//! Trait Resolution. See the [rustc dev guide] for more information on how this works. //! //! [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html pub mod query; pub mod select; pub mod solve; pub mod specialization_graph; mod structural_impls; pub mod util; use crate::infer::canonical::Canonical; use crate::mir::ConstraintCategory; use crate::ty::abstract_const::NotConstEvaluatable; use crate::ty::GenericArgsRef; use crate::ty::{self, AdtKind, Ty, TyCtxt}; use rustc_data_structures::sync::Lrc; use rustc_errors::{Applicability, Diagnostic}; use rustc_hir as hir; use rustc_hir::def_id::DefId; use rustc_span::def_id::{LocalDefId, CRATE_DEF_ID}; use rustc_span::symbol::Symbol; use rustc_span::{Span, DUMMY_SP}; use smallvec::SmallVec; use std::borrow::Cow; use std::hash::{Hash, Hasher}; pub use self::select::{EvaluationCache, EvaluationResult, OverflowError, SelectionCache}; pub use self::ObligationCauseCode::*; /// Depending on the stage of compilation, we want projection to be /// more or less conservative. #[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, HashStable, Encodable, Decodable)] pub enum Reveal { /// At type-checking time, we refuse to project any associated /// type that is marked `default`. Non-`default` ("final") types /// are always projected. This is necessary in general for /// soundness of specialization. However, we *could* allow /// projections in fully-monomorphic cases. We choose not to, /// because we prefer for `default type` to force the type /// definition to be treated abstractly by any consumers of the /// impl. Concretely, that means that the following example will /// fail to compile: /// /// ```compile_fail,E0308 /// #![feature(specialization)] /// trait Assoc { /// type Output; /// } /// /// impl Assoc for T { /// default type Output = bool; /// } /// /// fn main() { /// let x: <() as Assoc>::Output = true; /// } /// ``` /// /// We also do not reveal the hidden type of opaque types during /// type-checking. UserFacing, /// At codegen time, all monomorphic projections will succeed. /// Also, `impl Trait` is normalized to the concrete type, /// which has to be already collected by type-checking. /// /// NOTE: as `impl Trait`'s concrete type should *never* /// be observable directly by the user, `Reveal::All` /// should not be used by checks which may expose /// type equality or type contents to the user. /// There are some exceptions, e.g., around auto traits and /// transmute-checking, which expose some details, but /// not the whole concrete type of the `impl Trait`. All, } /// The reason why we incurred this obligation; used for error reporting. /// /// Non-misc `ObligationCauseCode`s are stored on the heap. This gives the /// best trade-off between keeping the type small (which makes copies cheaper) /// while not doing too many heap allocations. /// /// We do not want to intern this as there are a lot of obligation causes which /// only live for a short period of time. #[derive(Clone, Debug, PartialEq, Eq, Lift, HashStable, TyEncodable, TyDecodable)] #[derive(TypeVisitable, TypeFoldable)] pub struct ObligationCause<'tcx> { pub span: Span, /// The ID of the fn body that triggered this obligation. This is /// used for region obligations to determine the precise /// environment in which the region obligation should be evaluated /// (in particular, closures can add new assumptions). See the /// field `region_obligations` of the `FulfillmentContext` for more /// information. pub body_id: LocalDefId, code: InternedObligationCauseCode<'tcx>, } // This custom hash function speeds up hashing for `Obligation` deduplication // greatly by skipping the `code` field, which can be large and complex. That // shouldn't affect hash quality much since there are several other fields in // `Obligation` which should be unique enough, especially the predicate itself // which is hashed as an interned pointer. See #90996. impl Hash for ObligationCause<'_> { fn hash(&self, state: &mut H) { self.body_id.hash(state); self.span.hash(state); } } impl<'tcx> ObligationCause<'tcx> { #[inline] pub fn new( span: Span, body_id: LocalDefId, code: ObligationCauseCode<'tcx>, ) -> ObligationCause<'tcx> { ObligationCause { span, body_id, code: code.into() } } pub fn misc(span: Span, body_id: LocalDefId) -> ObligationCause<'tcx> { ObligationCause::new(span, body_id, MiscObligation) } #[inline(always)] pub fn dummy() -> ObligationCause<'tcx> { ObligationCause::dummy_with_span(DUMMY_SP) } #[inline(always)] pub fn dummy_with_span(span: Span) -> ObligationCause<'tcx> { ObligationCause { span, body_id: CRATE_DEF_ID, code: Default::default() } } pub fn span(&self) -> Span { match *self.code() { ObligationCauseCode::MatchExpressionArm(box MatchExpressionArmCause { arm_span, .. }) => arm_span, _ => self.span, } } #[inline] pub fn code(&self) -> &ObligationCauseCode<'tcx> { &self.code } pub fn map_code( &mut self, f: impl FnOnce(InternedObligationCauseCode<'tcx>) -> ObligationCauseCode<'tcx>, ) { self.code = f(std::mem::take(&mut self.code)).into(); } pub fn derived_cause( mut self, parent_trait_pred: ty::PolyTraitPredicate<'tcx>, variant: impl FnOnce(DerivedObligationCause<'tcx>) -> ObligationCauseCode<'tcx>, ) -> ObligationCause<'tcx> { /*! * Creates a cause for obligations that are derived from * `obligation` by a recursive search (e.g., for a builtin * bound, or eventually a `auto trait Foo`). If `obligation` * is itself a derived obligation, this is just a clone, but * otherwise we create a "derived obligation" cause so as to * keep track of the original root obligation for error * reporting. */ // NOTE(flaper87): As of now, it keeps track of the whole error // chain. Ideally, we should have a way to configure this either // by using -Z verbose or just a CLI argument. self.code = variant(DerivedObligationCause { parent_trait_pred, parent_code: self.code }).into(); self } pub fn to_constraint_category(&self) -> ConstraintCategory<'tcx> { match self.code() { MatchImpl(cause, _) => cause.to_constraint_category(), AscribeUserTypeProvePredicate(predicate_span) => { ConstraintCategory::Predicate(*predicate_span) } _ => ConstraintCategory::BoringNoLocation, } } } #[derive(Clone, Debug, PartialEq, Eq, Lift, HashStable, TyEncodable, TyDecodable)] #[derive(TypeVisitable, TypeFoldable)] pub struct UnifyReceiverContext<'tcx> { pub assoc_item: ty::AssocItem, pub param_env: ty::ParamEnv<'tcx>, pub args: GenericArgsRef<'tcx>, } #[derive(Clone, PartialEq, Eq, Lift, Default, HashStable)] #[derive(TypeVisitable, TypeFoldable, TyEncodable, TyDecodable)] pub struct InternedObligationCauseCode<'tcx> { /// `None` for `ObligationCauseCode::MiscObligation` (a common case, occurs ~60% of /// the time). `Some` otherwise. code: Option>>, } impl<'tcx> std::fmt::Debug for InternedObligationCauseCode<'tcx> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { let cause: &ObligationCauseCode<'_> = self; cause.fmt(f) } } impl<'tcx> ObligationCauseCode<'tcx> { #[inline(always)] fn into(self) -> InternedObligationCauseCode<'tcx> { InternedObligationCauseCode { code: if let ObligationCauseCode::MiscObligation = self { None } else { Some(Lrc::new(self)) }, } } } impl<'tcx> std::ops::Deref for InternedObligationCauseCode<'tcx> { type Target = ObligationCauseCode<'tcx>; fn deref(&self) -> &Self::Target { self.code.as_deref().unwrap_or(&ObligationCauseCode::MiscObligation) } } #[derive(Clone, Debug, PartialEq, Eq, Lift, HashStable, TyEncodable, TyDecodable)] #[derive(TypeVisitable, TypeFoldable)] pub enum ObligationCauseCode<'tcx> { /// Not well classified or should be obvious from the span. MiscObligation, /// A slice or array is WF only if `T: Sized`. SliceOrArrayElem, /// A tuple is WF only if its middle elements are `Sized`. TupleElem, /// This is the trait reference from the given projection. ProjectionWf(ty::AliasTy<'tcx>), /// Must satisfy all of the where-clause predicates of the /// given item. ItemObligation(DefId), /// Like `ItemObligation`, but carries the span of the /// predicate when it can be identified. BindingObligation(DefId, Span), /// Like `ItemObligation`, but carries the `HirId` of the /// expression that caused the obligation, and the `usize` /// indicates exactly which predicate it is in the list of /// instantiated predicates. ExprItemObligation(DefId, rustc_hir::HirId, usize), /// Combines `ExprItemObligation` and `BindingObligation`. ExprBindingObligation(DefId, Span, rustc_hir::HirId, usize), /// A type like `&'a T` is WF only if `T: 'a`. ReferenceOutlivesReferent(Ty<'tcx>), /// A type like `Box + 'b>` is WF only if `'b: 'a`. ObjectTypeBound(Ty<'tcx>, ty::Region<'tcx>), /// Obligation incurred due to a coercion. Coercion { source: Ty<'tcx>, target: Ty<'tcx>, }, /// Various cases where expressions must be `Sized` / `Copy` / etc. /// `L = X` implies that `L` is `Sized`. AssignmentLhsSized, /// `(x1, .., xn)` must be `Sized`. TupleInitializerSized, /// `S { ... }` must be `Sized`. StructInitializerSized, /// Type of each variable must be `Sized`. VariableType(hir::HirId), /// Argument type must be `Sized`. SizedArgumentType(Option), /// Return type must be `Sized`. SizedReturnType, /// Yield type must be `Sized`. SizedYieldType, /// Inline asm operand type must be `Sized`. InlineAsmSized, /// `[expr; N]` requires `type_of(expr): Copy`. RepeatElementCopy { /// If element is a `const fn` we display a help message suggesting to move the /// function call to a new `const` item while saying that `T` doesn't implement `Copy`. is_const_fn: bool, }, /// Types of fields (other than the last, except for packed structs) in a struct must be sized. FieldSized { adt_kind: AdtKind, span: Span, last: bool, }, /// Constant expressions must be sized. ConstSized, /// `static` items must have `Sync` type. SharedStatic, BuiltinDerivedObligation(DerivedObligationCause<'tcx>), ImplDerivedObligation(Box>), DerivedObligation(DerivedObligationCause<'tcx>), FunctionArgumentObligation { /// The node of the relevant argument in the function call. arg_hir_id: hir::HirId, /// The node of the function call. call_hir_id: hir::HirId, /// The obligation introduced by this argument. parent_code: InternedObligationCauseCode<'tcx>, }, /// Error derived when matching traits/impls; see ObligationCause for more details CompareImplItemObligation { impl_item_def_id: LocalDefId, trait_item_def_id: DefId, kind: ty::AssocKind, }, /// Checking that the bounds of a trait's associated type hold for a given impl CheckAssociatedTypeBounds { impl_item_def_id: LocalDefId, trait_item_def_id: DefId, }, /// Checking that this expression can be assigned to its target. ExprAssignable, /// Computing common supertype in the arms of a match expression MatchExpressionArm(Box>), /// Type error arising from type checking a pattern against an expected type. Pattern { /// The span of the scrutinee or type expression which caused the `root_ty` type. span: Option, /// The root expected type induced by a scrutinee or type expression. root_ty: Ty<'tcx>, /// Whether the `Span` came from an expression or a type expression. origin_expr: bool, }, /// Constants in patterns must have `Structural` type. ConstPatternStructural, /// Computing common supertype in an if expression IfExpression(Box>), /// Computing common supertype of an if expression with no else counter-part IfExpressionWithNoElse, /// `main` has wrong type MainFunctionType, /// `start` has wrong type StartFunctionType, /// Intrinsic has wrong type IntrinsicType, /// A let else block does not diverge LetElse, /// Method receiver MethodReceiver, UnifyReceiver(Box>), /// `return` with no expression ReturnNoExpression, /// `return` with an expression ReturnValue(hir::HirId), /// Return type of this function ReturnType, /// Opaque return type of this function OpaqueReturnType(Option<(Ty<'tcx>, Span)>), /// Block implicit return BlockTailExpression(hir::HirId, hir::MatchSource), /// #[feature(trivial_bounds)] is not enabled TrivialBound, /// If `X` is the concrete type of an opaque type `impl Y`, then `X` must implement `Y` OpaqueType, AwaitableExpr(Option), ForLoopIterator, QuestionMark, /// Well-formed checking. If a `WellFormedLoc` is provided, /// then it will be used to perform HIR-based wf checking /// after an error occurs, in order to generate a more precise error span. /// This is purely for diagnostic purposes - it is always /// correct to use `MiscObligation` instead, or to specify /// `WellFormed(None)` WellFormed(Option), /// From `match_impl`. The cause for us having to match an impl, and the DefId we are matching against. MatchImpl(ObligationCause<'tcx>, DefId), BinOp { rhs_span: Option, is_lit: bool, output_ty: Option>, }, AscribeUserTypeProvePredicate(Span), RustCall, /// Obligations to prove that a `std::ops::Drop` impl is not stronger than /// the ADT it's being implemented for. DropImpl, /// Requirement for a `const N: Ty` to implement `Ty: ConstParamTy` ConstParam(Ty<'tcx>), /// Obligations emitted during the normalization of a weak type alias. TypeAlias(InternedObligationCauseCode<'tcx>, Span, DefId), } /// The 'location' at which we try to perform HIR-based wf checking. /// This information is used to obtain an `hir::Ty`, which /// we can walk in order to obtain precise spans for any /// 'nested' types (e.g. `Foo` in `Option`). #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash, HashStable, Encodable, Decodable)] #[derive(TypeVisitable, TypeFoldable)] pub enum WellFormedLoc { /// Use the type of the provided definition. Ty(LocalDefId), /// Use the type of the parameter of the provided function. /// We cannot use `hir::Param`, since the function may /// not have a body (e.g. a trait method definition) Param { /// The function to lookup the parameter in function: LocalDefId, /// The index of the parameter to use. /// Parameters are indexed from 0, with the return type /// being the last 'parameter' param_idx: u16, }, } #[derive(Clone, Debug, PartialEq, Eq, Lift, HashStable, TyEncodable, TyDecodable)] #[derive(TypeVisitable, TypeFoldable)] pub struct ImplDerivedObligationCause<'tcx> { pub derived: DerivedObligationCause<'tcx>, /// The `DefId` of the `impl` that gave rise to the `derived` obligation. /// If the `derived` obligation arose from a trait alias, which conceptually has a synthetic impl, /// then this will be the `DefId` of that trait alias. Care should therefore be taken to handle /// that exceptional case where appropriate. pub impl_or_alias_def_id: DefId, /// The index of the derived predicate in the parent impl's predicates. pub impl_def_predicate_index: Option, pub span: Span, } impl<'tcx> ObligationCauseCode<'tcx> { /// Returns the base obligation, ignoring derived obligations. pub fn peel_derives(&self) -> &Self { let mut base_cause = self; while let Some((parent_code, _)) = base_cause.parent() { base_cause = parent_code; } base_cause } pub fn parent(&self) -> Option<(&Self, Option>)> { match self { FunctionArgumentObligation { parent_code, .. } => Some((parent_code, None)), BuiltinDerivedObligation(derived) | DerivedObligation(derived) | ImplDerivedObligation(box ImplDerivedObligationCause { derived, .. }) => { Some((&derived.parent_code, Some(derived.parent_trait_pred))) } _ => None, } } pub fn peel_match_impls(&self) -> &Self { match self { MatchImpl(cause, _) => cause.code(), _ => self, } } } // `ObligationCauseCode` is used a lot. Make sure it doesn't unintentionally get bigger. #[cfg(all(target_arch = "x86_64", target_pointer_width = "64"))] static_assert_size!(ObligationCauseCode<'_>, 48); #[derive(Copy, Clone, Debug, PartialEq, Eq, Hash)] pub enum StatementAsExpression { CorrectType, NeedsBoxing, } impl<'tcx> ty::Lift<'tcx> for StatementAsExpression { type Lifted = StatementAsExpression; fn lift_to_tcx(self, _tcx: TyCtxt<'tcx>) -> Option { Some(self) } } #[derive(Clone, Debug, PartialEq, Eq, Lift, HashStable, TyEncodable, TyDecodable)] #[derive(TypeVisitable, TypeFoldable)] pub struct MatchExpressionArmCause<'tcx> { pub arm_block_id: Option, pub arm_ty: Ty<'tcx>, pub arm_span: Span, pub prior_arm_block_id: Option, pub prior_arm_ty: Ty<'tcx>, pub prior_arm_span: Span, pub scrut_span: Span, pub source: hir::MatchSource, pub prior_arms: Vec, pub opt_suggest_box_span: Option, } #[derive(Copy, Clone, Debug, PartialEq, Eq)] #[derive(Lift, TypeFoldable, TypeVisitable, HashStable, TyEncodable, TyDecodable)] pub struct IfExpressionCause<'tcx> { pub then_id: hir::HirId, pub else_id: hir::HirId, pub then_ty: Ty<'tcx>, pub else_ty: Ty<'tcx>, pub outer_span: Option, pub opt_suggest_box_span: Option, } #[derive(Clone, Debug, PartialEq, Eq, Lift, HashStable, TyEncodable, TyDecodable)] #[derive(TypeVisitable, TypeFoldable)] pub struct DerivedObligationCause<'tcx> { /// The trait predicate of the parent obligation that led to the /// current obligation. Note that only trait obligations lead to /// derived obligations, so we just store the trait predicate here /// directly. pub parent_trait_pred: ty::PolyTraitPredicate<'tcx>, /// The parent trait had this cause. pub parent_code: InternedObligationCauseCode<'tcx>, } #[derive(Clone, Debug, TypeVisitable, Lift)] pub enum SelectionError<'tcx> { /// The trait is not implemented. Unimplemented, /// After a closure impl has selected, its "outputs" were evaluated /// (which for closures includes the "input" type params) and they /// didn't resolve. See `confirm_poly_trait_refs` for more. OutputTypeParameterMismatch(Box>), /// The trait pointed by `DefId` is not object safe. TraitNotObjectSafe(DefId), /// A given constant couldn't be evaluated. NotConstEvaluatable(NotConstEvaluatable), /// Exceeded the recursion depth during type projection. Overflow(OverflowError), /// Signaling that an error has already been emitted, to avoid /// multiple errors being shown. ErrorReporting, /// Computing an opaque type's hidden type caused an error (e.g. a cycle error). /// We can thus not know whether the hidden type implements an auto trait, so /// we should not presume anything about it. OpaqueTypeAutoTraitLeakageUnknown(DefId), } #[derive(Clone, Debug, TypeVisitable, Lift)] pub struct SelectionOutputTypeParameterMismatch<'tcx> { pub found_trait_ref: ty::PolyTraitRef<'tcx>, pub expected_trait_ref: ty::PolyTraitRef<'tcx>, pub terr: ty::error::TypeError<'tcx>, } /// When performing resolution, it is typically the case that there /// can be one of three outcomes: /// /// - `Ok(Some(r))`: success occurred with result `r` /// - `Ok(None)`: could not definitely determine anything, usually due /// to inconclusive type inference. /// - `Err(e)`: error `e` occurred pub type SelectionResult<'tcx, T> = Result, SelectionError<'tcx>>; /// Given the successful resolution of an obligation, the `ImplSource` /// indicates where the impl comes from. /// /// For example, the obligation may be satisfied by a specific impl (case A), /// or it may be relative to some bound that is in scope (case B). /// /// ```ignore (illustrative) /// impl Clone for Option { ... } // Impl_1 /// impl Clone for Box { ... } // Impl_2 /// impl Clone for i32 { ... } // Impl_3 /// /// fn foo(concrete: Option>, param: T, mixed: Option) { /// // Case A: ImplSource points at a specific impl. Only possible when /// // type is concretely known. If the impl itself has bounded /// // type parameters, ImplSource will carry resolutions for those as well: /// concrete.clone(); // ImplSource(Impl_1, [ImplSource(Impl_2, [ImplSource(Impl_3)])]) /// /// // Case B: ImplSource must be provided by caller. This applies when /// // type is a type parameter. /// param.clone(); // ImplSource::Param /// /// // Case C: A mix of cases A and B. /// mixed.clone(); // ImplSource(Impl_1, [ImplSource::Param]) /// } /// ``` /// /// ### The type parameter `N` /// /// See explanation on `ImplSourceUserDefinedData`. #[derive(Clone, PartialEq, Eq, TyEncodable, TyDecodable, HashStable, Lift)] #[derive(TypeFoldable, TypeVisitable)] pub enum ImplSource<'tcx, N> { /// ImplSource identifying a particular impl. UserDefined(ImplSourceUserDefinedData<'tcx, N>), /// Successful resolution to an obligation provided by the caller /// for some type parameter. The `Vec` represents the /// obligations incurred from normalizing the where-clause (if /// any). Param(Vec), /// Successful resolution for a builtin impl. Builtin(BuiltinImplSource, Vec), } impl<'tcx, N> ImplSource<'tcx, N> { pub fn nested_obligations(self) -> Vec { match self { ImplSource::UserDefined(i) => i.nested, ImplSource::Param(n) | ImplSource::Builtin(_, n) => n, } } pub fn borrow_nested_obligations(&self) -> &[N] { match self { ImplSource::UserDefined(i) => &i.nested, ImplSource::Param(n) | ImplSource::Builtin(_, n) => &n, } } pub fn borrow_nested_obligations_mut(&mut self) -> &mut [N] { match self { ImplSource::UserDefined(i) => &mut i.nested, ImplSource::Param(n) | ImplSource::Builtin(_, n) => n, } } pub fn map(self, f: F) -> ImplSource<'tcx, M> where F: FnMut(N) -> M, { match self { ImplSource::UserDefined(i) => ImplSource::UserDefined(ImplSourceUserDefinedData { impl_def_id: i.impl_def_id, args: i.args, nested: i.nested.into_iter().map(f).collect(), }), ImplSource::Param(n) => ImplSource::Param(n.into_iter().map(f).collect()), ImplSource::Builtin(source, n) => { ImplSource::Builtin(source, n.into_iter().map(f).collect()) } } } } /// Identifies a particular impl in the source, along with a set of /// substitutions from the impl's type/lifetime parameters. The /// `nested` vector corresponds to the nested obligations attached to /// the impl's type parameters. /// /// The type parameter `N` indicates the type used for "nested /// obligations" that are required by the impl. During type-check, this /// is `Obligation`, as one might expect. During codegen, however, this /// is `()`, because codegen only requires a shallow resolution of an /// impl, and nested obligations are satisfied later. #[derive(Clone, PartialEq, Eq, TyEncodable, TyDecodable, HashStable, Lift)] #[derive(TypeFoldable, TypeVisitable)] pub struct ImplSourceUserDefinedData<'tcx, N> { pub impl_def_id: DefId, pub args: GenericArgsRef<'tcx>, pub nested: Vec, } #[derive(Copy, Clone, PartialEq, Eq, TyEncodable, TyDecodable, HashStable, Debug)] pub enum BuiltinImplSource { /// Some builtin impl we don't need to differentiate. This should be used /// unless more specific information is necessary. Misc, /// A builtin impl for trait objects. /// /// The vtable is formed by concatenating together the method lists of /// the base object trait and all supertraits, pointers to supertrait vtable will /// be provided when necessary; this is the start of `upcast_trait_ref`'s methods /// in that vtable. Object { vtable_base: usize }, /// The vtable is formed by concatenating together the method lists of /// the base object trait and all supertraits, pointers to supertrait vtable will /// be provided when necessary; this is the position of `upcast_trait_ref`'s vtable /// within that vtable. TraitUpcasting { vtable_vptr_slot: Option }, /// Unsizing a tuple like `(A, B, ..., X)` to `(A, B, ..., Y)` if `X` unsizes to `Y`. /// /// This needs to be a separate variant as it is still unstable and we need to emit /// a feature error when using it on stable. TupleUnsizing, } TrivialTypeTraversalAndLiftImpls! { BuiltinImplSource } #[derive(Clone, Debug, PartialEq, Eq, Hash, HashStable, PartialOrd, Ord)] pub enum ObjectSafetyViolation { /// `Self: Sized` declared on the trait. SizedSelf(SmallVec<[Span; 1]>), /// Supertrait reference references `Self` an in illegal location /// (e.g., `trait Foo : Bar`). SupertraitSelf(SmallVec<[Span; 1]>), // Supertrait has a non-lifetime `for` binder. SupertraitNonLifetimeBinder(SmallVec<[Span; 1]>), /// Method has something illegal. Method(Symbol, MethodViolationCode, Span), /// Associated const. AssocConst(Symbol, Span), /// GAT GAT(Symbol, Span), } impl ObjectSafetyViolation { pub fn error_msg(&self) -> Cow<'static, str> { match self { ObjectSafetyViolation::SizedSelf(_) => "it requires `Self: Sized`".into(), ObjectSafetyViolation::SupertraitSelf(ref spans) => { if spans.iter().any(|sp| *sp != DUMMY_SP) { "it uses `Self` as a type parameter".into() } else { "it cannot use `Self` as a type parameter in a supertrait or `where`-clause" .into() } } ObjectSafetyViolation::SupertraitNonLifetimeBinder(_) => { "where clause cannot reference non-lifetime `for<...>` variables".into() } ObjectSafetyViolation::Method(name, MethodViolationCode::StaticMethod(_), _) => { format!("associated function `{name}` has no `self` parameter").into() } ObjectSafetyViolation::Method( name, MethodViolationCode::ReferencesSelfInput(_), DUMMY_SP, ) => format!("method `{name}` references the `Self` type in its parameters").into(), ObjectSafetyViolation::Method(name, MethodViolationCode::ReferencesSelfInput(_), _) => { format!("method `{name}` references the `Self` type in this parameter").into() } ObjectSafetyViolation::Method(name, MethodViolationCode::ReferencesSelfOutput, _) => { format!("method `{name}` references the `Self` type in its return type").into() } ObjectSafetyViolation::Method( name, MethodViolationCode::ReferencesImplTraitInTrait(_), _, ) => { format!("method `{name}` references an `impl Trait` type in its return type").into() } ObjectSafetyViolation::Method(name, MethodViolationCode::AsyncFn, _) => { format!("method `{name}` is `async`").into() } ObjectSafetyViolation::Method( name, MethodViolationCode::WhereClauseReferencesSelf, _, ) => format!("method `{name}` references the `Self` type in its `where` clause").into(), ObjectSafetyViolation::Method(name, MethodViolationCode::Generic, _) => { format!("method `{name}` has generic type parameters").into() } ObjectSafetyViolation::Method( name, MethodViolationCode::UndispatchableReceiver(_), _, ) => format!("method `{name}`'s `self` parameter cannot be dispatched on").into(), ObjectSafetyViolation::AssocConst(name, DUMMY_SP) => { format!("it contains associated `const` `{name}`").into() } ObjectSafetyViolation::AssocConst(..) => "it contains this associated `const`".into(), ObjectSafetyViolation::GAT(name, _) => { format!("it contains the generic associated type `{name}`").into() } } } pub fn solution(&self, err: &mut Diagnostic) { match self { ObjectSafetyViolation::SizedSelf(_) | ObjectSafetyViolation::SupertraitSelf(_) | ObjectSafetyViolation::SupertraitNonLifetimeBinder(..) => {} ObjectSafetyViolation::Method( name, MethodViolationCode::StaticMethod(Some((add_self_sugg, make_sized_sugg))), _, ) => { err.span_suggestion( add_self_sugg.1, format!( "consider turning `{name}` into a method by giving it a `&self` argument" ), add_self_sugg.0.to_string(), Applicability::MaybeIncorrect, ); err.span_suggestion( make_sized_sugg.1, format!( "alternatively, consider constraining `{name}` so it does not apply to \ trait objects" ), make_sized_sugg.0.to_string(), Applicability::MaybeIncorrect, ); } ObjectSafetyViolation::Method( name, MethodViolationCode::UndispatchableReceiver(Some(span)), _, ) => { err.span_suggestion( *span, format!("consider changing method `{name}`'s `self` parameter to be `&self`"), "&Self", Applicability::MachineApplicable, ); } ObjectSafetyViolation::AssocConst(name, _) | ObjectSafetyViolation::GAT(name, _) | ObjectSafetyViolation::Method(name, ..) => { err.help(format!("consider moving `{name}` to another trait")); } } } pub fn spans(&self) -> SmallVec<[Span; 1]> { // When `span` comes from a separate crate, it'll be `DUMMY_SP`. Treat it as `None` so // diagnostics use a `note` instead of a `span_label`. match self { ObjectSafetyViolation::SupertraitSelf(spans) | ObjectSafetyViolation::SizedSelf(spans) | ObjectSafetyViolation::SupertraitNonLifetimeBinder(spans) => spans.clone(), ObjectSafetyViolation::AssocConst(_, span) | ObjectSafetyViolation::GAT(_, span) | ObjectSafetyViolation::Method(_, _, span) if *span != DUMMY_SP => { smallvec![*span] } _ => smallvec![], } } } /// Reasons a method might not be object-safe. #[derive(Clone, Debug, PartialEq, Eq, Hash, HashStable, PartialOrd, Ord)] pub enum MethodViolationCode { /// e.g., `fn foo()` StaticMethod(Option<(/* add &self */ (String, Span), /* add Self: Sized */ (String, Span))>), /// e.g., `fn foo(&self, x: Self)` ReferencesSelfInput(Option), /// e.g., `fn foo(&self) -> Self` ReferencesSelfOutput, /// e.g., `fn foo(&self) -> impl Sized` ReferencesImplTraitInTrait(Span), /// e.g., `async fn foo(&self)` AsyncFn, /// e.g., `fn foo(&self) where Self: Clone` WhereClauseReferencesSelf, /// e.g., `fn foo()` Generic, /// the method's receiver (`self` argument) can't be dispatched on UndispatchableReceiver(Option), } /// These are the error cases for `codegen_select_candidate`. #[derive(Copy, Clone, Debug, Hash, HashStable, Encodable, Decodable)] pub enum CodegenObligationError { /// Ambiguity can happen when monomorphizing during trans /// expands to some humongous type that never occurred /// statically -- this humongous type can then overflow, /// leading to an ambiguous result. So report this as an /// overflow bug, since I believe this is the only case /// where ambiguity can result. Ambiguity, /// This can trigger when we probe for the source of a `'static` lifetime requirement /// on a trait object: `impl Foo for dyn Trait {}` has an implicit `'static` bound. /// This can also trigger when we have a global bound that is not actually satisfied, /// but was included during typeck due to the trivial_bounds feature. Unimplemented, FulfillmentError, } #[derive(Debug, PartialEq, Eq, Clone, Copy, Hash, HashStable, TypeFoldable, TypeVisitable)] pub enum DefiningAnchor { /// `DefId` of the item. Bind(LocalDefId), /// When opaque types are not resolved, we `Bubble` up, meaning /// return the opaque/hidden type pair from query, for caller of query to handle it. Bubble, /// Used to catch type mismatch errors when handling opaque types. Error, }