first = false; } else { // Put empty lines between all items writeln!(w)?; } let render_body = |w: &mut dyn Write, body| -> io::Result<()> { write_mir_fn(tcx, body, &mut |_, _| Ok(()), w)?; for body in tcx.promoted_mir(def_id) { writeln!(w)?; write_mir_fn(tcx, body, &mut |_, _| Ok(()), w)?; } Ok(()) }; // For `const fn` we want to render both the optimized MIR and the MIR for ctfe. if tcx.is_const_fn_raw(def_id) { render_body(w, tcx.optimized_mir(def_id))?; writeln!(w)?; writeln!(w, "// MIR FOR CTFE")?; // Do not use `render_body`, as that would render the promoteds again, but these // are shared between mir_for_ctfe and optimized_mir write_mir_fn(tcx, tcx.mir_for_ctfe(def_id), &mut |_, _| Ok(()), w)?; } else { let instance_mir = tcx.instance_mir(ty::InstanceDef::Item(ty::WithOptConstParam::unknown(def_id))); render_body(w, instance_mir)?; } } Ok(()) } /// Write out a human-readable textual representation for the given function. pub fn write_mir_fn<'tcx, F>( tcx: TyCtxt<'tcx>, body: &Body<'tcx>, extra_data: &mut F, w: &mut dyn Write, ) -> io::Result<()> where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { write_mir_intro(tcx, body, w)?; for block in body.basic_blocks.indices() { extra_data(PassWhere::BeforeBlock(block), w)?; write_basic_block(tcx, block, body, extra_data, w)?; if block.index() + 1 != body.basic_blocks.len() { writeln!(w)?; } } writeln!(w, "}}")?; write_allocations(tcx, body, w)?; Ok(()) } /// Write out a human-readable textual representation for the given basic block. pub fn write_basic_block<'tcx, F>( tcx: TyCtxt<'tcx>, block: BasicBlock, body: &Body<'tcx>, extra_data: &mut F, w: &mut dyn Write, ) -> io::Result<()> where F: FnMut(PassWhere, &mut dyn Write) -> io::Result<()>, { let data = &body[block]; // Basic block label at the top. let cleanup_text = if data.is_cleanup { " (cleanup)" } else { "" }; writeln!(w, "{}{:?}{}: {{", INDENT, block, cleanup_text)?; // List of statements in the middle. let mut current_location = Location { block, statement_index: 0 }; for statement in &data.statements { extra_data(PassWhere::BeforeLocation(current_location), w)?; let indented_body = format!("{0}{0}{1:?};", INDENT, statement); writeln!( w, "{:A$} // {}{}", indented_body, if tcx.sess.verbose() { format!("{:?}: ", current_location) } else { String::new() }, comment(tcx, statement.source_info, body.span), A = ALIGN, )?; write_extra(tcx, w, |visitor| { visitor.visit_statement(statement, current_location); })?; extra_data(PassWhere::AfterLocation(current_location), w)?; current_location.statement_index += 1; } // Terminator at the bottom. extra_data(PassWhere::BeforeLocation(current_location), w)?; let indented_terminator = format!("{0}{0}{1:?};", INDENT, data.terminator().kind); writeln!( w, "{:A$} // {}{}", indented_terminator, if tcx.sess.verbose() { format!("{:?}: ", current_location) } else { String::new() }, comment(tcx, data.terminator().source_info, body.span), A = ALIGN, )?; write_extra(tcx, w, |visitor| { visitor.visit_terminator(data.terminator(), current_location); })?; extra_data(PassWhere::AfterLocation(current_location), w)?; extra_data(PassWhere::AfterTerminator(block), w)?; writeln!(w, "{}}}", INDENT) } /// After we print the main statement, we sometimes dump extra /// information. There's often a lot of little things "nuzzled up" in /// a statement. fn write_extra<'tcx, F>(tcx: TyCtxt<'tcx>, write: &mut dyn Write, mut visit_op: F) -> io::Result<()> where F: FnMut(&mut ExtraComments<'tcx>), { let mut extra_comments = ExtraComments { tcx, comments: vec![] }; visit_op(&mut extra_comments); for comment in extra_comments.comments { writeln!(write, "{:A$} // {}", "", comment, A = ALIGN)?; } Ok(()) } struct ExtraComments<'tcx> { tcx: TyCtxt<'tcx>, comments: Vec, } impl<'tcx> ExtraComments<'tcx> { fn push(&mut self, lines: &str) { for line in lines.split('\n') { self.comments.push(line.to_string()); } } } fn use_verbose(ty: Ty<'_>, fn_def: bool) -> bool { match *ty.kind() { ty::Int(_) | ty::Uint(_) | ty::Bool | ty::Char | ty::Float(_) => false, // Unit type ty::Tuple(g_args) if g_args.is_empty() => false, ty::Tuple(g_args) => g_args.iter().any(|g_arg| use_verbose(g_arg, fn_def)), ty::Array(ty, _) => use_verbose(ty, fn_def), ty::FnDef(..) => fn_def, _ => true, } } impl<'tcx> Visitor<'tcx> for ExtraComments<'tcx> { fn visit_constant(&mut self, constant: &Constant<'tcx>, _location: Location) { let Constant { span, user_ty, literal } = constant; if use_verbose(literal.ty(), true) { self.push("mir::Constant"); self.push(&format!( "+ span: {}", self.tcx.sess.source_map().span_to_embeddable_string(*span) )); if let Some(user_ty) = user_ty { self.push(&format!("+ user_ty: {:?}", user_ty)); } // FIXME: this is a poor version of `pretty_print_const_value`. let fmt_val = |val: &ConstValue<'tcx>| match val { ConstValue::ZeroSized => "".to_string(), ConstValue::Scalar(s) => format!("Scalar({:?})", s), ConstValue::Slice { .. } => "Slice(..)".to_string(), ConstValue::ByRef { .. } => "ByRef(..)".to_string(), }; let fmt_valtree = |valtree: &ty::ValTree<'tcx>| match valtree { ty::ValTree::Leaf(leaf) => format!("ValTree::Leaf({:?})", leaf), ty::ValTree::Branch(_) => "ValTree::Branch(..)".to_string(), }; let val = match literal { ConstantKind::Ty(ct) => match ct.kind() { ty::ConstKind::Param(p) => format!("Param({})", p), ty::ConstKind::Unevaluated(uv) => { format!( "Unevaluated({}, {:?})", self.tcx.def_path_str(uv.def.did), uv.substs, ) } ty::ConstKind::Value(val) => format!("Value({})", fmt_valtree(&val)), ty::ConstKind::Error(_) => "Error".to_string(), // These variants shouldn't exist in the MIR. ty::ConstKind::Placeholder(_) | ty::ConstKind::Infer(_) | ty::ConstKind::Expr(_) | ty::ConstKind::Bound(..) => bug!("unexpected MIR constant: {:?}", literal), }, ConstantKind::Unevaluated(uv, _) => { format!( "Unevaluated({}, {:?}, {:?})", self.tcx.def_path_str(uv.def.did), uv.substs, uv.promoted, ) } // To keep the diffs small, we render this like we render `ty::Const::Value`. // // This changes once `ty::Const::Value` is represented using valtrees. ConstantKind::Val(val, _) => format!("Value({})", fmt_val(&val)), }; // This reflects what `Const` looked liked before `val` was renamed // as `kind`. We print it like this to avoid having to update // expected output in a lot of tests. self.push(&format!("+ literal: Const {{ ty: {}, val: {} }}", literal.ty(), val)); } } fn visit_rvalue(&mut self, rvalue: &Rvalue<'tcx>, location: Location) { self.super_rvalue(rvalue, location); if let Rvalue::Aggregate(kind, _) = rvalue { match **kind { AggregateKind::Closure(def_id, substs) => { self.push("closure"); self.push(&format!("+ def_id: {:?}", def_id)); self.push(&format!("+ substs: {:#?}", substs)); } AggregateKind::Generator(def_id, substs, movability) => { self.push("generator"); self.push(&format!("+ def_id: {:?}", def_id)); self.push(&format!("+ substs: {:#?}", substs)); self.push(&format!("+ movability: {:?}", movability)); } AggregateKind::Adt(_, _, _, Some(user_ty), _) => { self.push("adt"); self.push(&format!("+ user_ty: {:?}", user_ty)); } _ => {} } } } } fn comment(tcx: TyCtxt<'_>, SourceInfo { span, scope }: SourceInfo, function_span: Span) -> String { let location = if tcx.sess.opts.unstable_opts.mir_pretty_relative_line_numbers { tcx.sess.source_map().span_to_relative_line_string(span, function_span) } else { tcx.sess.source_map().span_to_embeddable_string(span) }; format!("scope {} at {}", scope.index(), location,) } /// Prints local variables in a scope tree. fn write_scope_tree( tcx: TyCtxt<'_>, body: &Body<'_>, scope_tree: &FxHashMap>, w: &mut dyn Write, parent: SourceScope, depth: usize, ) -> io::Result<()> { let indent = depth * INDENT.len(); // Local variable debuginfo. for var_debug_info in &body.var_debug_info { if var_debug_info.source_info.scope != parent { // Not declared in this scope. continue; } let indented_debug_info = format!( "{0:1$}debug {2} => {3:?};", INDENT, indent, var_debug_info.name, var_debug_info.value, ); writeln!( w, "{0:1$} // in {2}", indented_debug_info, ALIGN, comment(tcx, var_debug_info.source_info, body.span), )?; } // Local variable types. for (local, local_decl) in body.local_decls.iter_enumerated() { if (1..body.arg_count + 1).contains(&local.index()) { // Skip over argument locals, they're printed in the signature. continue; } if local_decl.source_info.scope != parent { // Not declared in this scope. continue; } let mut_str = local_decl.mutability.prefix_str(); let mut indented_decl = format!("{0:1$}let {2}{3:?}: {4:?}", INDENT, indent, mut_str, local, local_decl.ty); if let Some(user_ty) = &local_decl.user_ty { for user_ty in user_ty.projections() { write!(indented_decl, " as {:?}", user_ty).unwrap(); } } indented_decl.push(';'); let local_name = if local == RETURN_PLACE { " return place" } else { "" }; writeln!( w, "{0:1$} //{2} in {3}", indented_decl, ALIGN, local_name, comment(tcx, local_decl.source_info, body.span), )?; } let Some(children) = scope_tree.get(&parent) else { return Ok(()); }; for &child in children { let child_data = &body.source_scopes[child]; assert_eq!(child_data.parent_scope, Some(parent)); let (special, span) = if let Some((callee, callsite_span)) = child_data.inlined { ( format!( " (inlined {}{})", if callee.def.requires_caller_location(tcx) { "#[track_caller] " } else { "" }, callee ), Some(callsite_span), ) } else { (String::new(), None) }; let indented_header = format!("{0:1$}scope {2}{3} {{", "", indent, child.index(), special); if let Some(span) = span { writeln!( w, "{0:1$} // at {2}", indented_header, ALIGN, tcx.sess.source_map().span_to_embeddable_string(span), )?; } else { writeln!(w, "{}", indented_header)?; } write_scope_tree(tcx, body, scope_tree, w, child, depth + 1)?; writeln!(w, "{0:1$}}}", "", depth * INDENT.len())?; } Ok(()) } /// Write out a human-readable textual representation of the MIR's `fn` type and the types of its /// local variables (both user-defined bindings and compiler temporaries). pub fn write_mir_intro<'tcx>( tcx: TyCtxt<'tcx>, body: &Body<'_>, w: &mut dyn Write, ) -> io::Result<()> { write_mir_sig(tcx, body, w)?; writeln!(w, "{{")?; // construct a scope tree and write it out let mut scope_tree: FxHashMap> = Default::default(); for (index, scope_data) in body.source_scopes.iter().enumerate() { if let Some(parent) = scope_data.parent_scope { scope_tree.entry(parent).or_default().push(SourceScope::new(index)); } else { // Only the argument scope has no parent, because it's the root. assert_eq!(index, OUTERMOST_SOURCE_SCOPE.index()); } } write_scope_tree(tcx, body, &scope_tree, w, OUTERMOST_SOURCE_SCOPE, 1)?; // Add an empty line before the first block is printed. writeln!(w)?; Ok(()) } /// Find all `AllocId`s mentioned (recursively) in the MIR body and print their corresponding /// allocations. pub fn write_allocations<'tcx>( tcx: TyCtxt<'tcx>, body: &Body<'_>, w: &mut dyn Write, ) -> io::Result<()> { fn alloc_ids_from_alloc( alloc: ConstAllocation<'_>, ) -> impl DoubleEndedIterator + '_ { alloc.inner().provenance().ptrs().values().map(|id| *id) } fn alloc_ids_from_const_val(val: ConstValue<'_>) -> impl Iterator + '_ { match val { ConstValue::Scalar(interpret::Scalar::Ptr(ptr, _)) => { Either::Left(Either::Left(std::iter::once(ptr.provenance))) } ConstValue::Scalar(interpret::Scalar::Int { .. }) => { Either::Left(Either::Right(std::iter::empty())) } ConstValue::ZeroSized => Either::Left(Either::Right(std::iter::empty())), ConstValue::ByRef { alloc, .. } | ConstValue::Slice { data: alloc, .. } => { Either::Right(alloc_ids_from_alloc(alloc)) } } } struct CollectAllocIds(BTreeSet); impl<'tcx> Visitor<'tcx> for CollectAllocIds { fn visit_constant(&mut self, c: &Constant<'tcx>, _: Location) { match c.literal { ConstantKind::Ty(_) | ConstantKind::Unevaluated(..) => {} ConstantKind::Val(val, _) => { self.0.extend(alloc_ids_from_const_val(val)); } } } } let mut visitor = CollectAllocIds(Default::default()); visitor.visit_body(body); // `seen` contains all seen allocations, including the ones we have *not* printed yet. // The protocol is to first `insert` into `seen`, and only if that returns `true` // then push to `todo`. let mut seen = visitor.0; let mut todo: Vec<_> = seen.iter().copied().collect(); while let Some(id) = todo.pop() { let mut write_allocation_track_relocs = |w: &mut dyn Write, alloc: ConstAllocation<'tcx>| -> io::Result<()> { // `.rev()` because we are popping them from the back of the `todo` vector. for id in alloc_ids_from_alloc(alloc).rev() { if seen.insert(id) { todo.push(id); } } write!(w, "{}", display_allocation(tcx, alloc.inner())) }; write!(w, "\n{id:?}")?; match tcx.try_get_global_alloc(id) { // This can't really happen unless there are bugs, but it doesn't cost us anything to // gracefully handle it and allow buggy rustc to be debugged via allocation printing. None => write!(w, " (deallocated)")?, Some(GlobalAlloc::Function(inst)) => write!(w, " (fn: {inst})")?, Some(GlobalAlloc::VTable(ty, Some(trait_ref))) => { write!(w, " (vtable: impl {trait_ref} for {ty})")? } Some(GlobalAlloc::VTable(ty, None)) => { write!(w, " (vtable: impl for {ty})")? } Some(GlobalAlloc::Static(did)) if !tcx.is_foreign_item(did) => { match tcx.eval_static_initializer(did) { Ok(alloc) => { write!(w, " (static: {}, ", tcx.def_path_str(did))?; write_allocation_track_relocs(w, alloc)?; } Err(_) => write!( w, " (static: {}, error during initializer evaluation)", tcx.def_path_str(did) )?, } } Some(GlobalAlloc::Static(did)) => { write!(w, " (extern static: {})", tcx.def_path_str(did))? } Some(GlobalAlloc::Memory(alloc)) => { write!(w, " (")?; write_allocation_track_relocs(w, alloc)? } } writeln!(w)?; } Ok(()) } /// Dumps the size and metadata and content of an allocation to the given writer. /// The expectation is that the caller first prints other relevant metadata, so the exact /// format of this function is (*without* leading or trailing newline): /// /// ```text /// size: {}, align: {}) { /// /// } /// ``` /// /// The byte format is similar to how hex editors print bytes. Each line starts with the address of /// the start of the line, followed by all bytes in hex format (space separated). /// If the allocation is small enough to fit into a single line, no start address is given. /// After the hex dump, an ascii dump follows, replacing all unprintable characters (control /// characters or characters whose value is larger than 127) with a `.` /// This also prints provenance adequately. pub fn display_allocation<'a, 'tcx, Prov: Provenance, Extra, Bytes: AllocBytes>( tcx: TyCtxt<'tcx>, alloc: &'a Allocation, ) -> RenderAllocation<'a, 'tcx, Prov, Extra, Bytes> { RenderAllocation { tcx, alloc } } #[doc(hidden)] pub struct RenderAllocation<'a, 'tcx, Prov: Provenance, Extra, Bytes: AllocBytes> { tcx: TyCtxt<'tcx>, alloc: &'a Allocation, } impl<'a, 'tcx, Prov: Provenance, Extra, Bytes: AllocBytes> std::fmt::Display for RenderAllocation<'a, 'tcx, Prov, Extra, Bytes> { fn fmt(&self, w: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let RenderAllocation { tcx, alloc } = *self; write!(w, "size: {}, align: {})", alloc.size().bytes(), alloc.align.bytes())?; if alloc.size() == Size::ZERO { // We are done. return write!(w, " {{}}"); } // Write allocation bytes. writeln!(w, " {{")?; write_allocation_bytes(tcx, alloc, w, " ")?; write!(w, "}}")?; Ok(()) } } fn write_allocation_endline(w: &mut dyn std::fmt::Write, ascii: &str) -> std::fmt::Result { for _ in 0..(BYTES_PER_LINE - ascii.chars().count()) { write!(w, " ")?; } writeln!(w, " │ {}", ascii) } /// Number of bytes to print per allocation hex dump line. const BYTES_PER_LINE: usize = 16; /// Prints the line start address and returns the new line start address. fn write_allocation_newline( w: &mut dyn std::fmt::Write, mut line_start: Size, ascii: &str, pos_width: usize, prefix: &str, ) -> Result { write_allocation_endline(w, ascii)?; line_start += Size::from_bytes(BYTES_PER_LINE); write!(w, "{}0x{:02$x} │ ", prefix, line_start.bytes(), pos_width)?; Ok(line_start) } /// The `prefix` argument allows callers to add an arbitrary prefix before each line (even if there /// is only one line). Note that your prefix should contain a trailing space as the lines are /// printed directly after it. fn write_allocation_bytes<'tcx, Prov: Provenance, Extra, Bytes: AllocBytes>( tcx: TyCtxt<'tcx>, alloc: &Allocation, w: &mut dyn std::fmt::Write, prefix: &str, ) -> std::fmt::Result { let num_lines = alloc.size().bytes_usize().saturating_sub(BYTES_PER_LINE); // Number of chars needed to represent all line numbers. let pos_width = hex_number_length(alloc.size().bytes()); if num_lines > 0 { write!(w, "{}0x{:02$x} │ ", prefix, 0, pos_width)?; } else { write!(w, "{}", prefix)?; } let mut i = Size::ZERO; let mut line_start = Size::ZERO; let ptr_size = tcx.data_layout.pointer_size; let mut ascii = String::new(); let oversized_ptr = |target: &mut String, width| { if target.len() > width { write!(target, " ({} ptr bytes)", ptr_size.bytes()).unwrap(); } }; while i < alloc.size() { // The line start already has a space. While we could remove that space from the line start // printing and unconditionally print a space here, that would cause the single-line case // to have a single space before it, which looks weird. if i != line_start { write!(w, " ")?; } if let Some(prov) = alloc.provenance().get_ptr(i) { // Memory with provenance must be defined assert!(alloc.init_mask().is_range_initialized(alloc_range(i, ptr_size)).is_ok()); let j = i.bytes_usize(); let offset = alloc .inspect_with_uninit_and_ptr_outside_interpreter(j..j + ptr_size.bytes_usize()); let offset = read_target_uint(tcx.data_layout.endian, offset).unwrap(); let offset = Size::from_bytes(offset); let provenance_width = |bytes| bytes * 3; let ptr = Pointer::new(prov, offset); let mut target = format!("{:?}", ptr); if target.len() > provenance_width(ptr_size.bytes_usize() - 1) { // This is too long, try to save some space. target = format!("{:#?}", ptr); } if ((i - line_start) + ptr_size).bytes_usize() > BYTES_PER_LINE { // This branch handles the situation where a provenance starts in the current line // but ends in the next one. let remainder = Size::from_bytes(BYTES_PER_LINE) - (i - line_start); let overflow = ptr_size - remainder; let remainder_width = provenance_width(remainder.bytes_usize()) - 2; let overflow_width = provenance_width(overflow.bytes_usize() - 1) + 1; ascii.push('╾'); // HEAVY LEFT AND LIGHT RIGHT for _ in 1..remainder.bytes() { ascii.push('─'); // LIGHT HORIZONTAL } if overflow_width > remainder_width && overflow_width >= target.len() { // The case where the provenance fits into the part in the next line write!(w, "╾{0:─^1$}", "", remainder_width)?; line_start = write_allocation_newline(w, line_start, &ascii, pos_width, prefix)?; ascii.clear(); write!(w, "{0:─^1$}╼", target, overflow_width)?; } else { oversized_ptr(&mut target, remainder_width); write!(w, "╾{0:─^1$}", target, remainder_width)?; line_start = write_allocation_newline(w, line_start, &ascii, pos_width, prefix)?; write!(w, "{0:─^1$}╼", "", overflow_width)?; ascii.clear(); } for _ in 0..overflow.bytes() - 1 { ascii.push('─'); } ascii.push('╼'); // LIGHT LEFT AND HEAVY RIGHT i += ptr_size; continue; } else { // This branch handles a provenance that starts and ends in the current line. let provenance_width = provenance_width(ptr_size.bytes_usize() - 1); oversized_ptr(&mut target, provenance_width); ascii.push('╾'); write!(w, "╾{0:─^1$}╼", target, provenance_width)?; for _ in 0..ptr_size.bytes() - 2 { ascii.push('─'); } ascii.push('╼'); i += ptr_size; } } else if let Some(prov) = alloc.provenance().get(i, &tcx) { // Memory with provenance must be defined assert!( alloc.init_mask().is_range_initialized(alloc_range(i, Size::from_bytes(1))).is_ok() ); ascii.push('━'); // HEAVY HORIZONTAL // We have two characters to display this, which is obviously not enough. // Format is similar to "oversized" above. let j = i.bytes_usize(); let c = alloc.inspect_with_uninit_and_ptr_outside_interpreter(j..j + 1)[0]; write!(w, "╾{:02x}{:#?} (1 ptr byte)╼", c, prov)?; i += Size::from_bytes(1); } else if alloc .init_mask() .is_range_initialized(alloc_range(i, Size::from_bytes(1))) .is_ok() { let j = i.bytes_usize(); // Checked definedness (and thus range) and provenance. This access also doesn't // influence interpreter execution but is only for debugging. let c = alloc.inspect_with_uninit_and_ptr_outside_interpreter(j..j + 1)[0]; write!(w, "{:02x}", c)?; if c.is_ascii_control() || c >= 0x80 { ascii.push('.'); } else { ascii.push(char::from(c)); } i += Size::from_bytes(1); } else { write!(w, "__")?; ascii.push('░'); i += Size::from_bytes(1); } // Print a new line header if the next line still has some bytes to print. if i == line_start + Size::from_bytes(BYTES_PER_LINE) && i != alloc.size() { line_start = write_allocation_newline(w, line_start, &ascii, pos_width, prefix)?; ascii.clear(); } } write_allocation_endline(w, &ascii)?; Ok(()) } fn write_mir_sig(tcx: TyCtxt<'_>, body: &Body<'_>, w: &mut dyn Write) -> io::Result<()> { use rustc_hir::def::DefKind; trace!("write_mir_sig: {:?}", body.source.instance); let def_id = body.source.def_id(); let kind = tcx.def_kind(def_id); let is_function = match kind { DefKind::Fn | DefKind::AssocFn | DefKind::Ctor(..) => true, _ => tcx.is_closure(def_id), }; match (kind, body.source.promoted) { (_, Some(i)) => write!(w, "{:?} in ", i)?, (DefKind::Const | DefKind::AssocConst, _) => write!(w, "const ")?, (DefKind::Static(hir::Mutability::Not), _) => write!(w, "static ")?, (DefKind::Static(hir::Mutability::Mut), _) => write!(w, "static mut ")?, (_, _) if is_function => write!(w, "fn ")?, (DefKind::AnonConst | DefKind::InlineConst, _) => {} // things like anon const, not an item _ => bug!("Unexpected def kind {:?}", kind), } ty::print::with_forced_impl_filename_line! { // see notes on #41697 elsewhere write!(w, "{}", tcx.def_path_str(def_id))? } if body.source.promoted.is_none() && is_function { write!(w, "(")?; // fn argument types. for (i, arg) in body.args_iter().enumerate() { if i != 0 { write!(w, ", ")?; } write!(w, "{:?}: {}", Place::from(arg), body.local_decls[arg].ty)?; } write!(w, ") -> {}", body.return_ty())?; } else { assert_eq!(body.arg_count, 0); write!(w, ": {} =", body.return_ty())?; } if let Some(yield_ty) = body.yield_ty() { writeln!(w)?; writeln!(w, "yields {}", yield_ty)?; } write!(w, " ")?; // Next thing that gets printed is the opening { Ok(()) } fn write_user_type_annotations( tcx: TyCtxt<'_>, body: &Body<'_>, w: &mut dyn Write, ) -> io::Result<()> { if !body.user_type_annotations.is_empty() { writeln!(w, "| User Type Annotations")?; } for (index, annotation) in body.user_type_annotations.iter_enumerated() { writeln!( w, "| {:?}: user_ty: {:?}, span: {}, inferred_ty: {:?}", index.index(), annotation.user_ty, tcx.sess.source_map().span_to_embeddable_string(annotation.span), annotation.inferred_ty, )?; } if !body.user_type_annotations.is_empty() { writeln!(w, "|")?; } Ok(()) } pub fn dump_mir_def_ids(tcx: TyCtxt<'_>, single: Option) -> Vec { if let Some(i) = single { vec![i] } else { tcx.mir_keys(()).iter().map(|def_id| def_id.to_def_id()).collect() } } /// Calc converted u64 decimal into hex and return it's length in chars /// /// ```ignore (cannot-test-private-function) /// assert_eq!(1, hex_number_length(0)); /// assert_eq!(1, hex_number_length(1)); /// assert_eq!(2, hex_number_length(16)); /// ``` fn hex_number_length(x: u64) -> usize { if x == 0 { return 1; } let mut length = 0; let mut x_left = x; while x_left > 0 { x_left /= 16; length += 1; } length }