//! Defines the various compiler queries. //! //! For more information on the query system, see //! ["Queries: demand-driven compilation"](https://rustc-dev-guide.rust-lang.org/query.html). //! This chapter includes instructions for adding new queries. use crate::ty::{self, print::describe_as_module, TyCtxt}; use rustc_span::def_id::LOCAL_CRATE; mod keys; pub use keys::Key; // Each of these queries corresponds to a function pointer field in the // `Providers` struct for requesting a value of that type, and a method // on `tcx: TyCtxt` (and `tcx.at(span)`) for doing that request in a way // which memoizes and does dep-graph tracking, wrapping around the actual // `Providers` that the driver creates (using several `rustc_*` crates). // // The result type of each query must implement `Clone`, and additionally // `ty::query::values::Value`, which produces an appropriate placeholder // (error) value if the query resulted in a query cycle. // Queries marked with `fatal_cycle` do not need the latter implementation, // as they will raise an fatal error on query cycles instead. rustc_queries! { query trigger_delay_span_bug(key: DefId) -> () { desc { "triggering a delay span bug" } } query resolutions(_: ()) -> &'tcx ty::ResolverGlobalCtxt { feedable no_hash desc { "getting the resolver outputs" } } query resolver_for_lowering(_: ()) -> &'tcx Steal<(ty::ResolverAstLowering, Lrc)> { feedable no_hash desc { "getting the resolver for lowering" } } /// Return the span for a definition. /// Contrary to `def_span` below, this query returns the full absolute span of the definition. /// This span is meant for dep-tracking rather than diagnostics. It should not be used outside /// of rustc_middle::hir::source_map. query source_span(key: LocalDefId) -> Span { // Accesses untracked data eval_always desc { "getting the source span" } } /// Represents crate as a whole (as distinct from the top-level crate module). /// If you call `hir_crate` (e.g., indirectly by calling `tcx.hir().krate()`), /// we will have to assume that any change means that you need to be recompiled. /// This is because the `hir_crate` query gives you access to all other items. /// To avoid this fate, do not call `tcx.hir().krate()`; instead, /// prefer wrappers like `tcx.visit_all_items_in_krate()`. query hir_crate(key: ()) -> Crate<'tcx> { arena_cache eval_always desc { "getting the crate HIR" } } /// All items in the crate. query hir_crate_items(_: ()) -> rustc_middle::hir::ModuleItems { arena_cache eval_always desc { "getting HIR crate items" } } /// The items in a module. /// /// This can be conveniently accessed by `tcx.hir().visit_item_likes_in_module`. /// Avoid calling this query directly. query hir_module_items(key: LocalDefId) -> rustc_middle::hir::ModuleItems { arena_cache desc { |tcx| "getting HIR module items in `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } /// Gives access to the HIR node for the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_owner(key: hir::OwnerId) -> Option> { desc { |tcx| "getting HIR owner of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR ID for the given `LocalDefId` owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query local_def_id_to_hir_id(key: LocalDefId) -> hir::HirId { desc { |tcx| "getting HIR ID of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR node's parent for the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_owner_parent(key: hir::OwnerId) -> hir::HirId { desc { |tcx| "getting HIR parent of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR nodes and bodies inside the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_owner_nodes(key: hir::OwnerId) -> hir::MaybeOwner<&'tcx hir::OwnerNodes<'tcx>> { desc { |tcx| "getting HIR owner items in `{}`", tcx.def_path_str(key.to_def_id()) } } /// Gives access to the HIR attributes inside the HIR owner `key`. /// /// This can be conveniently accessed by methods on `tcx.hir()`. /// Avoid calling this query directly. query hir_attrs(key: hir::OwnerId) -> &'tcx hir::AttributeMap<'tcx> { desc { |tcx| "getting HIR owner attributes in `{}`", tcx.def_path_str(key.to_def_id()) } } /// Computes the `DefId` of the corresponding const parameter in case the `key` is a /// const argument and returns `None` otherwise. /// /// ```ignore (incomplete) /// let a = foo::<7>(); /// // ^ Calling `opt_const_param_of` for this argument, /// /// fn foo() /// // ^ returns this `DefId`. /// /// fn bar() { /// // ^ While calling `opt_const_param_of` for other bodies returns `None`. /// } /// ``` // It looks like caching this query on disk actually slightly // worsened performance in #74376. // // Once const generics are more prevalently used, we might want to // consider only caching calls returning `Some`. query opt_const_param_of(key: LocalDefId) -> Option { desc { |tcx| "computing the optional const parameter of `{}`", tcx.def_path_str(key.to_def_id()) } } /// Given the def_id of a const-generic parameter, computes the associated default const /// parameter. e.g. `fn example` called on `N` would return `3`. query const_param_default(param: DefId) -> ty::EarlyBinder> { desc { |tcx| "computing const default for a given parameter `{}`", tcx.def_path_str(param) } cache_on_disk_if { param.is_local() } separate_provide_extern } /// Returns the [`Ty`][rustc_middle::ty::Ty] of the given [`DefId`]. If the [`DefId`] points /// to an alias, it will "skip" this alias to return the aliased type. /// /// [`DefId`]: rustc_hir::def_id::DefId query type_of(key: DefId) -> Ty<'tcx> { desc { |tcx| "{action} `{path}`", action = { use rustc_hir::def::DefKind; match tcx.def_kind(key) { DefKind::TyAlias => "expanding type alias", DefKind::TraitAlias => "expanding trait alias", _ => "computing type of", } }, path = tcx.def_path_str(key), } cache_on_disk_if { key.is_local() } separate_provide_extern } query collect_return_position_impl_trait_in_trait_tys(key: DefId) -> Result<&'tcx FxHashMap>, ErrorGuaranteed> { desc { "comparing an impl and trait method signature, inferring any hidden `impl Trait` types in the process" } cache_on_disk_if { key.is_local() } separate_provide_extern } query is_type_alias_impl_trait(key: DefId) -> bool { desc { "determine whether the opaque is a type-alias impl trait" } separate_provide_extern } query analysis(key: ()) -> Result<(), ErrorGuaranteed> { eval_always desc { "running analysis passes on this crate" } } /// This query checks the fulfillment of collected lint expectations. /// All lint emitting queries have to be done before this is executed /// to ensure that all expectations can be fulfilled. /// /// This is an extra query to enable other drivers (like rustdoc) to /// only execute a small subset of the `analysis` query, while allowing /// lints to be expected. In rustc, this query will be executed as part of /// the `analysis` query and doesn't have to be called a second time. /// /// Tools can additionally pass in a tool filter. That will restrict the /// expectations to only trigger for lints starting with the listed tool /// name. This is useful for cases were not all linting code from rustc /// was called. With the default `None` all registered lints will also /// be checked for expectation fulfillment. query check_expectations(key: Option) -> () { eval_always desc { "checking lint expectations (RFC 2383)" } } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to its /// associated generics. query generics_of(key: DefId) -> ty::Generics { desc { |tcx| "computing generics of `{}`", tcx.def_path_str(key) } arena_cache cache_on_disk_if { key.is_local() } separate_provide_extern } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the /// predicates (where-clauses) that must be proven true in order /// to reference it. This is almost always the "predicates query" /// that you want. /// /// `predicates_of` builds on `predicates_defined_on` -- in fact, /// it is almost always the same as that query, except for the /// case of traits. For traits, `predicates_of` contains /// an additional `Self: Trait<...>` predicate that users don't /// actually write. This reflects the fact that to invoke the /// trait (e.g., via `Default::default`) you must supply types /// that actually implement the trait. (However, this extra /// predicate gets in the way of some checks, which are intended /// to operate over only the actual where-clauses written by the /// user.) query predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } /// Returns the list of bounds that can be used for /// `SelectionCandidate::ProjectionCandidate(_)` and /// `ProjectionTyCandidate::TraitDef`. /// Specifically this is the bounds written on the trait's type /// definition, or those after the `impl` keyword /// /// ```ignore (incomplete) /// type X: Bound + 'lt /// // ^^^^^^^^^^^ /// impl Debug + Display /// // ^^^^^^^^^^^^^^^ /// ``` /// /// `key` is the `DefId` of the associated type or opaque type. /// /// Bounds from the parent (e.g. with nested impl trait) are not included. query explicit_item_bounds(key: DefId) -> &'tcx [(ty::Predicate<'tcx>, Span)] { desc { |tcx| "finding item bounds for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Elaborated version of the predicates from `explicit_item_bounds`. /// /// For example: /// /// ``` /// trait MyTrait { /// type MyAType: Eq + ?Sized; /// } /// ``` /// /// `explicit_item_bounds` returns `[::MyAType: Eq]`, /// and `item_bounds` returns /// ```text /// [ /// ::MyAType: Eq, /// ::MyAType: PartialEq<::MyAType> /// ] /// ``` /// /// Bounds from the parent (e.g. with nested impl trait) are not included. query item_bounds(key: DefId) -> ty::EarlyBinder<&'tcx ty::List>> { desc { |tcx| "elaborating item bounds for `{}`", tcx.def_path_str(key) } } /// Look up all native libraries this crate depends on. /// These are assembled from the following places: /// - `extern` blocks (depending on their `link` attributes) /// - the `libs` (`-l`) option query native_libraries(_: CrateNum) -> Vec { arena_cache desc { "looking up the native libraries of a linked crate" } separate_provide_extern } query shallow_lint_levels_on(key: hir::OwnerId) -> rustc_middle::lint::ShallowLintLevelMap { eval_always // fetches `resolutions` arena_cache desc { |tcx| "looking up lint levels for `{}`", tcx.def_path_str(key.to_def_id()) } } query lint_expectations(_: ()) -> Vec<(LintExpectationId, LintExpectation)> { arena_cache desc { "computing `#[expect]`ed lints in this crate" } } query parent_module_from_def_id(key: LocalDefId) -> LocalDefId { eval_always desc { |tcx| "getting the parent module of `{}`", tcx.def_path_str(key.to_def_id()) } } query expn_that_defined(key: DefId) -> rustc_span::ExpnId { desc { |tcx| "getting the expansion that defined `{}`", tcx.def_path_str(key) } separate_provide_extern } query is_panic_runtime(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_panic_runtime" } separate_provide_extern } /// Checks whether a type is representable or infinitely sized query representability(_: LocalDefId) -> rustc_middle::ty::Representability { desc { "checking if `{}` is representable", tcx.def_path_str(key.to_def_id()) } // infinitely sized types will cause a cycle cycle_delay_bug // we don't want recursive representability calls to be forced with // incremental compilation because, if a cycle occurs, we need the // entire cycle to be in memory for diagnostics anon } /// An implementation detail for the `representability` query query representability_adt_ty(_: Ty<'tcx>) -> rustc_middle::ty::Representability { desc { "checking if `{}` is representable", key } cycle_delay_bug anon } /// Set of param indexes for type params that are in the type's representation query params_in_repr(key: DefId) -> rustc_index::bit_set::BitSet { desc { "finding type parameters in the representation" } arena_cache no_hash separate_provide_extern } /// Fetch the THIR for a given body. If typeck for that body failed, returns an empty `Thir`. query thir_body(key: ty::WithOptConstParam) -> Result<(&'tcx Steal>, thir::ExprId), ErrorGuaranteed> { // Perf tests revealed that hashing THIR is inefficient (see #85729). no_hash desc { |tcx| "building THIR for `{}`", tcx.def_path_str(key.did.to_def_id()) } } /// Create a THIR tree for debugging. query thir_tree(key: ty::WithOptConstParam) -> String { no_hash arena_cache desc { |tcx| "constructing THIR tree for `{}`", tcx.def_path_str(key.did.to_def_id()) } } /// Set of all the `DefId`s in this crate that have MIR associated with /// them. This includes all the body owners, but also things like struct /// constructors. query mir_keys(_: ()) -> rustc_data_structures::fx::FxIndexSet { arena_cache desc { "getting a list of all mir_keys" } } /// Maps DefId's that have an associated `mir::Body` to the result /// of the MIR const-checking pass. This is the set of qualifs in /// the final value of a `const`. query mir_const_qualif(key: DefId) -> mir::ConstQualifs { desc { |tcx| "const checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query mir_const_qualif_const_arg( key: (LocalDefId, DefId) ) -> mir::ConstQualifs { desc { |tcx| "const checking the const argument `{}`", tcx.def_path_str(key.0.to_def_id()) } } /// Fetch the MIR for a given `DefId` right after it's built - this includes /// unreachable code. query mir_built(key: ty::WithOptConstParam) -> &'tcx Steal> { desc { |tcx| "building MIR for `{}`", tcx.def_path_str(key.did.to_def_id()) } } /// Fetch the MIR for a given `DefId` up till the point where it is /// ready for const qualification. /// /// See the README for the `mir` module for details. query mir_const(key: ty::WithOptConstParam) -> &'tcx Steal> { desc { |tcx| "preparing {}`{}` for borrow checking", if key.const_param_did.is_some() { "the const argument " } else { "" }, tcx.def_path_str(key.did.to_def_id()), } no_hash } /// Try to build an abstract representation of the given constant. query thir_abstract_const( key: DefId ) -> Result>, ErrorGuaranteed> { desc { |tcx| "building an abstract representation for `{}`", tcx.def_path_str(key), } separate_provide_extern } /// Try to build an abstract representation of the given constant. query thir_abstract_const_of_const_arg( key: (LocalDefId, DefId) ) -> Result>, ErrorGuaranteed> { desc { |tcx| "building an abstract representation for the const argument `{}`", tcx.def_path_str(key.0.to_def_id()), } } query mir_drops_elaborated_and_const_checked( key: ty::WithOptConstParam ) -> &'tcx Steal> { no_hash desc { |tcx| "elaborating drops for `{}`", tcx.def_path_str(key.did.to_def_id()) } } query mir_for_ctfe( key: DefId ) -> &'tcx mir::Body<'tcx> { desc { |tcx| "caching mir of `{}` for CTFE", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query mir_for_ctfe_of_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::Body<'tcx> { desc { |tcx| "caching MIR for CTFE of the const argument `{}`", tcx.def_path_str(key.0.to_def_id()) } } query mir_promoted(key: ty::WithOptConstParam) -> ( &'tcx Steal>, &'tcx Steal>> ) { no_hash desc { |tcx| "processing MIR for {}`{}`", if key.const_param_did.is_some() { "the const argument " } else { "" }, tcx.def_path_str(key.did.to_def_id()), } } query symbols_for_closure_captures( key: (LocalDefId, LocalDefId) ) -> Vec { arena_cache desc { |tcx| "finding symbols for captures of closure `{}` in `{}`", tcx.def_path_str(key.1.to_def_id()), tcx.def_path_str(key.0.to_def_id()) } } /// MIR after our optimization passes have run. This is MIR that is ready /// for codegen. This is also the only query that can fetch non-local MIR, at present. query optimized_mir(key: DefId) -> &'tcx mir::Body<'tcx> { desc { |tcx| "optimizing MIR for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Returns coverage summary info for a function, after executing the `InstrumentCoverage` /// MIR pass (assuming the -Cinstrument-coverage option is enabled). query coverageinfo(key: ty::InstanceDef<'tcx>) -> mir::CoverageInfo { desc { |tcx| "retrieving coverage info from MIR for `{}`", tcx.def_path_str(key.def_id()) } arena_cache } /// Returns the `CodeRegions` for a function that has instrumented coverage, in case the /// function was optimized out before codegen, and before being added to the Coverage Map. query covered_code_regions(key: DefId) -> Vec<&'tcx mir::coverage::CodeRegion> { desc { |tcx| "retrieving the covered `CodeRegion`s, if instrumented, for `{}`", tcx.def_path_str(key) } arena_cache cache_on_disk_if { key.is_local() } } /// The `DefId` is the `DefId` of the containing MIR body. Promoteds do not have their own /// `DefId`. This function returns all promoteds in the specified body. The body references /// promoteds by the `DefId` and the `mir::Promoted` index. This is necessary, because /// after inlining a body may refer to promoteds from other bodies. In that case you still /// need to use the `DefId` of the original body. query promoted_mir(key: DefId) -> &'tcx IndexVec> { desc { |tcx| "optimizing promoted MIR for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query promoted_mir_of_const_arg( key: (LocalDefId, DefId) ) -> &'tcx IndexVec> { desc { |tcx| "optimizing promoted MIR for the const argument `{}`", tcx.def_path_str(key.0.to_def_id()), } } /// Erases regions from `ty` to yield a new type. /// Normally you would just use `tcx.erase_regions(value)`, /// however, which uses this query as a kind of cache. query erase_regions_ty(ty: Ty<'tcx>) -> Ty<'tcx> { // This query is not expected to have input -- as a result, it // is not a good candidates for "replay" because it is essentially a // pure function of its input (and hence the expectation is that // no caller would be green **apart** from just these // queries). Making it anonymous avoids hashing the result, which // may save a bit of time. anon desc { "erasing regions from `{}`", ty } } query wasm_import_module_map(_: CrateNum) -> FxHashMap { arena_cache desc { "getting wasm import module map" } } /// Maps from the `DefId` of an item (trait/struct/enum/fn) to the /// predicates (where-clauses) directly defined on it. This is /// equal to the `explicit_predicates_of` predicates plus the /// `inferred_outlives_of` predicates. query predicates_defined_on(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing predicates of `{}`", tcx.def_path_str(key) } } /// Returns everything that looks like a predicate written explicitly /// by the user on a trait item. /// /// Traits are unusual, because predicates on associated types are /// converted into bounds on that type for backwards compatibility: /// /// trait X where Self::U: Copy { type U; } /// /// becomes /// /// trait X { type U: Copy; } /// /// `explicit_predicates_of` and `explicit_item_bounds` will then take /// the appropriate subsets of the predicates here. query trait_explicit_predicates_and_bounds(key: LocalDefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing explicit predicates of trait `{}`", tcx.def_path_str(key.to_def_id()) } } /// Returns the predicates written explicitly by the user. query explicit_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing explicit predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Returns the inferred outlives predicates (e.g., for `struct /// Foo<'a, T> { x: &'a T }`, this would return `T: 'a`). query inferred_outlives_of(key: DefId) -> &'tcx [(ty::Clause<'tcx>, Span)] { desc { |tcx| "computing inferred outlives predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Maps from the `DefId` of a trait to the list of /// super-predicates. This is a subset of the full list of /// predicates. We store these in a separate map because we must /// evaluate them even during type conversion, often before the /// full predicates are available (note that supertraits have /// additional acyclicity requirements). query super_predicates_of(key: DefId) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing the super predicates of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// The `Option` is the name of an associated type. If it is `None`, then this query /// returns the full set of predicates. If `Some`, then the query returns only the /// subset of super-predicates that reference traits that define the given associated type. /// This is used to avoid cycles in resolving types like `T::Item`. query super_predicates_that_define_assoc_type(key: (DefId, Option)) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing the super traits of `{}`{}", tcx.def_path_str(key.0), if let Some(assoc_name) = key.1 { format!(" with associated type name `{}`", assoc_name) } else { "".to_string() }, } } /// To avoid cycles within the predicates of a single item we compute /// per-type-parameter predicates for resolving `T::AssocTy`. query type_param_predicates(key: (DefId, LocalDefId, rustc_span::symbol::Ident)) -> ty::GenericPredicates<'tcx> { desc { |tcx| "computing the bounds for type parameter `{}`", tcx.hir().ty_param_name(key.1) } } query trait_def(key: DefId) -> ty::TraitDef { desc { |tcx| "computing trait definition for `{}`", tcx.def_path_str(key) } arena_cache cache_on_disk_if { key.is_local() } separate_provide_extern } query adt_def(key: DefId) -> ty::AdtDef<'tcx> { desc { |tcx| "computing ADT definition for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query adt_destructor(key: DefId) -> Option { desc { |tcx| "computing `Drop` impl for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query adt_sized_constraint(key: DefId) -> &'tcx [Ty<'tcx>] { desc { |tcx| "computing `Sized` constraints for `{}`", tcx.def_path_str(key) } } query adt_dtorck_constraint( key: DefId ) -> Result<&'tcx DropckConstraint<'tcx>, NoSolution> { desc { |tcx| "computing drop-check constraints for `{}`", tcx.def_path_str(key) } } /// Returns `true` if this is a const fn, use the `is_const_fn` to know whether your crate /// actually sees it as const fn (e.g., the const-fn-ness might be unstable and you might /// not have the feature gate active). /// /// **Do not call this function manually.** It is only meant to cache the base data for the /// `is_const_fn` function. Consider using `is_const_fn` or `is_const_fn_raw` instead. query constness(key: DefId) -> hir::Constness { desc { |tcx| "checking if item is const: `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query asyncness(key: DefId) -> hir::IsAsync { desc { |tcx| "checking if the function is async: `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Returns `true` if calls to the function may be promoted. /// /// This is either because the function is e.g., a tuple-struct or tuple-variant /// constructor, or because it has the `#[rustc_promotable]` attribute. The attribute should /// be removed in the future in favour of some form of check which figures out whether the /// function does not inspect the bits of any of its arguments (so is essentially just a /// constructor function). query is_promotable_const_fn(key: DefId) -> bool { desc { |tcx| "checking if item is promotable: `{}`", tcx.def_path_str(key) } } /// Returns `true` if this is a foreign item (i.e., linked via `extern { ... }`). query is_foreign_item(key: DefId) -> bool { desc { |tcx| "checking if `{}` is a foreign item", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Returns `Some(generator_kind)` if the node pointed to by `def_id` is a generator. query generator_kind(def_id: DefId) -> Option { desc { |tcx| "looking up generator kind of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } /// Gets a map with the variance of every item; use `item_variance` instead. query crate_variances(_: ()) -> ty::CrateVariancesMap<'tcx> { arena_cache desc { "computing the variances for items in this crate" } } /// Maps from the `DefId` of a type or region parameter to its (inferred) variance. query variances_of(def_id: DefId) -> &'tcx [ty::Variance] { desc { |tcx| "computing the variances of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } /// Maps from thee `DefId` of a type to its (inferred) outlives. query inferred_outlives_crate(_: ()) -> ty::CratePredicatesMap<'tcx> { arena_cache desc { "computing the inferred outlives predicates for items in this crate" } } /// Maps from an impl/trait `DefId` to a list of the `DefId`s of its items. query associated_item_def_ids(key: DefId) -> &'tcx [DefId] { desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } /// Maps from a trait item to the trait item "descriptor". query associated_item(key: DefId) -> ty::AssocItem { desc { |tcx| "computing associated item data for `{}`", tcx.def_path_str(key) } arena_cache cache_on_disk_if { key.is_local() } separate_provide_extern } /// Collects the associated items defined on a trait or impl. query associated_items(key: DefId) -> ty::AssocItems<'tcx> { arena_cache desc { |tcx| "collecting associated items of `{}`", tcx.def_path_str(key) } } /// Maps from associated items on a trait to the corresponding associated /// item on the impl specified by `impl_id`. /// /// For example, with the following code /// /// ``` /// struct Type {} /// // DefId /// trait Trait { // trait_id /// fn f(); // trait_f /// fn g() {} // trait_g /// } /// /// impl Trait for Type { // impl_id /// fn f() {} // impl_f /// fn g() {} // impl_g /// } /// ``` /// /// The map returned for `tcx.impl_item_implementor_ids(impl_id)` would be ///`{ trait_f: impl_f, trait_g: impl_g }` query impl_item_implementor_ids(impl_id: DefId) -> FxHashMap { arena_cache desc { |tcx| "comparing impl items against trait for `{}`", tcx.def_path_str(impl_id) } } /// Given an `impl_id`, return the trait it implements. /// Return `None` if this is an inherent impl. query impl_trait_ref(impl_id: DefId) -> Option>> { desc { |tcx| "computing trait implemented by `{}`", tcx.def_path_str(impl_id) } cache_on_disk_if { impl_id.is_local() } separate_provide_extern } query impl_polarity(impl_id: DefId) -> ty::ImplPolarity { desc { |tcx| "computing implementation polarity of `{}`", tcx.def_path_str(impl_id) } cache_on_disk_if { impl_id.is_local() } separate_provide_extern } query issue33140_self_ty(key: DefId) -> Option> { desc { |tcx| "computing Self type wrt issue #33140 `{}`", tcx.def_path_str(key) } } /// Maps a `DefId` of a type to a list of its inherent impls. /// Contains implementations of methods that are inherent to a type. /// Methods in these implementations don't need to be exported. query inherent_impls(key: DefId) -> &'tcx [DefId] { desc { |tcx| "collecting inherent impls for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query incoherent_impls(key: SimplifiedType) -> &'tcx [DefId] { desc { |tcx| "collecting all inherent impls for `{:?}`", key } } /// The result of unsafety-checking this `LocalDefId`. query unsafety_check_result(key: LocalDefId) -> &'tcx mir::UnsafetyCheckResult { desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query unsafety_check_result_for_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::UnsafetyCheckResult { desc { |tcx| "unsafety-checking the const argument `{}`", tcx.def_path_str(key.0.to_def_id()) } } /// Unsafety-check this `LocalDefId` with THIR unsafeck. This should be /// used with `-Zthir-unsafeck`. query thir_check_unsafety(key: LocalDefId) { desc { |tcx| "unsafety-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query thir_check_unsafety_for_const_arg(key: (LocalDefId, DefId)) { desc { |tcx| "unsafety-checking the const argument `{}`", tcx.def_path_str(key.0.to_def_id()) } } /// HACK: when evaluated, this reports an "unsafe derive on repr(packed)" error. /// /// Unsafety checking is executed for each method separately, but we only want /// to emit this error once per derive. As there are some impls with multiple /// methods, we use a query for deduplication. query unsafe_derive_on_repr_packed(key: LocalDefId) -> () { desc { |tcx| "processing `{}`", tcx.def_path_str(key.to_def_id()) } } /// Returns the types assumed to be well formed while "inside" of the given item. /// /// Note that we've liberated the late bound regions of function signatures, so /// this can not be used to check whether these types are well formed. query assumed_wf_types(key: DefId) -> &'tcx ty::List> { desc { |tcx| "computing the implied bounds of `{}`", tcx.def_path_str(key) } } /// Computes the signature of the function. query fn_sig(key: DefId) -> ty::PolyFnSig<'tcx> { desc { |tcx| "computing function signature of `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern cycle_delay_bug } /// Performs lint checking for the module. query lint_mod(key: LocalDefId) -> () { desc { |tcx| "linting {}", describe_as_module(key, tcx) } } /// Checks the attributes in the module. query check_mod_attrs(key: LocalDefId) -> () { desc { |tcx| "checking attributes in {}", describe_as_module(key, tcx) } } /// Checks for uses of unstable APIs in the module. query check_mod_unstable_api_usage(key: LocalDefId) -> () { desc { |tcx| "checking for unstable API usage in {}", describe_as_module(key, tcx) } } /// Checks the const bodies in the module for illegal operations (e.g. `if` or `loop`). query check_mod_const_bodies(key: LocalDefId) -> () { desc { |tcx| "checking consts in {}", describe_as_module(key, tcx) } } /// Checks the loops in the module. query check_mod_loops(key: LocalDefId) -> () { desc { |tcx| "checking loops in {}", describe_as_module(key, tcx) } } query check_mod_naked_functions(key: LocalDefId) -> () { desc { |tcx| "checking naked functions in {}", describe_as_module(key, tcx) } } query check_mod_item_types(key: LocalDefId) -> () { desc { |tcx| "checking item types in {}", describe_as_module(key, tcx) } } query check_mod_privacy(key: LocalDefId) -> () { desc { |tcx| "checking privacy in {}", describe_as_module(key, tcx) } } query check_liveness(key: DefId) { desc { |tcx| "checking liveness of variables in `{}`", tcx.def_path_str(key) } } /// Return the live symbols in the crate for dead code check. /// /// The second return value maps from ADTs to ignored derived traits (e.g. Debug and Clone) and /// their respective impl (i.e., part of the derive macro) query live_symbols_and_ignored_derived_traits(_: ()) -> ( FxHashSet, FxHashMap> ) { arena_cache desc { "finding live symbols in crate" } } query check_mod_deathness(key: LocalDefId) -> () { desc { |tcx| "checking deathness of variables in {}", describe_as_module(key, tcx) } } query check_mod_impl_wf(key: LocalDefId) -> () { desc { |tcx| "checking that impls are well-formed in {}", describe_as_module(key, tcx) } } query check_mod_type_wf(key: LocalDefId) -> () { desc { |tcx| "checking that types are well-formed in {}", describe_as_module(key, tcx) } } query collect_mod_item_types(key: LocalDefId) -> () { desc { |tcx| "collecting item types in {}", describe_as_module(key, tcx) } } /// Caches `CoerceUnsized` kinds for impls on custom types. query coerce_unsized_info(key: DefId) -> ty::adjustment::CoerceUnsizedInfo { desc { |tcx| "computing CoerceUnsized info for `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query typeck_item_bodies(_: ()) -> () { desc { "type-checking all item bodies" } } query typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query typeck_const_arg( key: (LocalDefId, DefId) ) -> &'tcx ty::TypeckResults<'tcx> { desc { |tcx| "type-checking the const argument `{}`", tcx.def_path_str(key.0.to_def_id()), } } query diagnostic_only_typeck(key: LocalDefId) -> &'tcx ty::TypeckResults<'tcx> { desc { |tcx| "type-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query used_trait_imports(key: LocalDefId) -> &'tcx UnordSet { desc { |tcx| "finding used_trait_imports `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query has_typeck_results(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` has a body", tcx.def_path_str(def_id) } } query coherent_trait(def_id: DefId) -> () { desc { |tcx| "coherence checking all impls of trait `{}`", tcx.def_path_str(def_id) } } /// Borrow-checks the function body. If this is a closure, returns /// additional requirements that the closure's creator must verify. query mir_borrowck(key: LocalDefId) -> &'tcx mir::BorrowCheckResult<'tcx> { desc { |tcx| "borrow-checking `{}`", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if(tcx) { tcx.is_typeck_child(key.to_def_id()) } } query mir_borrowck_const_arg(key: (LocalDefId, DefId)) -> &'tcx mir::BorrowCheckResult<'tcx> { desc { |tcx| "borrow-checking the const argument`{}`", tcx.def_path_str(key.0.to_def_id()) } } /// Gets a complete map from all types to their inherent impls. /// Not meant to be used directly outside of coherence. query crate_inherent_impls(k: ()) -> CrateInherentImpls { arena_cache desc { "finding all inherent impls defined in crate" } } /// Checks all types in the crate for overlap in their inherent impls. Reports errors. /// Not meant to be used directly outside of coherence. query crate_inherent_impls_overlap_check(_: ()) -> () { desc { "check for overlap between inherent impls defined in this crate" } } /// Checks whether all impls in the crate pass the overlap check, returning /// which impls fail it. If all impls are correct, the returned slice is empty. query orphan_check_impl(key: LocalDefId) -> Result<(), ErrorGuaranteed> { desc { |tcx| "checking whether impl `{}` follows the orphan rules", tcx.def_path_str(key.to_def_id()), } } /// Check whether the function has any recursion that could cause the inliner to trigger /// a cycle. Returns the call stack causing the cycle. The call stack does not contain the /// current function, just all intermediate functions. query mir_callgraph_reachable(key: (ty::Instance<'tcx>, LocalDefId)) -> bool { fatal_cycle desc { |tcx| "computing if `{}` (transitively) calls `{}`", key.0, tcx.def_path_str(key.1.to_def_id()), } } /// Obtain all the calls into other local functions query mir_inliner_callees(key: ty::InstanceDef<'tcx>) -> &'tcx [(DefId, SubstsRef<'tcx>)] { fatal_cycle desc { |tcx| "computing all local function calls in `{}`", tcx.def_path_str(key.def_id()), } } /// Evaluates a constant and returns the computed allocation. /// /// **Do not use this** directly, use the `tcx.eval_static_initializer` wrapper. query eval_to_allocation_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) -> EvalToAllocationRawResult<'tcx> { desc { |tcx| "const-evaluating + checking `{}`", key.value.display(tcx) } cache_on_disk_if { true } } /// Evaluates const items or anonymous constants /// (such as enum variant explicit discriminants or array lengths) /// into a representation suitable for the type system and const generics. /// /// **Do not use this** directly, use one of the following wrappers: `tcx.const_eval_poly`, /// `tcx.const_eval_resolve`, `tcx.const_eval_instance`, or `tcx.const_eval_global_id`. query eval_to_const_value_raw(key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>>) -> EvalToConstValueResult<'tcx> { desc { |tcx| "simplifying constant for the type system `{}`", key.value.display(tcx) } cache_on_disk_if { true } } /// Evaluate a constant and convert it to a type level constant or /// return `None` if that is not possible. query eval_to_valtree( key: ty::ParamEnvAnd<'tcx, GlobalId<'tcx>> ) -> EvalToValTreeResult<'tcx> { desc { "evaluating type-level constant" } } /// Converts a type level constant value into `ConstValue` query valtree_to_const_val(key: (Ty<'tcx>, ty::ValTree<'tcx>)) -> ConstValue<'tcx> { desc { "converting type-level constant value to mir constant value"} } /// Destructures array, ADT or tuple constants into the constants /// of their fields. query destructure_const(key: ty::Const<'tcx>) -> ty::DestructuredConst<'tcx> { desc { "destructuring type level constant"} } /// Tries to destructure an `mir::ConstantKind` ADT or array into its variant index /// and its field values. query try_destructure_mir_constant( key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>> ) -> Option> { desc { "destructuring MIR constant"} remap_env_constness } /// Dereference a constant reference or raw pointer and turn the result into a constant /// again. query deref_mir_constant( key: ty::ParamEnvAnd<'tcx, mir::ConstantKind<'tcx>> ) -> mir::ConstantKind<'tcx> { desc { "dereferencing MIR constant" } remap_env_constness } query const_caller_location(key: (rustc_span::Symbol, u32, u32)) -> ConstValue<'tcx> { desc { "getting a &core::panic::Location referring to a span" } } // FIXME get rid of this with valtrees query lit_to_const( key: LitToConstInput<'tcx> ) -> Result, LitToConstError> { desc { "converting literal to const" } } query lit_to_mir_constant(key: LitToConstInput<'tcx>) -> Result, LitToConstError> { desc { "converting literal to mir constant" } } query check_match(key: DefId) { desc { |tcx| "match-checking `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } } /// Performs part of the privacy check and computes effective visibilities. query effective_visibilities(_: ()) -> &'tcx EffectiveVisibilities { eval_always desc { "checking effective visibilities" } } query check_private_in_public(_: ()) -> () { eval_always desc { "checking for private elements in public interfaces" } } query reachable_set(_: ()) -> FxHashSet { arena_cache desc { "reachability" } } /// Per-body `region::ScopeTree`. The `DefId` should be the owner `DefId` for the body; /// in the case of closures, this will be redirected to the enclosing function. query region_scope_tree(def_id: DefId) -> &'tcx crate::middle::region::ScopeTree { desc { |tcx| "computing drop scopes for `{}`", tcx.def_path_str(def_id) } } /// Generates a MIR body for the shim. query mir_shims(key: ty::InstanceDef<'tcx>) -> mir::Body<'tcx> { arena_cache desc { |tcx| "generating MIR shim for `{}`", tcx.def_path_str(key.def_id()) } } /// The `symbol_name` query provides the symbol name for calling a /// given instance from the local crate. In particular, it will also /// look up the correct symbol name of instances from upstream crates. query symbol_name(key: ty::Instance<'tcx>) -> ty::SymbolName<'tcx> { desc { "computing the symbol for `{}`", key } cache_on_disk_if { true } } query opt_def_kind(def_id: DefId) -> Option { desc { |tcx| "looking up definition kind of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } /// Gets the span for the definition. query def_span(def_id: DefId) -> Span { desc { |tcx| "looking up span for `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern feedable } /// Gets the span for the identifier of the definition. query def_ident_span(def_id: DefId) -> Option { desc { |tcx| "looking up span for `{}`'s identifier", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query lookup_stability(def_id: DefId) -> Option { desc { |tcx| "looking up stability of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query lookup_const_stability(def_id: DefId) -> Option { desc { |tcx| "looking up const stability of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query lookup_default_body_stability(def_id: DefId) -> Option { desc { |tcx| "looking up default body stability of `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query should_inherit_track_caller(def_id: DefId) -> bool { desc { |tcx| "computing should_inherit_track_caller of `{}`", tcx.def_path_str(def_id) } } query lookup_deprecation_entry(def_id: DefId) -> Option { desc { |tcx| "checking whether `{}` is deprecated", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } /// Determines whether an item is annotated with `doc(hidden)`. query is_doc_hidden(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is `doc(hidden)`", tcx.def_path_str(def_id) } } /// Determines whether an item is annotated with `doc(notable_trait)`. query is_doc_notable_trait(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is `doc(notable_trait)`", tcx.def_path_str(def_id) } } /// Returns the attributes on the item at `def_id`. /// /// Do not use this directly, use `tcx.get_attrs` instead. query item_attrs(def_id: DefId) -> &'tcx [ast::Attribute] { desc { |tcx| "collecting attributes of `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query codegen_fn_attrs(def_id: DefId) -> CodegenFnAttrs { desc { |tcx| "computing codegen attributes of `{}`", tcx.def_path_str(def_id) } arena_cache cache_on_disk_if { def_id.is_local() } separate_provide_extern } query asm_target_features(def_id: DefId) -> &'tcx FxHashSet { desc { |tcx| "computing target features for inline asm of `{}`", tcx.def_path_str(def_id) } } query fn_arg_names(def_id: DefId) -> &'tcx [rustc_span::symbol::Ident] { desc { |tcx| "looking up function parameter names for `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } /// Gets the rendered value of the specified constant or associated constant. /// Used by rustdoc. query rendered_const(def_id: DefId) -> String { arena_cache desc { |tcx| "rendering constant initializer of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query impl_parent(def_id: DefId) -> Option { desc { |tcx| "computing specialization parent impl of `{}`", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query is_ctfe_mir_available(key: DefId) -> bool { desc { |tcx| "checking if item has CTFE MIR available: `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query is_mir_available(key: DefId) -> bool { desc { |tcx| "checking if item has MIR available: `{}`", tcx.def_path_str(key) } cache_on_disk_if { key.is_local() } separate_provide_extern } query own_existential_vtable_entries( key: DefId ) -> &'tcx [DefId] { desc { |tcx| "finding all existential vtable entries for trait `{}`", tcx.def_path_str(key) } } query vtable_entries(key: ty::PolyTraitRef<'tcx>) -> &'tcx [ty::VtblEntry<'tcx>] { desc { |tcx| "finding all vtable entries for trait `{}`", tcx.def_path_str(key.def_id()) } } query vtable_trait_upcasting_coercion_new_vptr_slot(key: (Ty<'tcx>, Ty<'tcx>)) -> Option { desc { |tcx| "finding the slot within vtable for trait object `{}` vtable ptr during trait upcasting coercion from `{}` vtable", key.1, key.0 } } query vtable_allocation(key: (Ty<'tcx>, Option>)) -> mir::interpret::AllocId { desc { |tcx| "vtable const allocation for <{} as {}>", key.0, key.1.map(|trait_ref| format!("{}", trait_ref)).unwrap_or("_".to_owned()) } } query codegen_select_candidate( key: (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>) ) -> Result<&'tcx ImplSource<'tcx, ()>, traits::CodegenObligationError> { cache_on_disk_if { true } desc { |tcx| "computing candidate for `{}`", key.1 } } /// Return all `impl` blocks in the current crate. query all_local_trait_impls(_: ()) -> &'tcx rustc_data_structures::fx::FxIndexMap> { desc { "finding local trait impls" } } /// Given a trait `trait_id`, return all known `impl` blocks. query trait_impls_of(trait_id: DefId) -> ty::trait_def::TraitImpls { arena_cache desc { |tcx| "finding trait impls of `{}`", tcx.def_path_str(trait_id) } } query specialization_graph_of(trait_id: DefId) -> specialization_graph::Graph { arena_cache desc { |tcx| "building specialization graph of trait `{}`", tcx.def_path_str(trait_id) } cache_on_disk_if { true } } query object_safety_violations(trait_id: DefId) -> &'tcx [traits::ObjectSafetyViolation] { desc { |tcx| "determining object safety of trait `{}`", tcx.def_path_str(trait_id) } } /// Gets the ParameterEnvironment for a given item; this environment /// will be in "user-facing" mode, meaning that it is suitable for /// type-checking etc, and it does not normalize specializable /// associated types. This is almost always what you want, /// unless you are doing MIR optimizations, in which case you /// might want to use `reveal_all()` method to change modes. query param_env(def_id: DefId) -> ty::ParamEnv<'tcx> { desc { |tcx| "computing normalized predicates of `{}`", tcx.def_path_str(def_id) } } /// Like `param_env`, but returns the `ParamEnv` in `Reveal::All` mode. /// Prefer this over `tcx.param_env(def_id).with_reveal_all_normalized(tcx)`, /// as this method is more efficient. query param_env_reveal_all_normalized(def_id: DefId) -> ty::ParamEnv<'tcx> { desc { |tcx| "computing revealed normalized predicates of `{}`", tcx.def_path_str(def_id) } } /// Trait selection queries. These are best used by invoking `ty.is_copy_modulo_regions()`, /// `ty.is_copy()`, etc, since that will prune the environment where possible. query is_copy_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Copy`", env.value } remap_env_constness } /// Query backing `Ty::is_sized`. query is_sized_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Sized`", env.value } remap_env_constness } /// Query backing `Ty::is_freeze`. query is_freeze_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is freeze", env.value } remap_env_constness } /// Query backing `Ty::is_unpin`. query is_unpin_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` is `Unpin`", env.value } remap_env_constness } /// Query backing `Ty::needs_drop`. query needs_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` needs drop", env.value } remap_env_constness } /// Query backing `Ty::has_significant_drop_raw`. query has_significant_drop_raw(env: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { desc { "computing whether `{}` has a significant drop", env.value } remap_env_constness } /// Query backing `Ty::is_structural_eq_shallow`. /// /// This is only correct for ADTs. Call `is_structural_eq_shallow` to handle all types /// correctly. query has_structural_eq_impls(ty: Ty<'tcx>) -> bool { desc { "computing whether `{}` implements `PartialStructuralEq` and `StructuralEq`", ty } } /// A list of types where the ADT requires drop if and only if any of /// those types require drop. If the ADT is known to always need drop /// then `Err(AlwaysRequiresDrop)` is returned. query adt_drop_tys(def_id: DefId) -> Result<&'tcx ty::List>, AlwaysRequiresDrop> { desc { |tcx| "computing when `{}` needs drop", tcx.def_path_str(def_id) } cache_on_disk_if { true } } /// A list of types where the ADT requires drop if and only if any of those types /// has significant drop. A type marked with the attribute `rustc_insignificant_dtor` /// is considered to not be significant. A drop is significant if it is implemented /// by the user or does anything that will have any observable behavior (other than /// freeing up memory). If the ADT is known to have a significant destructor then /// `Err(AlwaysRequiresDrop)` is returned. query adt_significant_drop_tys(def_id: DefId) -> Result<&'tcx ty::List>, AlwaysRequiresDrop> { desc { |tcx| "computing when `{}` has a significant destructor", tcx.def_path_str(def_id) } cache_on_disk_if { false } } /// Computes the layout of a type. Note that this implicitly /// executes in "reveal all" mode, and will normalize the input type. query layout_of( key: ty::ParamEnvAnd<'tcx, Ty<'tcx>> ) -> Result, ty::layout::LayoutError<'tcx>> { depth_limit desc { "computing layout of `{}`", key.value } remap_env_constness } /// Compute a `FnAbi` suitable for indirect calls, i.e. to `fn` pointers. /// /// NB: this doesn't handle virtual calls - those should use `fn_abi_of_instance` /// instead, where the instance is an `InstanceDef::Virtual`. query fn_abi_of_fn_ptr( key: ty::ParamEnvAnd<'tcx, (ty::PolyFnSig<'tcx>, &'tcx ty::List>)> ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> { desc { "computing call ABI of `{}` function pointers", key.value.0 } remap_env_constness } /// Compute a `FnAbi` suitable for declaring/defining an `fn` instance, and for /// direct calls to an `fn`. /// /// NB: that includes virtual calls, which are represented by "direct calls" /// to an `InstanceDef::Virtual` instance (of `::fn`). query fn_abi_of_instance( key: ty::ParamEnvAnd<'tcx, (ty::Instance<'tcx>, &'tcx ty::List>)> ) -> Result<&'tcx abi::call::FnAbi<'tcx, Ty<'tcx>>, ty::layout::FnAbiError<'tcx>> { desc { "computing call ABI of `{}`", key.value.0 } remap_env_constness } query dylib_dependency_formats(_: CrateNum) -> &'tcx [(CrateNum, LinkagePreference)] { desc { "getting dylib dependency formats of crate" } separate_provide_extern } query dependency_formats(_: ()) -> Lrc { arena_cache desc { "getting the linkage format of all dependencies" } } query is_compiler_builtins(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate is_compiler_builtins" } separate_provide_extern } query has_global_allocator(_: CrateNum) -> bool { // This query depends on untracked global state in CStore eval_always fatal_cycle desc { "checking if the crate has_global_allocator" } separate_provide_extern } query has_alloc_error_handler(_: CrateNum) -> bool { // This query depends on untracked global state in CStore eval_always fatal_cycle desc { "checking if the crate has_alloc_error_handler" } separate_provide_extern } query has_panic_handler(_: CrateNum) -> bool { fatal_cycle desc { "checking if the crate has_panic_handler" } separate_provide_extern } query is_profiler_runtime(_: CrateNum) -> bool { fatal_cycle desc { "checking if a crate is `#![profiler_runtime]`" } separate_provide_extern } query has_ffi_unwind_calls(key: LocalDefId) -> bool { desc { |tcx| "checking if `{}` contains FFI-unwind calls", tcx.def_path_str(key.to_def_id()) } cache_on_disk_if { true } } query required_panic_strategy(_: CrateNum) -> Option { fatal_cycle desc { "getting a crate's required panic strategy" } separate_provide_extern } query panic_in_drop_strategy(_: CrateNum) -> PanicStrategy { fatal_cycle desc { "getting a crate's configured panic-in-drop strategy" } separate_provide_extern } query is_no_builtins(_: CrateNum) -> bool { fatal_cycle desc { "getting whether a crate has `#![no_builtins]`" } separate_provide_extern } query symbol_mangling_version(_: CrateNum) -> SymbolManglingVersion { fatal_cycle desc { "getting a crate's symbol mangling version" } separate_provide_extern } query extern_crate(def_id: DefId) -> Option<&'tcx ExternCrate> { eval_always desc { "getting crate's ExternCrateData" } separate_provide_extern } query specializes(_: (DefId, DefId)) -> bool { desc { "computing whether impls specialize one another" } } query in_scope_traits_map(_: hir::OwnerId) -> Option<&'tcx FxHashMap>> { desc { "getting traits in scope at a block" } } query module_reexports(def_id: LocalDefId) -> Option<&'tcx [ModChild]> { desc { |tcx| "looking up reexports of module `{}`", tcx.def_path_str(def_id.to_def_id()) } } query impl_defaultness(def_id: DefId) -> hir::Defaultness { desc { |tcx| "looking up whether `{}` is a default impl", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query check_well_formed(key: hir::OwnerId) -> () { desc { |tcx| "checking that `{}` is well-formed", tcx.def_path_str(key.to_def_id()) } } // The `DefId`s of all non-generic functions and statics in the given crate // that can be reached from outside the crate. // // We expect this items to be available for being linked to. // // This query can also be called for `LOCAL_CRATE`. In this case it will // compute which items will be reachable to other crates, taking into account // the kind of crate that is currently compiled. Crates with only a // C interface have fewer reachable things. // // Does not include external symbols that don't have a corresponding DefId, // like the compiler-generated `main` function and so on. query reachable_non_generics(_: CrateNum) -> DefIdMap { arena_cache desc { "looking up the exported symbols of a crate" } separate_provide_extern } query is_reachable_non_generic(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is an exported symbol", tcx.def_path_str(def_id) } cache_on_disk_if { def_id.is_local() } separate_provide_extern } query is_unreachable_local_definition(def_id: LocalDefId) -> bool { desc { |tcx| "checking whether `{}` is reachable from outside the crate", tcx.def_path_str(def_id.to_def_id()), } } /// The entire set of monomorphizations the local crate can safely link /// to because they are exported from upstream crates. Do not depend on /// this directly, as its value changes anytime a monomorphization gets /// added or removed in any upstream crate. Instead use the narrower /// `upstream_monomorphizations_for`, `upstream_drop_glue_for`, or, even /// better, `Instance::upstream_monomorphization()`. query upstream_monomorphizations(_: ()) -> DefIdMap, CrateNum>> { arena_cache desc { "collecting available upstream monomorphizations" } } /// Returns the set of upstream monomorphizations available for the /// generic function identified by the given `def_id`. The query makes /// sure to make a stable selection if the same monomorphization is /// available in multiple upstream crates. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. query upstream_monomorphizations_for(def_id: DefId) -> Option<&'tcx FxHashMap, CrateNum>> { arena_cache desc { |tcx| "collecting available upstream monomorphizations for `{}`", tcx.def_path_str(def_id), } separate_provide_extern } /// Returns the upstream crate that exports drop-glue for the given /// type (`substs` is expected to be a single-item list containing the /// type one wants drop-glue for). /// /// This is a subset of `upstream_monomorphizations_for` in order to /// increase dep-tracking granularity. Otherwise adding or removing any /// type with drop-glue in any upstream crate would invalidate all /// functions calling drop-glue of an upstream type. /// /// You likely want to call `Instance::upstream_monomorphization()` /// instead of invoking this query directly. /// /// NOTE: This query could easily be extended to also support other /// common functions that have are large set of monomorphizations /// (like `Clone::clone` for example). query upstream_drop_glue_for(substs: SubstsRef<'tcx>) -> Option { desc { "available upstream drop-glue for `{:?}`", substs } } /// Returns a list of all `extern` blocks of a crate. query foreign_modules(_: CrateNum) -> FxHashMap { arena_cache desc { "looking up the foreign modules of a linked crate" } separate_provide_extern } /// Identifies the entry-point (e.g., the `main` function) for a given /// crate, returning `None` if there is no entry point (such as for library crates). query entry_fn(_: ()) -> Option<(DefId, EntryFnType)> { desc { "looking up the entry function of a crate" } } /// Finds the `rustc_proc_macro_decls` item of a crate. query proc_macro_decls_static(_: ()) -> Option { desc { "looking up the proc macro declarations for a crate" } } // The macro which defines `rustc_metadata::provide_extern` depends on this query's name. // Changing the name should cause a compiler error, but in case that changes, be aware. query crate_hash(_: CrateNum) -> Svh { eval_always desc { "looking up the hash a crate" } separate_provide_extern } /// Gets the hash for the host proc macro. Used to support -Z dual-proc-macro. query crate_host_hash(_: CrateNum) -> Option { eval_always desc { "looking up the hash of a host version of a crate" } separate_provide_extern } /// Gets the extra data to put in each output filename for a crate. /// For example, compiling the `foo` crate with `extra-filename=-a` creates a `libfoo-b.rlib` file. query extra_filename(_: CrateNum) -> String { arena_cache eval_always desc { "looking up the extra filename for a crate" } separate_provide_extern } /// Gets the paths where the crate came from in the file system. query crate_extern_paths(_: CrateNum) -> Vec { arena_cache eval_always desc { "looking up the paths for extern crates" } separate_provide_extern } /// Given a crate and a trait, look up all impls of that trait in the crate. /// Return `(impl_id, self_ty)`. query implementations_of_trait(_: (CrateNum, DefId)) -> &'tcx [(DefId, Option)] { desc { "looking up implementations of a trait in a crate" } separate_provide_extern } /// Collects all incoherent impls for the given crate and type. /// /// Do not call this directly, but instead use the `incoherent_impls` query. /// This query is only used to get the data necessary for that query. query crate_incoherent_impls(key: (CrateNum, SimplifiedType)) -> &'tcx [DefId] { desc { |tcx| "collecting all impls for a type in a crate" } separate_provide_extern } /// Get the corresponding native library from the `native_libraries` query query native_library(def_id: DefId) -> Option<&'tcx NativeLib> { desc { |tcx| "getting the native library for `{}`", tcx.def_path_str(def_id) } } /// Does lifetime resolution on items. Importantly, we can't resolve /// lifetimes directly on things like trait methods, because of trait params. /// See `rustc_resolve::late::lifetimes for details. query resolve_lifetimes(_: hir::OwnerId) -> ResolveLifetimes { arena_cache desc { "resolving lifetimes" } } query named_region_map(_: hir::OwnerId) -> Option<&'tcx FxHashMap> { desc { "looking up a named region" } } query is_late_bound_map(_: LocalDefId) -> Option<&'tcx FxIndexSet> { desc { "testing if a region is late bound" } } /// For a given item's generic parameter, gets the default lifetimes to be used /// for each parameter if a trait object were to be passed for that parameter. /// For example, for `T` in `struct Foo<'a, T>`, this would be `'static`. /// For `T` in `struct Foo<'a, T: 'a>`, this would instead be `'a`. /// This query will panic if passed something that is not a type parameter. query object_lifetime_default(key: DefId) -> ObjectLifetimeDefault { desc { "looking up lifetime defaults for generic parameter `{}`", tcx.def_path_str(key) } separate_provide_extern } query late_bound_vars_map(_: hir::OwnerId) -> Option<&'tcx FxHashMap>> { desc { "looking up late bound vars" } } /// Computes the visibility of the provided `def_id`. /// /// If the item from the `def_id` doesn't have a visibility, it will panic. For example /// a generic type parameter will panic if you call this method on it: /// /// ``` /// use std::fmt::Debug; /// /// pub trait Foo {} /// ``` /// /// In here, if you call `visibility` on `T`, it'll panic. query visibility(def_id: DefId) -> ty::Visibility { desc { |tcx| "computing visibility of `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query inhabited_predicate_adt(key: DefId) -> ty::inhabitedness::InhabitedPredicate<'tcx> { desc { "computing the uninhabited predicate of `{:?}`", key } } /// Do not call this query directly: invoke `Ty::inhabited_predicate` instead. query inhabited_predicate_type(key: Ty<'tcx>) -> ty::inhabitedness::InhabitedPredicate<'tcx> { desc { "computing the uninhabited predicate of `{}`", key } } query dep_kind(_: CrateNum) -> CrateDepKind { eval_always desc { "fetching what a dependency looks like" } separate_provide_extern } /// Gets the name of the crate. query crate_name(_: CrateNum) -> Symbol { feedable desc { "fetching what a crate is named" } separate_provide_extern } query module_children(def_id: DefId) -> &'tcx [ModChild] { desc { |tcx| "collecting child items of module `{}`", tcx.def_path_str(def_id) } separate_provide_extern } query extern_mod_stmt_cnum(def_id: LocalDefId) -> Option { desc { |tcx| "computing crate imported by `{}`", tcx.def_path_str(def_id.to_def_id()) } } query lib_features(_: ()) -> LibFeatures { arena_cache desc { "calculating the lib features map" } } query defined_lib_features(_: CrateNum) -> &'tcx [(Symbol, Option)] { desc { "calculating the lib features defined in a crate" } separate_provide_extern } query stability_implications(_: CrateNum) -> FxHashMap { arena_cache desc { "calculating the implications between `#[unstable]` features defined in a crate" } separate_provide_extern } /// Whether the function is an intrinsic query is_intrinsic(def_id: DefId) -> bool { desc { |tcx| "checking whether `{}` is an intrinsic", tcx.def_path_str(def_id) } separate_provide_extern } /// Returns the lang items defined in another crate by loading it from metadata. query get_lang_items(_: ()) -> LanguageItems { arena_cache eval_always desc { "calculating the lang items map" } } /// Returns all diagnostic items defined in all crates. query all_diagnostic_items(_: ()) -> rustc_hir::diagnostic_items::DiagnosticItems { arena_cache eval_always desc { "calculating the diagnostic items map" } } /// Returns the lang items defined in another crate by loading it from metadata. query defined_lang_items(_: CrateNum) -> &'tcx [(DefId, LangItem)] { desc { "calculating the lang items defined in a crate" } separate_provide_extern } /// Returns the diagnostic items defined in a crate. query diagnostic_items(_: CrateNum) -> rustc_hir::diagnostic_items::DiagnosticItems { arena_cache desc { "calculating the diagnostic items map in a crate" } separate_provide_extern } query missing_lang_items(_: CrateNum) -> &'tcx [LangItem] { desc { "calculating the missing lang items in a crate" } separate_provide_extern } query visible_parent_map(_: ()) -> DefIdMap { arena_cache desc { "calculating the visible parent map" } } query trimmed_def_paths(_: ()) -> FxHashMap { arena_cache desc { "calculating trimmed def paths" } } query missing_extern_crate_item(_: CrateNum) -> bool { eval_always desc { "seeing if we're missing an `extern crate` item for this crate" } separate_provide_extern } query used_crate_source(_: CrateNum) -> Lrc { arena_cache eval_always desc { "looking at the source for a crate" } separate_provide_extern } /// Returns the debugger visualizers defined for this crate. query debugger_visualizers(_: CrateNum) -> Vec { arena_cache desc { "looking up the debugger visualizers for this crate" } separate_provide_extern } query postorder_cnums(_: ()) -> &'tcx [CrateNum] { eval_always desc { "generating a postorder list of CrateNums" } } /// Returns whether or not the crate with CrateNum 'cnum' /// is marked as a private dependency query is_private_dep(c: CrateNum) -> bool { eval_always desc { "checking whether crate `{}` is a private dependency", c } separate_provide_extern } query allocator_kind(_: ()) -> Option { eval_always desc { "getting the allocator kind for the current crate" } } query alloc_error_handler_kind(_: ()) -> Option { eval_always desc { "alloc error handler kind for the current crate" } } query upvars_mentioned(def_id: DefId) -> Option<&'tcx FxIndexMap> { desc { |tcx| "collecting upvars mentioned in `{}`", tcx.def_path_str(def_id) } } query maybe_unused_trait_imports(_: ()) -> &'tcx FxIndexSet { desc { "fetching potentially unused trait imports" } } query maybe_unused_extern_crates(_: ()) -> &'tcx [(LocalDefId, Span)] { desc { "looking up all possibly unused extern crates" } } query names_imported_by_glob_use(def_id: LocalDefId) -> &'tcx FxHashSet { desc { |tcx| "finding names imported by glob use for `{}`", tcx.def_path_str(def_id.to_def_id()) } } query stability_index(_: ()) -> stability::Index { arena_cache eval_always desc { "calculating the stability index for the local crate" } } query crates(_: ()) -> &'tcx [CrateNum] { eval_always desc { "fetching all foreign CrateNum instances" } } /// A list of all traits in a crate, used by rustdoc and error reporting. /// NOTE: Not named just `traits` due to a naming conflict. query traits_in_crate(_: CrateNum) -> &'tcx [DefId] { desc { "fetching all traits in a crate" } separate_provide_extern } /// The list of symbols exported from the given crate. /// /// - All names contained in `exported_symbols(cnum)` are guaranteed to /// correspond to a publicly visible symbol in `cnum` machine code. /// - The `exported_symbols` sets of different crates do not intersect. query exported_symbols(cnum: CrateNum) -> &'tcx [(ExportedSymbol<'tcx>, SymbolExportInfo)] { desc { "collecting exported symbols for crate `{}`", cnum} cache_on_disk_if { *cnum == LOCAL_CRATE } separate_provide_extern } query collect_and_partition_mono_items(_: ()) -> (&'tcx DefIdSet, &'tcx [CodegenUnit<'tcx>]) { eval_always desc { "collect_and_partition_mono_items" } } query is_codegened_item(def_id: DefId) -> bool { desc { |tcx| "determining whether `{}` needs codegen", tcx.def_path_str(def_id) } } /// All items participating in code generation together with items inlined into them. query codegened_and_inlined_items(_: ()) -> &'tcx DefIdSet { eval_always desc { "collecting codegened and inlined items" } } query codegen_unit(sym: Symbol) -> &'tcx CodegenUnit<'tcx> { desc { "getting codegen unit `{sym}`" } } query unused_generic_params(key: ty::InstanceDef<'tcx>) -> UnusedGenericParams { cache_on_disk_if { key.def_id().is_local() } desc { |tcx| "determining which generic parameters are unused by `{}`", tcx.def_path_str(key.def_id()) } separate_provide_extern } query backend_optimization_level(_: ()) -> OptLevel { desc { "optimization level used by backend" } } /// Return the filenames where output artefacts shall be stored. /// /// This query returns an `&Arc` because codegen backends need the value even after the `TyCtxt` /// has been destroyed. query output_filenames(_: ()) -> &'tcx Arc { feedable desc { "getting output filenames" } } /// Do not call this query directly: invoke `normalize` instead. query normalize_projection_ty( goal: CanonicalProjectionGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, NormalizationResult<'tcx>>>, NoSolution, > { desc { "normalizing `{}`", goal.value.value } remap_env_constness } /// Do not call this query directly: invoke `try_normalize_erasing_regions` instead. query try_normalize_generic_arg_after_erasing_regions( goal: ParamEnvAnd<'tcx, GenericArg<'tcx>> ) -> Result, NoSolution> { desc { "normalizing `{}`", goal.value } remap_env_constness } query implied_outlives_bounds( goal: CanonicalTyGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Vec>>>, NoSolution, > { desc { "computing implied outlives bounds for `{}`", goal.value.value } remap_env_constness } /// Do not call this query directly: /// invoke `DropckOutlives::new(dropped_ty)).fully_perform(typeck.infcx)` instead. query dropck_outlives( goal: CanonicalTyGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, DropckOutlivesResult<'tcx>>>, NoSolution, > { desc { "computing dropck types for `{}`", goal.value.value } remap_env_constness } /// Do not call this query directly: invoke `infcx.predicate_may_hold()` or /// `infcx.predicate_must_hold()` instead. query evaluate_obligation( goal: CanonicalPredicateGoal<'tcx> ) -> Result { desc { "evaluating trait selection obligation `{}`", goal.value.value } } query evaluate_goal( goal: traits::CanonicalChalkEnvironmentAndGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution > { desc { "evaluating trait selection obligation `{}`", goal.value } } /// Do not call this query directly: part of the `Eq` type-op query type_op_ascribe_user_type( goal: CanonicalTypeOpAscribeUserTypeGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_ascribe_user_type` `{:?}`", goal.value.value } remap_env_constness } /// Do not call this query directly: part of the `Eq` type-op query type_op_eq( goal: CanonicalTypeOpEqGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_eq` `{:?}`", goal.value.value } remap_env_constness } /// Do not call this query directly: part of the `Subtype` type-op query type_op_subtype( goal: CanonicalTypeOpSubtypeGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_subtype` `{:?}`", goal.value.value } remap_env_constness } /// Do not call this query directly: part of the `ProvePredicate` type-op query type_op_prove_predicate( goal: CanonicalTypeOpProvePredicateGoal<'tcx> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ()>>, NoSolution, > { desc { "evaluating `type_op_prove_predicate` `{:?}`", goal.value.value } } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_ty( goal: CanonicalTypeOpNormalizeGoal<'tcx, Ty<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, Ty<'tcx>>>, NoSolution, > { desc { "normalizing `{}`", goal.value.value.value } remap_env_constness } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_predicate( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::Predicate<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::Predicate<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal.value.value.value } remap_env_constness } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_poly_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::PolyFnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::PolyFnSig<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal.value.value.value } remap_env_constness } /// Do not call this query directly: part of the `Normalize` type-op query type_op_normalize_fn_sig( goal: CanonicalTypeOpNormalizeGoal<'tcx, ty::FnSig<'tcx>> ) -> Result< &'tcx Canonical<'tcx, canonical::QueryResponse<'tcx, ty::FnSig<'tcx>>>, NoSolution, > { desc { "normalizing `{:?}`", goal.value.value.value } remap_env_constness } query subst_and_check_impossible_predicates(key: (DefId, SubstsRef<'tcx>)) -> bool { desc { |tcx| "checking impossible substituted predicates: `{}`", tcx.def_path_str(key.0) } } query is_impossible_method(key: (DefId, DefId)) -> bool { desc { |tcx| "checking if `{}` is impossible to call within `{}`", tcx.def_path_str(key.1), tcx.def_path_str(key.0), } } query method_autoderef_steps( goal: CanonicalTyGoal<'tcx> ) -> MethodAutoderefStepsResult<'tcx> { desc { "computing autoderef types for `{}`", goal.value.value } remap_env_constness } query supported_target_features(_: CrateNum) -> FxHashMap> { arena_cache eval_always desc { "looking up supported target features" } } /// Get an estimate of the size of an InstanceDef based on its MIR for CGU partitioning. query instance_def_size_estimate(def: ty::InstanceDef<'tcx>) -> usize { desc { |tcx| "estimating size for `{}`", tcx.def_path_str(def.def_id()) } } query features_query(_: ()) -> &'tcx rustc_feature::Features { feedable desc { "looking up enabled feature gates" } } /// Attempt to resolve the given `DefId` to an `Instance`, for the /// given generics args (`SubstsRef`), returning one of: /// * `Ok(Some(instance))` on success /// * `Ok(None)` when the `SubstsRef` are still too generic, /// and therefore don't allow finding the final `Instance` /// * `Err(ErrorGuaranteed)` when the `Instance` resolution process /// couldn't complete due to errors elsewhere - this is distinct /// from `Ok(None)` to avoid misleading diagnostics when an error /// has already been/will be emitted, for the original cause query resolve_instance( key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)> ) -> Result>, ErrorGuaranteed> { desc { "resolving instance `{}`", ty::Instance::new(key.value.0, key.value.1) } remap_env_constness } query resolve_instance_of_const_arg( key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)> ) -> Result>, ErrorGuaranteed> { desc { "resolving instance of the const argument `{}`", ty::Instance::new(key.value.0.to_def_id(), key.value.2), } remap_env_constness } query reveal_opaque_types_in_bounds(key: &'tcx ty::List>) -> &'tcx ty::List> { desc { "revealing opaque types in `{:?}`", key } } query limits(key: ()) -> Limits { desc { "looking up limits" } } /// Performs an HIR-based well-formed check on the item with the given `HirId`. If /// we get an `Unimplemented` error that matches the provided `Predicate`, return /// the cause of the newly created obligation. /// /// This is only used by error-reporting code to get a better cause (in particular, a better /// span) for an *existing* error. Therefore, it is best-effort, and may never handle /// all of the cases that the normal `ty::Ty`-based wfcheck does. This is fine, /// because the `ty::Ty`-based wfcheck is always run. query diagnostic_hir_wf_check(key: (ty::Predicate<'tcx>, traits::WellFormedLoc)) -> Option> { arena_cache eval_always no_hash desc { "performing HIR wf-checking for predicate `{:?}` at item `{:?}`", key.0, key.1 } } /// The list of backend features computed from CLI flags (`-Ctarget-cpu`, `-Ctarget-feature`, /// `--target` and similar). query global_backend_features(_: ()) -> Vec { arena_cache eval_always desc { "computing the backend features for CLI flags" } } query generator_diagnostic_data(key: DefId) -> Option> { arena_cache desc { |tcx| "looking up generator diagnostic data of `{}`", tcx.def_path_str(key) } separate_provide_extern } query permits_uninit_init(key: TyAndLayout<'tcx>) -> bool { desc { "checking to see if `{}` permits being left uninit", key.ty } } query permits_zero_init(key: TyAndLayout<'tcx>) -> bool { desc { "checking to see if `{}` permits being left zeroed", key.ty } } query compare_impl_const( key: (LocalDefId, DefId) ) -> Result<(), ErrorGuaranteed> { desc { |tcx| "checking assoc const `{}` has the same type as trait item", tcx.def_path_str(key.0.to_def_id()) } } query deduced_param_attrs(def_id: DefId) -> &'tcx [ty::DeducedParamAttrs] { desc { |tcx| "deducing parameter attributes for {}", tcx.def_path_str(def_id) } separate_provide_extern } }