//! Type context book-keeping. use crate::arena::Arena; use crate::dep_graph::{DepGraph, DepKindStruct}; use crate::hir::place::Place as HirPlace; use crate::infer::canonical::{Canonical, CanonicalVarInfo, CanonicalVarInfos}; use crate::lint::struct_lint_level; use crate::middle::codegen_fn_attrs::CodegenFnAttrs; use crate::middle::resolve_lifetime; use crate::middle::stability; use crate::mir::interpret::{self, Allocation, ConstAllocation}; use crate::mir::{ Body, BorrowCheckResult, Field, Local, Place, PlaceElem, ProjectionKind, Promoted, }; use crate::thir::Thir; use crate::traits; use crate::ty::query::{self, TyCtxtAt}; use crate::ty::{ self, AdtDef, AdtDefData, AdtKind, Binder, BindingMode, BoundVar, CanonicalPolyFnSig, ClosureSizeProfileData, Const, ConstS, ConstVid, DefIdTree, ExistentialPredicate, FloatTy, FloatVar, FloatVid, GenericParamDefKind, InferConst, InferTy, IntTy, IntVar, IntVid, List, ParamConst, ParamTy, PolyFnSig, Predicate, PredicateKind, PredicateS, ProjectionTy, Region, RegionKind, ReprOptions, TraitObjectVisitor, Ty, TyKind, TyS, TyVar, TyVid, TypeAndMut, UintTy, Visibility, }; use crate::ty::{GenericArg, GenericArgKind, InternalSubsts, SubstsRef, UserSubsts}; use rustc_ast as ast; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::intern::{Interned, WithStableHash}; use rustc_data_structures::memmap::Mmap; use rustc_data_structures::profiling::SelfProfilerRef; use rustc_data_structures::sharded::{IntoPointer, ShardedHashMap}; use rustc_data_structures::stable_hasher::{HashStable, StableHasher}; use rustc_data_structures::steal::Steal; use rustc_data_structures::sync::{self, Lock, Lrc, ReadGuard, RwLock, WorkerLocal}; use rustc_data_structures::unord::UnordSet; use rustc_data_structures::vec_map::VecMap; use rustc_errors::{ DecorateLint, DiagnosticBuilder, DiagnosticMessage, ErrorGuaranteed, MultiSpan, }; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{CrateNum, DefId, DefIdMap, LocalDefId, LOCAL_CRATE}; use rustc_hir::definitions::Definitions; use rustc_hir::hir_id::OwnerId; use rustc_hir::intravisit::Visitor; use rustc_hir::lang_items::LangItem; use rustc_hir::{ Constness, ExprKind, HirId, ImplItemKind, ItemKind, ItemLocalId, ItemLocalMap, ItemLocalSet, Node, TraitCandidate, TraitItemKind, }; use rustc_index::vec::{Idx, IndexVec}; use rustc_macros::HashStable; use rustc_middle::mir::FakeReadCause; use rustc_query_system::ich::StableHashingContext; use rustc_serialize::opaque::{FileEncodeResult, FileEncoder}; use rustc_session::config::{CrateType, OutputFilenames}; use rustc_session::cstore::CrateStoreDyn; use rustc_session::lint::Lint; use rustc_session::Limit; use rustc_session::Session; use rustc_span::def_id::{DefPathHash, StableCrateId}; use rustc_span::source_map::SourceMap; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{Span, DUMMY_SP}; use rustc_target::abi::{Layout, LayoutS, TargetDataLayout, VariantIdx}; use rustc_target::spec::abi; use rustc_type_ir::sty::TyKind::*; use rustc_type_ir::{DynKind, InternAs, InternIteratorElement, Interner, TypeFlags}; use std::any::Any; use std::borrow::Borrow; use std::cmp::Ordering; use std::collections::hash_map::{self, Entry}; use std::fmt; use std::hash::{Hash, Hasher}; use std::iter; use std::mem; use std::ops::{Bound, Deref}; use std::sync::Arc; use super::{ImplPolarity, ResolverOutputs, RvalueScopes}; pub trait OnDiskCache<'tcx>: rustc_data_structures::sync::Sync { /// Creates a new `OnDiskCache` instance from the serialized data in `data`. fn new(sess: &'tcx Session, data: Mmap, start_pos: usize) -> Self where Self: Sized; fn new_empty(source_map: &'tcx SourceMap) -> Self where Self: Sized; fn drop_serialized_data(&self, tcx: TyCtxt<'tcx>); fn serialize(&self, tcx: TyCtxt<'tcx>, encoder: FileEncoder) -> FileEncodeResult; } #[allow(rustc::usage_of_ty_tykind)] impl<'tcx> Interner for TyCtxt<'tcx> { type AdtDef = ty::AdtDef<'tcx>; type SubstsRef = ty::SubstsRef<'tcx>; type DefId = DefId; type Ty = Ty<'tcx>; type Const = ty::Const<'tcx>; type Region = Region<'tcx>; type TypeAndMut = TypeAndMut<'tcx>; type Mutability = hir::Mutability; type Movability = hir::Movability; type PolyFnSig = PolyFnSig<'tcx>; type ListBinderExistentialPredicate = &'tcx List>>; type BinderListTy = Binder<'tcx, &'tcx List>>; type ListTy = &'tcx List>; type ProjectionTy = ty::ProjectionTy<'tcx>; type ParamTy = ParamTy; type BoundTy = ty::BoundTy; type PlaceholderType = ty::PlaceholderType; type InferTy = InferTy; type DelaySpanBugEmitted = DelaySpanBugEmitted; type PredicateKind = ty::PredicateKind<'tcx>; type AllocId = crate::mir::interpret::AllocId; type EarlyBoundRegion = ty::EarlyBoundRegion; type BoundRegion = ty::BoundRegion; type FreeRegion = ty::FreeRegion; type RegionVid = ty::RegionVid; type PlaceholderRegion = ty::PlaceholderRegion; } /// A type that is not publicly constructable. This prevents people from making [`TyKind::Error`]s /// except through the error-reporting functions on a [`tcx`][TyCtxt]. #[derive(Copy, Clone, Debug, Eq, Hash, PartialEq, PartialOrd, Ord)] #[derive(TyEncodable, TyDecodable, HashStable)] pub struct DelaySpanBugEmitted { pub reported: ErrorGuaranteed, _priv: (), } type InternedSet<'tcx, T> = ShardedHashMap, ()>; pub struct CtxtInterners<'tcx> { /// The arena that types, regions, etc. are allocated from. arena: &'tcx WorkerLocal>, // Specifically use a speedy hash algorithm for these hash sets, since // they're accessed quite often. type_: InternedSet<'tcx, WithStableHash>>, substs: InternedSet<'tcx, InternalSubsts<'tcx>>, canonical_var_infos: InternedSet<'tcx, List>>, region: InternedSet<'tcx, RegionKind<'tcx>>, poly_existential_predicates: InternedSet<'tcx, List>>>, predicate: InternedSet<'tcx, PredicateS<'tcx>>, predicates: InternedSet<'tcx, List>>, projs: InternedSet<'tcx, List>, place_elems: InternedSet<'tcx, List>>, const_: InternedSet<'tcx, ConstS<'tcx>>, const_allocation: InternedSet<'tcx, Allocation>, bound_variable_kinds: InternedSet<'tcx, List>, layout: InternedSet<'tcx, LayoutS<'tcx>>, adt_def: InternedSet<'tcx, AdtDefData>, } impl<'tcx> CtxtInterners<'tcx> { fn new(arena: &'tcx WorkerLocal>) -> CtxtInterners<'tcx> { CtxtInterners { arena, type_: Default::default(), substs: Default::default(), region: Default::default(), poly_existential_predicates: Default::default(), canonical_var_infos: Default::default(), predicate: Default::default(), predicates: Default::default(), projs: Default::default(), place_elems: Default::default(), const_: Default::default(), const_allocation: Default::default(), bound_variable_kinds: Default::default(), layout: Default::default(), adt_def: Default::default(), } } /// Interns a type. #[allow(rustc::usage_of_ty_tykind)] #[inline(never)] fn intern_ty( &self, kind: TyKind<'tcx>, sess: &Session, definitions: &rustc_hir::definitions::Definitions, cstore: &CrateStoreDyn, source_span: &IndexVec, ) -> Ty<'tcx> { Ty(Interned::new_unchecked( self.type_ .intern(kind, |kind| { let flags = super::flags::FlagComputation::for_kind(&kind); // It's impossible to hash inference variables (and will ICE), so we don't need to try to cache them. // Without incremental, we rarely stable-hash types, so let's not do it proactively. let stable_hash = if flags.flags.intersects(TypeFlags::NEEDS_INFER) || sess.opts.incremental.is_none() { Fingerprint::ZERO } else { let mut hasher = StableHasher::new(); let mut hcx = StableHashingContext::ignore_spans( sess, definitions, cstore, source_span, ); kind.hash_stable(&mut hcx, &mut hasher); hasher.finish() }; let ty_struct = TyS { kind, flags: flags.flags, outer_exclusive_binder: flags.outer_exclusive_binder, }; InternedInSet( self.arena.alloc(WithStableHash { internee: ty_struct, stable_hash }), ) }) .0, )) } #[inline(never)] fn intern_predicate(&self, kind: Binder<'tcx, PredicateKind<'tcx>>) -> Predicate<'tcx> { Predicate(Interned::new_unchecked( self.predicate .intern(kind, |kind| { let flags = super::flags::FlagComputation::for_predicate(kind); let predicate_struct = PredicateS { kind, flags: flags.flags, outer_exclusive_binder: flags.outer_exclusive_binder, }; InternedInSet(self.arena.alloc(predicate_struct)) }) .0, )) } } pub struct CommonTypes<'tcx> { pub unit: Ty<'tcx>, pub bool: Ty<'tcx>, pub char: Ty<'tcx>, pub isize: Ty<'tcx>, pub i8: Ty<'tcx>, pub i16: Ty<'tcx>, pub i32: Ty<'tcx>, pub i64: Ty<'tcx>, pub i128: Ty<'tcx>, pub usize: Ty<'tcx>, pub u8: Ty<'tcx>, pub u16: Ty<'tcx>, pub u32: Ty<'tcx>, pub u64: Ty<'tcx>, pub u128: Ty<'tcx>, pub f32: Ty<'tcx>, pub f64: Ty<'tcx>, pub str_: Ty<'tcx>, pub never: Ty<'tcx>, pub self_param: Ty<'tcx>, /// Dummy type used for the `Self` of a `TraitRef` created for converting /// a trait object, and which gets removed in `ExistentialTraitRef`. /// This type must not appear anywhere in other converted types. pub trait_object_dummy_self: Ty<'tcx>, } pub struct CommonLifetimes<'tcx> { /// `ReStatic` pub re_static: Region<'tcx>, /// Erased region, used outside of type inference. pub re_erased: Region<'tcx>, } pub struct CommonConsts<'tcx> { pub unit: Const<'tcx>, } pub struct LocalTableInContext<'a, V> { hir_owner: OwnerId, data: &'a ItemLocalMap, } /// Validate that the given HirId (respectively its `local_id` part) can be /// safely used as a key in the maps of a TypeckResults. For that to be /// the case, the HirId must have the same `owner` as all the other IDs in /// this table (signified by `hir_owner`). Otherwise the HirId /// would be in a different frame of reference and using its `local_id` /// would result in lookup errors, or worse, in silently wrong data being /// stored/returned. #[inline] fn validate_hir_id_for_typeck_results(hir_owner: OwnerId, hir_id: hir::HirId) { if hir_id.owner != hir_owner { invalid_hir_id_for_typeck_results(hir_owner, hir_id); } } #[cold] #[inline(never)] fn invalid_hir_id_for_typeck_results(hir_owner: OwnerId, hir_id: hir::HirId) { ty::tls::with(|tcx| { bug!( "node {} with HirId::owner {:?} cannot be placed in TypeckResults with hir_owner {:?}", tcx.hir().node_to_string(hir_id), hir_id.owner, hir_owner ) }); } impl<'a, V> LocalTableInContext<'a, V> { pub fn contains_key(&self, id: hir::HirId) -> bool { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.contains_key(&id.local_id) } pub fn get(&self, id: hir::HirId) -> Option<&V> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.get(&id.local_id) } pub fn iter(&self) -> hash_map::Iter<'_, hir::ItemLocalId, V> { self.data.iter() } } impl<'a, V> ::std::ops::Index for LocalTableInContext<'a, V> { type Output = V; fn index(&self, key: hir::HirId) -> &V { self.get(key).expect("LocalTableInContext: key not found") } } pub struct LocalTableInContextMut<'a, V> { hir_owner: OwnerId, data: &'a mut ItemLocalMap, } impl<'a, V> LocalTableInContextMut<'a, V> { pub fn get_mut(&mut self, id: hir::HirId) -> Option<&mut V> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.get_mut(&id.local_id) } pub fn entry(&mut self, id: hir::HirId) -> Entry<'_, hir::ItemLocalId, V> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.entry(id.local_id) } pub fn insert(&mut self, id: hir::HirId, val: V) -> Option { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.insert(id.local_id, val) } pub fn remove(&mut self, id: hir::HirId) -> Option { validate_hir_id_for_typeck_results(self.hir_owner, id); self.data.remove(&id.local_id) } } /// Whenever a value may be live across a generator yield, the type of that value winds up in the /// `GeneratorInteriorTypeCause` struct. This struct adds additional information about such /// captured types that can be useful for diagnostics. In particular, it stores the span that /// caused a given type to be recorded, along with the scope that enclosed the value (which can /// be used to find the await that the value is live across). /// /// For example: /// /// ```ignore (pseudo-Rust) /// async move { /// let x: T = expr; /// foo.await /// ... /// } /// ``` /// /// Here, we would store the type `T`, the span of the value `x`, the "scope-span" for /// the scope that contains `x`, the expr `T` evaluated from, and the span of `foo.await`. #[derive(TyEncodable, TyDecodable, Clone, Debug, Eq, Hash, PartialEq, HashStable)] #[derive(TypeFoldable, TypeVisitable)] pub struct GeneratorInteriorTypeCause<'tcx> { /// Type of the captured binding. pub ty: Ty<'tcx>, /// Span of the binding that was captured. pub span: Span, /// Span of the scope of the captured binding. pub scope_span: Option, /// Span of `.await` or `yield` expression. pub yield_span: Span, /// Expr which the type evaluated from. pub expr: Option, } // This type holds diagnostic information on generators and async functions across crate boundaries // and is used to provide better error messages #[derive(TyEncodable, TyDecodable, Clone, Debug, HashStable)] pub struct GeneratorDiagnosticData<'tcx> { pub generator_interior_types: ty::Binder<'tcx, Vec>>, pub hir_owner: DefId, pub nodes_types: ItemLocalMap>, pub adjustments: ItemLocalMap>>, } #[derive(TyEncodable, TyDecodable, Debug, HashStable)] pub struct TypeckResults<'tcx> { /// The `HirId::owner` all `ItemLocalId`s in this table are relative to. pub hir_owner: OwnerId, /// Resolved definitions for `::X` associated paths and /// method calls, including those of overloaded operators. type_dependent_defs: ItemLocalMap>, /// Resolved field indices for field accesses in expressions (`S { field }`, `obj.field`) /// or patterns (`S { field }`). The index is often useful by itself, but to learn more /// about the field you also need definition of the variant to which the field /// belongs, but it may not exist if it's a tuple field (`tuple.0`). field_indices: ItemLocalMap, /// Stores the types for various nodes in the AST. Note that this table /// is not guaranteed to be populated outside inference. See /// typeck::check::fn_ctxt for details. node_types: ItemLocalMap>, /// Stores the type parameters which were substituted to obtain the type /// of this node. This only applies to nodes that refer to entities /// parameterized by type parameters, such as generic fns, types, or /// other items. node_substs: ItemLocalMap>, /// This will either store the canonicalized types provided by the user /// or the substitutions that the user explicitly gave (if any) attached /// to `id`. These will not include any inferred values. The canonical form /// is used to capture things like `_` or other unspecified values. /// /// For example, if the user wrote `foo.collect::>()`, then the /// canonical substitutions would include only `for { Vec }`. /// /// See also `AscribeUserType` statement in MIR. user_provided_types: ItemLocalMap>, /// Stores the canonicalized types provided by the user. See also /// `AscribeUserType` statement in MIR. pub user_provided_sigs: DefIdMap>, adjustments: ItemLocalMap>>, /// Stores the actual binding mode for all instances of hir::BindingAnnotation. pat_binding_modes: ItemLocalMap, /// Stores the types which were implicitly dereferenced in pattern binding modes /// for later usage in THIR lowering. For example, /// /// ``` /// match &&Some(5i32) { /// Some(n) => {}, /// _ => {}, /// } /// ``` /// leads to a `vec![&&Option, &Option]`. Empty vectors are not stored. /// /// See: /// pat_adjustments: ItemLocalMap>>, /// Records the reasons that we picked the kind of each closure; /// not all closures are present in the map. closure_kind_origins: ItemLocalMap<(Span, HirPlace<'tcx>)>, /// For each fn, records the "liberated" types of its arguments /// and return type. Liberated means that all bound regions /// (including late-bound regions) are replaced with free /// equivalents. This table is not used in codegen (since regions /// are erased there) and hence is not serialized to metadata. /// /// This table also contains the "revealed" values for any `impl Trait` /// that appear in the signature and whose values are being inferred /// by this function. /// /// # Example /// /// ```rust /// # use std::fmt::Debug; /// fn foo(x: &u32) -> impl Debug { *x } /// ``` /// /// The function signature here would be: /// /// ```ignore (illustrative) /// for<'a> fn(&'a u32) -> Foo /// ``` /// /// where `Foo` is an opaque type created for this function. /// /// /// The *liberated* form of this would be /// /// ```ignore (illustrative) /// fn(&'a u32) -> u32 /// ``` /// /// Note that `'a` is not bound (it would be an `ReFree`) and /// that the `Foo` opaque type is replaced by its hidden type. liberated_fn_sigs: ItemLocalMap>, /// For each FRU expression, record the normalized types of the fields /// of the struct - this is needed because it is non-trivial to /// normalize while preserving regions. This table is used only in /// MIR construction and hence is not serialized to metadata. fru_field_types: ItemLocalMap>>, /// For every coercion cast we add the HIR node ID of the cast /// expression to this set. coercion_casts: ItemLocalSet, /// Set of trait imports actually used in the method resolution. /// This is used for warning unused imports. During type /// checking, this `Lrc` should not be cloned: it must have a ref-count /// of 1 so that we can insert things into the set mutably. pub used_trait_imports: Lrc>, /// If any errors occurred while type-checking this body, /// this field will be set to `Some(ErrorGuaranteed)`. pub tainted_by_errors: Option, /// All the opaque types that have hidden types set /// by this function. We also store the /// type here, so that mir-borrowck can use it as a hint for figuring out hidden types, /// even if they are only set in dead code (which doesn't show up in MIR). pub concrete_opaque_types: VecMap>, /// Tracks the minimum captures required for a closure; /// see `MinCaptureInformationMap` for more details. pub closure_min_captures: ty::MinCaptureInformationMap<'tcx>, /// Tracks the fake reads required for a closure and the reason for the fake read. /// When performing pattern matching for closures, there are times we don't end up /// reading places that are mentioned in a closure (because of _ patterns). However, /// to ensure the places are initialized, we introduce fake reads. /// Consider these two examples: /// ``` (discriminant matching with only wildcard arm) /// let x: u8; /// let c = || match x { _ => () }; /// ``` /// In this example, we don't need to actually read/borrow `x` in `c`, and so we don't /// want to capture it. However, we do still want an error here, because `x` should have /// to be initialized at the point where c is created. Therefore, we add a "fake read" /// instead. /// ``` (destructured assignments) /// let c = || { /// let (t1, t2) = t; /// } /// ``` /// In the second example, we capture the disjoint fields of `t` (`t.0` & `t.1`), but /// we never capture `t`. This becomes an issue when we build MIR as we require /// information on `t` in order to create place `t.0` and `t.1`. We can solve this /// issue by fake reading `t`. pub closure_fake_reads: FxHashMap, FakeReadCause, hir::HirId)>>, /// Tracks the rvalue scoping rules which defines finer scoping for rvalue expressions /// by applying extended parameter rules. /// Details may be find in `rustc_hir_analysis::check::rvalue_scopes`. pub rvalue_scopes: RvalueScopes, /// Stores the type, expression, span and optional scope span of all types /// that are live across the yield of this generator (if a generator). pub generator_interior_types: ty::Binder<'tcx, Vec>>, /// We sometimes treat byte string literals (which are of type `&[u8; N]`) /// as `&[u8]`, depending on the pattern in which they are used. /// This hashset records all instances where we behave /// like this to allow `const_to_pat` to reliably handle this situation. pub treat_byte_string_as_slice: ItemLocalSet, /// Contains the data for evaluating the effect of feature `capture_disjoint_fields` /// on closure size. pub closure_size_eval: FxHashMap>, } impl<'tcx> TypeckResults<'tcx> { pub fn new(hir_owner: OwnerId) -> TypeckResults<'tcx> { TypeckResults { hir_owner, type_dependent_defs: Default::default(), field_indices: Default::default(), user_provided_types: Default::default(), user_provided_sigs: Default::default(), node_types: Default::default(), node_substs: Default::default(), adjustments: Default::default(), pat_binding_modes: Default::default(), pat_adjustments: Default::default(), closure_kind_origins: Default::default(), liberated_fn_sigs: Default::default(), fru_field_types: Default::default(), coercion_casts: Default::default(), used_trait_imports: Lrc::new(Default::default()), tainted_by_errors: None, concrete_opaque_types: Default::default(), closure_min_captures: Default::default(), closure_fake_reads: Default::default(), rvalue_scopes: Default::default(), generator_interior_types: ty::Binder::dummy(Default::default()), treat_byte_string_as_slice: Default::default(), closure_size_eval: Default::default(), } } /// Returns the final resolution of a `QPath` in an `Expr` or `Pat` node. pub fn qpath_res(&self, qpath: &hir::QPath<'_>, id: hir::HirId) -> Res { match *qpath { hir::QPath::Resolved(_, ref path) => path.res, hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => self .type_dependent_def(id) .map_or(Res::Err, |(kind, def_id)| Res::Def(kind, def_id)), } } pub fn type_dependent_defs( &self, ) -> LocalTableInContext<'_, Result<(DefKind, DefId), ErrorGuaranteed>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.type_dependent_defs } } pub fn type_dependent_def(&self, id: HirId) -> Option<(DefKind, DefId)> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.type_dependent_defs.get(&id.local_id).cloned().and_then(|r| r.ok()) } pub fn type_dependent_def_id(&self, id: HirId) -> Option { self.type_dependent_def(id).map(|(_, def_id)| def_id) } pub fn type_dependent_defs_mut( &mut self, ) -> LocalTableInContextMut<'_, Result<(DefKind, DefId), ErrorGuaranteed>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.type_dependent_defs } } pub fn field_indices(&self) -> LocalTableInContext<'_, usize> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.field_indices } } pub fn field_indices_mut(&mut self) -> LocalTableInContextMut<'_, usize> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.field_indices } } pub fn user_provided_types(&self) -> LocalTableInContext<'_, CanonicalUserType<'tcx>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.user_provided_types } } pub fn user_provided_types_mut( &mut self, ) -> LocalTableInContextMut<'_, CanonicalUserType<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.user_provided_types } } pub fn node_types(&self) -> LocalTableInContext<'_, Ty<'tcx>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.node_types } } pub fn node_types_mut(&mut self) -> LocalTableInContextMut<'_, Ty<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.node_types } } pub fn get_generator_diagnostic_data(&self) -> GeneratorDiagnosticData<'tcx> { let generator_interior_type = self.generator_interior_types.map_bound_ref(|vec| { vec.iter() .map(|item| { GeneratorInteriorTypeCause { ty: item.ty, span: item.span, scope_span: item.scope_span, yield_span: item.yield_span, expr: None, //FIXME: Passing expression over crate boundaries is impossible at the moment } }) .collect::>() }); GeneratorDiagnosticData { generator_interior_types: generator_interior_type, hir_owner: self.hir_owner.to_def_id(), nodes_types: self.node_types.clone(), adjustments: self.adjustments.clone(), } } pub fn node_type(&self, id: hir::HirId) -> Ty<'tcx> { self.node_type_opt(id).unwrap_or_else(|| { bug!("node_type: no type for node `{}`", tls::with(|tcx| tcx.hir().node_to_string(id))) }) } pub fn node_type_opt(&self, id: hir::HirId) -> Option> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.node_types.get(&id.local_id).cloned() } pub fn node_substs_mut(&mut self) -> LocalTableInContextMut<'_, SubstsRef<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.node_substs } } pub fn node_substs(&self, id: hir::HirId) -> SubstsRef<'tcx> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.node_substs.get(&id.local_id).cloned().unwrap_or_else(|| InternalSubsts::empty()) } pub fn node_substs_opt(&self, id: hir::HirId) -> Option> { validate_hir_id_for_typeck_results(self.hir_owner, id); self.node_substs.get(&id.local_id).cloned() } // Returns the type of a pattern as a monotype. Like @expr_ty, this function // doesn't provide type parameter substitutions. pub fn pat_ty(&self, pat: &hir::Pat<'_>) -> Ty<'tcx> { self.node_type(pat.hir_id) } // Returns the type of an expression as a monotype. // // NB (1): This is the PRE-ADJUSTMENT TYPE for the expression. That is, in // some cases, we insert `Adjustment` annotations such as auto-deref or // auto-ref. The type returned by this function does not consider such // adjustments. See `expr_ty_adjusted()` instead. // // NB (2): This type doesn't provide type parameter substitutions; e.g., if you // ask for the type of "id" in "id(3)", it will return "fn(&isize) -> isize" // instead of "fn(ty) -> T with T = isize". pub fn expr_ty(&self, expr: &hir::Expr<'_>) -> Ty<'tcx> { self.node_type(expr.hir_id) } pub fn expr_ty_opt(&self, expr: &hir::Expr<'_>) -> Option> { self.node_type_opt(expr.hir_id) } pub fn adjustments(&self) -> LocalTableInContext<'_, Vec>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.adjustments } } pub fn adjustments_mut( &mut self, ) -> LocalTableInContextMut<'_, Vec>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.adjustments } } pub fn expr_adjustments(&self, expr: &hir::Expr<'_>) -> &[ty::adjustment::Adjustment<'tcx>] { validate_hir_id_for_typeck_results(self.hir_owner, expr.hir_id); self.adjustments.get(&expr.hir_id.local_id).map_or(&[], |a| &a[..]) } /// Returns the type of `expr`, considering any `Adjustment` /// entry recorded for that expression. pub fn expr_ty_adjusted(&self, expr: &hir::Expr<'_>) -> Ty<'tcx> { self.expr_adjustments(expr).last().map_or_else(|| self.expr_ty(expr), |adj| adj.target) } pub fn expr_ty_adjusted_opt(&self, expr: &hir::Expr<'_>) -> Option> { self.expr_adjustments(expr).last().map(|adj| adj.target).or_else(|| self.expr_ty_opt(expr)) } pub fn is_method_call(&self, expr: &hir::Expr<'_>) -> bool { // Only paths and method calls/overloaded operators have // entries in type_dependent_defs, ignore the former here. if let hir::ExprKind::Path(_) = expr.kind { return false; } matches!(self.type_dependent_defs().get(expr.hir_id), Some(Ok((DefKind::AssocFn, _)))) } pub fn extract_binding_mode(&self, s: &Session, id: HirId, sp: Span) -> Option { self.pat_binding_modes().get(id).copied().or_else(|| { s.delay_span_bug(sp, "missing binding mode"); None }) } pub fn pat_binding_modes(&self) -> LocalTableInContext<'_, BindingMode> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.pat_binding_modes } } pub fn pat_binding_modes_mut(&mut self) -> LocalTableInContextMut<'_, BindingMode> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.pat_binding_modes } } pub fn pat_adjustments(&self) -> LocalTableInContext<'_, Vec>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.pat_adjustments } } pub fn pat_adjustments_mut(&mut self) -> LocalTableInContextMut<'_, Vec>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.pat_adjustments } } /// For a given closure, returns the iterator of `ty::CapturedPlace`s that are captured /// by the closure. pub fn closure_min_captures_flattened( &self, closure_def_id: LocalDefId, ) -> impl Iterator> { self.closure_min_captures .get(&closure_def_id) .map(|closure_min_captures| closure_min_captures.values().flat_map(|v| v.iter())) .into_iter() .flatten() } pub fn closure_kind_origins(&self) -> LocalTableInContext<'_, (Span, HirPlace<'tcx>)> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.closure_kind_origins } } pub fn closure_kind_origins_mut( &mut self, ) -> LocalTableInContextMut<'_, (Span, HirPlace<'tcx>)> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.closure_kind_origins } } pub fn liberated_fn_sigs(&self) -> LocalTableInContext<'_, ty::FnSig<'tcx>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.liberated_fn_sigs } } pub fn liberated_fn_sigs_mut(&mut self) -> LocalTableInContextMut<'_, ty::FnSig<'tcx>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.liberated_fn_sigs } } pub fn fru_field_types(&self) -> LocalTableInContext<'_, Vec>> { LocalTableInContext { hir_owner: self.hir_owner, data: &self.fru_field_types } } pub fn fru_field_types_mut(&mut self) -> LocalTableInContextMut<'_, Vec>> { LocalTableInContextMut { hir_owner: self.hir_owner, data: &mut self.fru_field_types } } pub fn is_coercion_cast(&self, hir_id: hir::HirId) -> bool { validate_hir_id_for_typeck_results(self.hir_owner, hir_id); self.coercion_casts.contains(&hir_id.local_id) } pub fn set_coercion_cast(&mut self, id: ItemLocalId) { self.coercion_casts.insert(id); } pub fn coercion_casts(&self) -> &ItemLocalSet { &self.coercion_casts } } rustc_index::newtype_index! { pub struct UserTypeAnnotationIndex { derive [HashStable] DEBUG_FORMAT = "UserType({})", const START_INDEX = 0, } } /// Mapping of type annotation indices to canonical user type annotations. pub type CanonicalUserTypeAnnotations<'tcx> = IndexVec>; #[derive(Clone, Debug, TyEncodable, TyDecodable, HashStable, TypeFoldable, TypeVisitable, Lift)] pub struct CanonicalUserTypeAnnotation<'tcx> { pub user_ty: Box>, pub span: Span, pub inferred_ty: Ty<'tcx>, } /// Canonicalized user type annotation. pub type CanonicalUserType<'tcx> = Canonical<'tcx, UserType<'tcx>>; impl<'tcx> CanonicalUserType<'tcx> { /// Returns `true` if this represents a substitution of the form `[?0, ?1, ?2]`, /// i.e., each thing is mapped to a canonical variable with the same index. pub fn is_identity(&self) -> bool { match self.value { UserType::Ty(_) => false, UserType::TypeOf(_, user_substs) => { if user_substs.user_self_ty.is_some() { return false; } iter::zip(user_substs.substs, BoundVar::new(0)..).all(|(kind, cvar)| { match kind.unpack() { GenericArgKind::Type(ty) => match ty.kind() { ty::Bound(debruijn, b) => { // We only allow a `ty::INNERMOST` index in substitutions. assert_eq!(*debruijn, ty::INNERMOST); cvar == b.var } _ => false, }, GenericArgKind::Lifetime(r) => match *r { ty::ReLateBound(debruijn, br) => { // We only allow a `ty::INNERMOST` index in substitutions. assert_eq!(debruijn, ty::INNERMOST); cvar == br.var } _ => false, }, GenericArgKind::Const(ct) => match ct.kind() { ty::ConstKind::Bound(debruijn, b) => { // We only allow a `ty::INNERMOST` index in substitutions. assert_eq!(debruijn, ty::INNERMOST); cvar == b } _ => false, }, } }) } } } } /// A user-given type annotation attached to a constant. These arise /// from constants that are named via paths, like `Foo::::new` and /// so forth. #[derive(Copy, Clone, Debug, PartialEq, TyEncodable, TyDecodable)] #[derive(HashStable, TypeFoldable, TypeVisitable, Lift)] pub enum UserType<'tcx> { Ty(Ty<'tcx>), /// The canonical type is the result of `type_of(def_id)` with the /// given substitutions applied. TypeOf(DefId, UserSubsts<'tcx>), } impl<'tcx> CommonTypes<'tcx> { fn new( interners: &CtxtInterners<'tcx>, sess: &Session, definitions: &rustc_hir::definitions::Definitions, cstore: &CrateStoreDyn, source_span: &IndexVec, ) -> CommonTypes<'tcx> { let mk = |ty| interners.intern_ty(ty, sess, definitions, cstore, source_span); CommonTypes { unit: mk(Tuple(List::empty())), bool: mk(Bool), char: mk(Char), never: mk(Never), isize: mk(Int(ty::IntTy::Isize)), i8: mk(Int(ty::IntTy::I8)), i16: mk(Int(ty::IntTy::I16)), i32: mk(Int(ty::IntTy::I32)), i64: mk(Int(ty::IntTy::I64)), i128: mk(Int(ty::IntTy::I128)), usize: mk(Uint(ty::UintTy::Usize)), u8: mk(Uint(ty::UintTy::U8)), u16: mk(Uint(ty::UintTy::U16)), u32: mk(Uint(ty::UintTy::U32)), u64: mk(Uint(ty::UintTy::U64)), u128: mk(Uint(ty::UintTy::U128)), f32: mk(Float(ty::FloatTy::F32)), f64: mk(Float(ty::FloatTy::F64)), str_: mk(Str), self_param: mk(ty::Param(ty::ParamTy { index: 0, name: kw::SelfUpper })), trait_object_dummy_self: mk(Infer(ty::FreshTy(0))), } } } impl<'tcx> CommonLifetimes<'tcx> { fn new(interners: &CtxtInterners<'tcx>) -> CommonLifetimes<'tcx> { let mk = |r| { Region(Interned::new_unchecked( interners.region.intern(r, |r| InternedInSet(interners.arena.alloc(r))).0, )) }; CommonLifetimes { re_static: mk(ty::ReStatic), re_erased: mk(ty::ReErased) } } } impl<'tcx> CommonConsts<'tcx> { fn new(interners: &CtxtInterners<'tcx>, types: &CommonTypes<'tcx>) -> CommonConsts<'tcx> { let mk_const = |c| { Const(Interned::new_unchecked( interners.const_.intern(c, |c| InternedInSet(interners.arena.alloc(c))).0, )) }; CommonConsts { unit: mk_const(ty::ConstS { kind: ty::ConstKind::Value(ty::ValTree::zst()), ty: types.unit, }), } } } // This struct contains information regarding the `ReFree(FreeRegion)` corresponding to a lifetime // conflict. #[derive(Debug)] pub struct FreeRegionInfo { // `LocalDefId` corresponding to FreeRegion pub def_id: LocalDefId, // the bound region corresponding to FreeRegion pub boundregion: ty::BoundRegionKind, // checks if bound region is in Impl Item pub is_impl_item: bool, } /// The central data structure of the compiler. It stores references /// to the various **arenas** and also houses the results of the /// various **compiler queries** that have been performed. See the /// [rustc dev guide] for more details. /// /// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/ty.html #[derive(Copy, Clone)] #[rustc_diagnostic_item = "TyCtxt"] #[rustc_pass_by_value] pub struct TyCtxt<'tcx> { gcx: &'tcx GlobalCtxt<'tcx>, } impl<'tcx> Deref for TyCtxt<'tcx> { type Target = &'tcx GlobalCtxt<'tcx>; #[inline(always)] fn deref(&self) -> &Self::Target { &self.gcx } } pub struct GlobalCtxt<'tcx> { pub arena: &'tcx WorkerLocal>, pub hir_arena: &'tcx WorkerLocal>, interners: CtxtInterners<'tcx>, pub sess: &'tcx Session, /// This only ever stores a `LintStore` but we don't want a dependency on that type here. /// /// FIXME(Centril): consider `dyn LintStoreMarker` once /// we can upcast to `Any` for some additional type safety. pub lint_store: Lrc, pub dep_graph: DepGraph, pub prof: SelfProfilerRef, /// Common types, pre-interned for your convenience. pub types: CommonTypes<'tcx>, /// Common lifetimes, pre-interned for your convenience. pub lifetimes: CommonLifetimes<'tcx>, /// Common consts, pre-interned for your convenience. pub consts: CommonConsts<'tcx>, definitions: RwLock, /// Output of the resolver. pub(crate) untracked_resolutions: ty::ResolverGlobalCtxt, untracked_resolver_for_lowering: Steal, /// The entire crate as AST. This field serves as the input for the hir_crate query, /// which lowers it from AST to HIR. It must not be read or used by anything else. pub untracked_crate: Steal>, /// This provides access to the incremental compilation on-disk cache for query results. /// Do not access this directly. It is only meant to be used by /// `DepGraph::try_mark_green()` and the query infrastructure. /// This is `None` if we are not incremental compilation mode pub on_disk_cache: Option<&'tcx dyn OnDiskCache<'tcx>>, pub queries: &'tcx dyn query::QueryEngine<'tcx>, pub query_caches: query::QueryCaches<'tcx>, pub(crate) query_kinds: &'tcx [DepKindStruct<'tcx>], // Internal caches for metadata decoding. No need to track deps on this. pub ty_rcache: Lock>>, pub pred_rcache: Lock>>, /// Caches the results of trait selection. This cache is used /// for things that do not have to do with the parameters in scope. pub selection_cache: traits::SelectionCache<'tcx>, /// Caches the results of trait evaluation. This cache is used /// for things that do not have to do with the parameters in scope. /// Merge this with `selection_cache`? pub evaluation_cache: traits::EvaluationCache<'tcx>, /// The definite name of the current crate after taking into account /// attributes, commandline parameters, etc. crate_name: Symbol, /// Data layout specification for the current target. pub data_layout: TargetDataLayout, /// Stores memory for globals (statics/consts). pub(crate) alloc_map: Lock>, output_filenames: Arc, } impl<'tcx> TyCtxt<'tcx> { /// Expects a body and returns its codegen attributes. /// /// Unlike `codegen_fn_attrs`, this returns `CodegenFnAttrs::EMPTY` for /// constants. pub fn body_codegen_attrs(self, def_id: DefId) -> &'tcx CodegenFnAttrs { let def_kind = self.def_kind(def_id); if def_kind.has_codegen_attrs() { self.codegen_fn_attrs(def_id) } else if matches!( def_kind, DefKind::AnonConst | DefKind::AssocConst | DefKind::Const | DefKind::InlineConst ) { CodegenFnAttrs::EMPTY } else { bug!( "body_codegen_fn_attrs called on unexpected definition: {:?} {:?}", def_id, def_kind ) } } pub fn typeck_opt_const_arg( self, def: ty::WithOptConstParam, ) -> &'tcx TypeckResults<'tcx> { if let Some(param_did) = def.const_param_did { self.typeck_const_arg((def.did, param_did)) } else { self.typeck(def.did) } } pub fn mir_borrowck_opt_const_arg( self, def: ty::WithOptConstParam, ) -> &'tcx BorrowCheckResult<'tcx> { if let Some(param_did) = def.const_param_did { self.mir_borrowck_const_arg((def.did, param_did)) } else { self.mir_borrowck(def.did) } } pub fn alloc_steal_thir(self, thir: Thir<'tcx>) -> &'tcx Steal> { self.arena.alloc(Steal::new(thir)) } pub fn alloc_steal_mir(self, mir: Body<'tcx>) -> &'tcx Steal> { self.arena.alloc(Steal::new(mir)) } pub fn alloc_steal_promoted( self, promoted: IndexVec>, ) -> &'tcx Steal>> { self.arena.alloc(Steal::new(promoted)) } pub fn alloc_adt_def( self, did: DefId, kind: AdtKind, variants: IndexVec, repr: ReprOptions, ) -> ty::AdtDef<'tcx> { self.intern_adt_def(ty::AdtDefData::new(self, did, kind, variants, repr)) } /// Allocates a read-only byte or string literal for `mir::interpret`. pub fn allocate_bytes(self, bytes: &[u8]) -> interpret::AllocId { // Create an allocation that just contains these bytes. let alloc = interpret::Allocation::from_bytes_byte_aligned_immutable(bytes); let alloc = self.intern_const_alloc(alloc); self.create_memory_alloc(alloc) } /// Returns a range of the start/end indices specified with the /// `rustc_layout_scalar_valid_range` attribute. // FIXME(eddyb) this is an awkward spot for this method, maybe move it? pub fn layout_scalar_valid_range(self, def_id: DefId) -> (Bound, Bound) { let get = |name| { let Some(attr) = self.get_attr(def_id, name) else { return Bound::Unbounded; }; debug!("layout_scalar_valid_range: attr={:?}", attr); if let Some( &[ ast::NestedMetaItem::Literal(ast::Lit { kind: ast::LitKind::Int(a, _), .. }), ], ) = attr.meta_item_list().as_deref() { Bound::Included(a) } else { self.sess .delay_span_bug(attr.span, "invalid rustc_layout_scalar_valid_range attribute"); Bound::Unbounded } }; ( get(sym::rustc_layout_scalar_valid_range_start), get(sym::rustc_layout_scalar_valid_range_end), ) } pub fn lift>(self, value: T) -> Option { value.lift_to_tcx(self) } /// Creates a type context and call the closure with a `TyCtxt` reference /// to the context. The closure enforces that the type context and any interned /// value (types, substs, etc.) can only be used while `ty::tls` has a valid /// reference to the context, to allow formatting values that need it. pub fn create_global_ctxt( s: &'tcx Session, lint_store: Lrc, arena: &'tcx WorkerLocal>, hir_arena: &'tcx WorkerLocal>, resolver_outputs: ResolverOutputs, krate: Lrc, dep_graph: DepGraph, on_disk_cache: Option<&'tcx dyn OnDiskCache<'tcx>>, queries: &'tcx dyn query::QueryEngine<'tcx>, query_kinds: &'tcx [DepKindStruct<'tcx>], crate_name: &str, output_filenames: OutputFilenames, ) -> GlobalCtxt<'tcx> { let ResolverOutputs { definitions, global_ctxt: untracked_resolutions, ast_lowering: untracked_resolver_for_lowering, } = resolver_outputs; let data_layout = TargetDataLayout::parse(&s.target).unwrap_or_else(|err| { s.emit_fatal(err); }); let interners = CtxtInterners::new(arena); let common_types = CommonTypes::new( &interners, s, &definitions, &*untracked_resolutions.cstore, // This is only used to create a stable hashing context. &untracked_resolutions.source_span, ); let common_lifetimes = CommonLifetimes::new(&interners); let common_consts = CommonConsts::new(&interners, &common_types); GlobalCtxt { sess: s, lint_store, arena, hir_arena, interners, dep_graph, definitions: RwLock::new(definitions), prof: s.prof.clone(), types: common_types, lifetimes: common_lifetimes, consts: common_consts, untracked_resolutions, untracked_resolver_for_lowering: Steal::new(untracked_resolver_for_lowering), untracked_crate: Steal::new(krate), on_disk_cache, queries, query_caches: query::QueryCaches::default(), query_kinds, ty_rcache: Default::default(), pred_rcache: Default::default(), selection_cache: Default::default(), evaluation_cache: Default::default(), crate_name: Symbol::intern(crate_name), data_layout, alloc_map: Lock::new(interpret::AllocMap::new()), output_filenames: Arc::new(output_filenames), } } /// Constructs a `TyKind::Error` type and registers a `delay_span_bug` to ensure it gets used. #[track_caller] pub fn ty_error(self) -> Ty<'tcx> { self.ty_error_with_message(DUMMY_SP, "TyKind::Error constructed but no error reported") } /// Constructs a `TyKind::Error` type and registers a `delay_span_bug` with the given `msg` to /// ensure it gets used. #[track_caller] pub fn ty_error_with_message>(self, span: S, msg: &str) -> Ty<'tcx> { let reported = self.sess.delay_span_bug(span, msg); self.mk_ty(Error(DelaySpanBugEmitted { reported, _priv: () })) } /// Like [TyCtxt::ty_error] but for constants. #[track_caller] pub fn const_error(self, ty: Ty<'tcx>) -> Const<'tcx> { self.const_error_with_message( ty, DUMMY_SP, "ty::ConstKind::Error constructed but no error reported", ) } /// Like [TyCtxt::ty_error_with_message] but for constants. #[track_caller] pub fn const_error_with_message>( self, ty: Ty<'tcx>, span: S, msg: &str, ) -> Const<'tcx> { let reported = self.sess.delay_span_bug(span, msg); self.mk_const(ty::ConstS { kind: ty::ConstKind::Error(DelaySpanBugEmitted { reported, _priv: () }), ty, }) } pub fn consider_optimizing String>(self, msg: T) -> bool { let cname = self.crate_name(LOCAL_CRATE); self.sess.consider_optimizing(cname.as_str(), msg) } /// Obtain all lang items of this crate and all dependencies (recursively) pub fn lang_items(self) -> &'tcx rustc_hir::lang_items::LanguageItems { self.get_lang_items(()) } /// Obtain the given diagnostic item's `DefId`. Use `is_diagnostic_item` if you just want to /// compare against another `DefId`, since `is_diagnostic_item` is cheaper. pub fn get_diagnostic_item(self, name: Symbol) -> Option { self.all_diagnostic_items(()).name_to_id.get(&name).copied() } /// Obtain the diagnostic item's name pub fn get_diagnostic_name(self, id: DefId) -> Option { self.diagnostic_items(id.krate).id_to_name.get(&id).copied() } /// Check whether the diagnostic item with the given `name` has the given `DefId`. pub fn is_diagnostic_item(self, name: Symbol, did: DefId) -> bool { self.diagnostic_items(did.krate).name_to_id.get(&name) == Some(&did) } pub fn stability(self) -> &'tcx stability::Index { self.stability_index(()) } pub fn features(self) -> &'tcx rustc_feature::Features { self.features_query(()) } pub fn def_key(self, id: DefId) -> rustc_hir::definitions::DefKey { // Accessing the DefKey is ok, since it is part of DefPathHash. if let Some(id) = id.as_local() { self.definitions_untracked().def_key(id) } else { self.untracked_resolutions.cstore.def_key(id) } } /// Converts a `DefId` into its fully expanded `DefPath` (every /// `DefId` is really just an interned `DefPath`). /// /// Note that if `id` is not local to this crate, the result will /// be a non-local `DefPath`. pub fn def_path(self, id: DefId) -> rustc_hir::definitions::DefPath { // Accessing the DefPath is ok, since it is part of DefPathHash. if let Some(id) = id.as_local() { self.definitions_untracked().def_path(id) } else { self.untracked_resolutions.cstore.def_path(id) } } #[inline] pub fn def_path_hash(self, def_id: DefId) -> rustc_hir::definitions::DefPathHash { // Accessing the DefPathHash is ok, it is incr. comp. stable. if let Some(def_id) = def_id.as_local() { self.definitions_untracked().def_path_hash(def_id) } else { self.untracked_resolutions.cstore.def_path_hash(def_id) } } #[inline] pub fn stable_crate_id(self, crate_num: CrateNum) -> StableCrateId { if crate_num == LOCAL_CRATE { self.sess.local_stable_crate_id() } else { self.untracked_resolutions.cstore.stable_crate_id(crate_num) } } /// Maps a StableCrateId to the corresponding CrateNum. This method assumes /// that the crate in question has already been loaded by the CrateStore. #[inline] pub fn stable_crate_id_to_crate_num(self, stable_crate_id: StableCrateId) -> CrateNum { if stable_crate_id == self.sess.local_stable_crate_id() { LOCAL_CRATE } else { self.untracked_resolutions.cstore.stable_crate_id_to_crate_num(stable_crate_id) } } /// Converts a `DefPathHash` to its corresponding `DefId` in the current compilation /// session, if it still exists. This is used during incremental compilation to /// turn a deserialized `DefPathHash` into its current `DefId`. pub fn def_path_hash_to_def_id(self, hash: DefPathHash, err: &mut dyn FnMut() -> !) -> DefId { debug!("def_path_hash_to_def_id({:?})", hash); let stable_crate_id = hash.stable_crate_id(); // If this is a DefPathHash from the local crate, we can look up the // DefId in the tcx's `Definitions`. if stable_crate_id == self.sess.local_stable_crate_id() { self.definitions.read().local_def_path_hash_to_def_id(hash, err).to_def_id() } else { // If this is a DefPathHash from an upstream crate, let the CrateStore map // it to a DefId. let cstore = &*self.untracked_resolutions.cstore; let cnum = cstore.stable_crate_id_to_crate_num(stable_crate_id); cstore.def_path_hash_to_def_id(cnum, hash) } } pub fn def_path_debug_str(self, def_id: DefId) -> String { // We are explicitly not going through queries here in order to get // crate name and stable crate id since this code is called from debug!() // statements within the query system and we'd run into endless // recursion otherwise. let (crate_name, stable_crate_id) = if def_id.is_local() { (self.crate_name, self.sess.local_stable_crate_id()) } else { let cstore = &*self.untracked_resolutions.cstore; (cstore.crate_name(def_id.krate), cstore.stable_crate_id(def_id.krate)) }; format!( "{}[{:04x}]{}", crate_name, // Don't print the whole stable crate id. That's just // annoying in debug output. stable_crate_id.to_u64() >> 8 * 6, self.def_path(def_id).to_string_no_crate_verbose() ) } /// Create a new definition within the incr. comp. engine. pub fn create_def(self, parent: LocalDefId, data: hir::definitions::DefPathData) -> LocalDefId { // This function modifies `self.definitions` using a side-effect. // We need to ensure that these side effects are re-run by the incr. comp. engine. // Depending on the forever-red node will tell the graph that the calling query // needs to be re-evaluated. use rustc_query_system::dep_graph::DepNodeIndex; self.dep_graph.read_index(DepNodeIndex::FOREVER_RED_NODE); // The following call has the side effect of modifying the tables inside `definitions`. // These very tables are relied on by the incr. comp. engine to decode DepNodes and to // decode the on-disk cache. // // Any LocalDefId which is used within queries, either as key or result, either: // - has been created before the construction of the TyCtxt; // - has been created by this call to `create_def`. // As a consequence, this LocalDefId is always re-created before it is needed by the incr. // comp. engine itself. // // This call also writes to the value of `source_span` and `expn_that_defined` queries. // This is fine because: // - those queries are `eval_always` so we won't miss their result changing; // - this write will have happened before these queries are called. self.definitions.write().create_def(parent, data) } pub fn iter_local_def_id(self) -> impl Iterator + 'tcx { // Create a dependency to the crate to be sure we re-execute this when the amount of // definitions change. self.ensure().hir_crate(()); // Leak a read lock once we start iterating on definitions, to prevent adding new ones // while iterating. If some query needs to add definitions, it should be `ensure`d above. let definitions = self.definitions.leak(); definitions.iter_local_def_id() } pub fn def_path_table(self) -> &'tcx rustc_hir::definitions::DefPathTable { // Create a dependency to the crate to be sure we re-execute this when the amount of // definitions change. self.ensure().hir_crate(()); // Leak a read lock once we start iterating on definitions, to prevent adding new ones // while iterating. If some query needs to add definitions, it should be `ensure`d above. let definitions = self.definitions.leak(); definitions.def_path_table() } pub fn def_path_hash_to_def_index_map( self, ) -> &'tcx rustc_hir::def_path_hash_map::DefPathHashMap { // Create a dependency to the crate to be sure we re-execute this when the amount of // definitions change. self.ensure().hir_crate(()); // Leak a read lock once we start iterating on definitions, to prevent adding new ones // while iterating. If some query needs to add definitions, it should be `ensure`d above. let definitions = self.definitions.leak(); definitions.def_path_hash_to_def_index_map() } /// Note that this is *untracked* and should only be used within the query /// system if the result is otherwise tracked through queries pub fn cstore_untracked(self) -> &'tcx CrateStoreDyn { &*self.untracked_resolutions.cstore } /// Note that this is *untracked* and should only be used within the query /// system if the result is otherwise tracked through queries #[inline] pub fn definitions_untracked(self) -> ReadGuard<'tcx, Definitions> { self.definitions.read() } /// Note that this is *untracked* and should only be used within the query /// system if the result is otherwise tracked through queries #[inline] pub fn source_span_untracked(self, def_id: LocalDefId) -> Span { self.untracked_resolutions.source_span.get(def_id).copied().unwrap_or(DUMMY_SP) } #[inline(always)] pub fn with_stable_hashing_context( self, f: impl FnOnce(StableHashingContext<'_>) -> R, ) -> R { let definitions = self.definitions_untracked(); let hcx = StableHashingContext::new( self.sess, &*definitions, &*self.untracked_resolutions.cstore, &self.untracked_resolutions.source_span, ); f(hcx) } pub fn serialize_query_result_cache(self, encoder: FileEncoder) -> FileEncodeResult { self.on_disk_cache.as_ref().map_or(Ok(0), |c| c.serialize(self, encoder)) } /// If `true`, we should use lazy normalization for constants, otherwise /// we still evaluate them eagerly. #[inline] pub fn lazy_normalization(self) -> bool { let features = self.features(); // Note: We only use lazy normalization for generic const expressions. features.generic_const_exprs } #[inline] pub fn local_crate_exports_generics(self) -> bool { debug_assert!(self.sess.opts.share_generics()); self.sess.crate_types().iter().any(|crate_type| { match crate_type { CrateType::Executable | CrateType::Staticlib | CrateType::ProcMacro | CrateType::Cdylib => false, // FIXME rust-lang/rust#64319, rust-lang/rust#64872: // We want to block export of generics from dylibs, // but we must fix rust-lang/rust#65890 before we can // do that robustly. CrateType::Dylib => true, CrateType::Rlib => true, } }) } /// Returns the `DefId` and the `BoundRegionKind` corresponding to the given region. pub fn is_suitable_region(self, region: Region<'tcx>) -> Option { let (suitable_region_binding_scope, bound_region) = match *region { ty::ReFree(ref free_region) => { (free_region.scope.expect_local(), free_region.bound_region) } ty::ReEarlyBound(ref ebr) => ( self.local_parent(ebr.def_id.expect_local()), ty::BoundRegionKind::BrNamed(ebr.def_id, ebr.name), ), _ => return None, // not a free region }; let is_impl_item = match self.hir().find_by_def_id(suitable_region_binding_scope) { Some(Node::Item(..) | Node::TraitItem(..)) => false, Some(Node::ImplItem(..)) => { self.is_bound_region_in_impl_item(suitable_region_binding_scope) } _ => return None, }; Some(FreeRegionInfo { def_id: suitable_region_binding_scope, boundregion: bound_region, is_impl_item, }) } /// Given a `DefId` for an `fn`, return all the `dyn` and `impl` traits in its return type. pub fn return_type_impl_or_dyn_traits( self, scope_def_id: LocalDefId, ) -> Vec<&'tcx hir::Ty<'tcx>> { let hir_id = self.hir().local_def_id_to_hir_id(scope_def_id); let Some(hir::FnDecl { output: hir::FnRetTy::Return(hir_output), .. }) = self.hir().fn_decl_by_hir_id(hir_id) else { return vec![]; }; let mut v = TraitObjectVisitor(vec![], self.hir()); v.visit_ty(hir_output); v.0 } pub fn return_type_impl_trait(self, scope_def_id: LocalDefId) -> Option<(Ty<'tcx>, Span)> { // `type_of()` will fail on these (#55796, #86483), so only allow `fn`s or closures. match self.hir().get_by_def_id(scope_def_id) { Node::Item(&hir::Item { kind: ItemKind::Fn(..), .. }) => {} Node::TraitItem(&hir::TraitItem { kind: TraitItemKind::Fn(..), .. }) => {} Node::ImplItem(&hir::ImplItem { kind: ImplItemKind::Fn(..), .. }) => {} Node::Expr(&hir::Expr { kind: ExprKind::Closure { .. }, .. }) => {} _ => return None, } let ret_ty = self.type_of(scope_def_id); match ret_ty.kind() { ty::FnDef(_, _) => { let sig = ret_ty.fn_sig(self); let output = self.erase_late_bound_regions(sig.output()); if output.is_impl_trait() { let hir_id = self.hir().local_def_id_to_hir_id(scope_def_id); let fn_decl = self.hir().fn_decl_by_hir_id(hir_id).unwrap(); Some((output, fn_decl.output.span())) } else { None } } _ => None, } } // Checks if the bound region is in Impl Item. pub fn is_bound_region_in_impl_item(self, suitable_region_binding_scope: LocalDefId) -> bool { let container_id = self.parent(suitable_region_binding_scope.to_def_id()); if self.impl_trait_ref(container_id).is_some() { // For now, we do not try to target impls of traits. This is // because this message is going to suggest that the user // change the fn signature, but they may not be free to do so, // since the signature must match the trait. // // FIXME(#42706) -- in some cases, we could do better here. return true; } false } /// Determines whether identifiers in the assembly have strict naming rules. /// Currently, only NVPTX* targets need it. pub fn has_strict_asm_symbol_naming(self) -> bool { self.sess.target.arch.contains("nvptx") } /// Returns `&'static core::panic::Location<'static>`. pub fn caller_location_ty(self) -> Ty<'tcx> { self.mk_imm_ref( self.lifetimes.re_static, self.bound_type_of(self.require_lang_item(LangItem::PanicLocation, None)) .subst(self, self.mk_substs([self.lifetimes.re_static.into()].iter())), ) } /// Returns a displayable description and article for the given `def_id` (e.g. `("a", "struct")`). pub fn article_and_description(self, def_id: DefId) -> (&'static str, &'static str) { match self.def_kind(def_id) { DefKind::Generator => match self.generator_kind(def_id).unwrap() { rustc_hir::GeneratorKind::Async(..) => ("an", "async closure"), rustc_hir::GeneratorKind::Gen => ("a", "generator"), }, def_kind => (def_kind.article(), def_kind.descr(def_id)), } } pub fn type_length_limit(self) -> Limit { self.limits(()).type_length_limit } pub fn recursion_limit(self) -> Limit { self.limits(()).recursion_limit } pub fn move_size_limit(self) -> Limit { self.limits(()).move_size_limit } pub fn const_eval_limit(self) -> Limit { self.limits(()).const_eval_limit } pub fn all_traits(self) -> impl Iterator + 'tcx { iter::once(LOCAL_CRATE) .chain(self.crates(()).iter().copied()) .flat_map(move |cnum| self.traits_in_crate(cnum).iter().copied()) } #[inline] pub fn local_visibility(self, def_id: LocalDefId) -> Visibility { self.visibility(def_id).expect_local() } } /// A trait implemented for all `X<'a>` types that can be safely and /// efficiently converted to `X<'tcx>` as long as they are part of the /// provided `TyCtxt<'tcx>`. /// This can be done, for example, for `Ty<'tcx>` or `SubstsRef<'tcx>` /// by looking them up in their respective interners. /// /// However, this is still not the best implementation as it does /// need to compare the components, even for interned values. /// It would be more efficient if `TypedArena` provided a way to /// determine whether the address is in the allocated range. /// /// `None` is returned if the value or one of the components is not part /// of the provided context. /// For `Ty`, `None` can be returned if either the type interner doesn't /// contain the `TyKind` key or if the address of the interned /// pointer differs. The latter case is possible if a primitive type, /// e.g., `()` or `u8`, was interned in a different context. pub trait Lift<'tcx>: fmt::Debug { type Lifted: fmt::Debug + 'tcx; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option; } macro_rules! nop_lift { ($set:ident; $ty:ty => $lifted:ty) => { impl<'a, 'tcx> Lift<'tcx> for $ty { type Lifted = $lifted; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { if tcx.interners.$set.contains_pointer_to(&InternedInSet(&*self.0.0)) { // SAFETY: `self` is interned and therefore valid // for the entire lifetime of the `TyCtxt`. Some(unsafe { mem::transmute(self) }) } else { None } } } }; } // Can't use the macros as we have reuse the `substs` here. // // See `intern_type_list` for more info. impl<'a, 'tcx> Lift<'tcx> for &'a List> { type Lifted = &'tcx List>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { if self.is_empty() { return Some(List::empty()); } if tcx.interners.substs.contains_pointer_to(&InternedInSet(self.as_substs())) { // SAFETY: `self` is interned and therefore valid // for the entire lifetime of the `TyCtxt`. Some(unsafe { mem::transmute::<&'a List>, &'tcx List>>(self) }) } else { None } } } macro_rules! nop_list_lift { ($set:ident; $ty:ty => $lifted:ty) => { impl<'a, 'tcx> Lift<'tcx> for &'a List<$ty> { type Lifted = &'tcx List<$lifted>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { if self.is_empty() { return Some(List::empty()); } if tcx.interners.$set.contains_pointer_to(&InternedInSet(self)) { Some(unsafe { mem::transmute(self) }) } else { None } } } }; } nop_lift! {type_; Ty<'a> => Ty<'tcx>} nop_lift! {region; Region<'a> => Region<'tcx>} nop_lift! {const_; Const<'a> => Const<'tcx>} nop_lift! {const_allocation; ConstAllocation<'a> => ConstAllocation<'tcx>} nop_lift! {predicate; Predicate<'a> => Predicate<'tcx>} nop_list_lift! {poly_existential_predicates; ty::Binder<'a, ExistentialPredicate<'a>> => ty::Binder<'tcx, ExistentialPredicate<'tcx>>} nop_list_lift! {predicates; Predicate<'a> => Predicate<'tcx>} nop_list_lift! {canonical_var_infos; CanonicalVarInfo<'a> => CanonicalVarInfo<'tcx>} nop_list_lift! {projs; ProjectionKind => ProjectionKind} nop_list_lift! {bound_variable_kinds; ty::BoundVariableKind => ty::BoundVariableKind} // This is the impl for `&'a InternalSubsts<'a>`. nop_list_lift! {substs; GenericArg<'a> => GenericArg<'tcx>} CloneLiftImpls! { for<'tcx> { Constness, traits::WellFormedLoc, ImplPolarity, crate::mir::ReturnConstraint, } } pub mod tls { use super::{ptr_eq, GlobalCtxt, TyCtxt}; use crate::dep_graph::TaskDepsRef; use crate::ty::query; use rustc_data_structures::sync::{self, Lock}; use rustc_errors::Diagnostic; use std::mem; use thin_vec::ThinVec; #[cfg(not(parallel_compiler))] use std::cell::Cell; #[cfg(parallel_compiler)] use rustc_rayon_core as rayon_core; /// This is the implicit state of rustc. It contains the current /// `TyCtxt` and query. It is updated when creating a local interner or /// executing a new query. Whenever there's a `TyCtxt` value available /// you should also have access to an `ImplicitCtxt` through the functions /// in this module. #[derive(Clone)] pub struct ImplicitCtxt<'a, 'tcx> { /// The current `TyCtxt`. pub tcx: TyCtxt<'tcx>, /// The current query job, if any. This is updated by `JobOwner::start` in /// `ty::query::plumbing` when executing a query. pub query: Option, /// Where to store diagnostics for the current query job, if any. /// This is updated by `JobOwner::start` in `ty::query::plumbing` when executing a query. pub diagnostics: Option<&'a Lock>>, /// Used to prevent queries from calling too deeply. pub query_depth: usize, /// The current dep graph task. This is used to add dependencies to queries /// when executing them. pub task_deps: TaskDepsRef<'a>, } impl<'a, 'tcx> ImplicitCtxt<'a, 'tcx> { pub fn new(gcx: &'tcx GlobalCtxt<'tcx>) -> Self { let tcx = TyCtxt { gcx }; ImplicitCtxt { tcx, query: None, diagnostics: None, query_depth: 0, task_deps: TaskDepsRef::Ignore, } } } /// Sets Rayon's thread-local variable, which is preserved for Rayon jobs /// to `value` during the call to `f`. It is restored to its previous value after. /// This is used to set the pointer to the new `ImplicitCtxt`. #[cfg(parallel_compiler)] #[inline] fn set_tlv R, R>(value: usize, f: F) -> R { rayon_core::tlv::with(value, f) } /// Gets Rayon's thread-local variable, which is preserved for Rayon jobs. /// This is used to get the pointer to the current `ImplicitCtxt`. #[cfg(parallel_compiler)] #[inline] pub fn get_tlv() -> usize { rayon_core::tlv::get() } #[cfg(not(parallel_compiler))] thread_local! { /// A thread local variable that stores a pointer to the current `ImplicitCtxt`. static TLV: Cell = const { Cell::new(0) }; } /// Sets TLV to `value` during the call to `f`. /// It is restored to its previous value after. /// This is used to set the pointer to the new `ImplicitCtxt`. #[cfg(not(parallel_compiler))] #[inline] fn set_tlv R, R>(value: usize, f: F) -> R { let old = get_tlv(); let _reset = rustc_data_structures::OnDrop(move || TLV.with(|tlv| tlv.set(old))); TLV.with(|tlv| tlv.set(value)); f() } /// Gets the pointer to the current `ImplicitCtxt`. #[cfg(not(parallel_compiler))] #[inline] fn get_tlv() -> usize { TLV.with(|tlv| tlv.get()) } /// Sets `context` as the new current `ImplicitCtxt` for the duration of the function `f`. #[inline] pub fn enter_context<'a, 'tcx, F, R>(context: &ImplicitCtxt<'a, 'tcx>, f: F) -> R where F: FnOnce(&ImplicitCtxt<'a, 'tcx>) -> R, { set_tlv(context as *const _ as usize, || f(&context)) } /// Allows access to the current `ImplicitCtxt` in a closure if one is available. #[inline] pub fn with_context_opt(f: F) -> R where F: for<'a, 'tcx> FnOnce(Option<&ImplicitCtxt<'a, 'tcx>>) -> R, { let context = get_tlv(); if context == 0 { f(None) } else { // We could get an `ImplicitCtxt` pointer from another thread. // Ensure that `ImplicitCtxt` is `Sync`. sync::assert_sync::>(); unsafe { f(Some(&*(context as *const ImplicitCtxt<'_, '_>))) } } } /// Allows access to the current `ImplicitCtxt`. /// Panics if there is no `ImplicitCtxt` available. #[inline] pub fn with_context(f: F) -> R where F: for<'a, 'tcx> FnOnce(&ImplicitCtxt<'a, 'tcx>) -> R, { with_context_opt(|opt_context| f(opt_context.expect("no ImplicitCtxt stored in tls"))) } /// Allows access to the current `ImplicitCtxt` whose tcx field is the same as the tcx argument /// passed in. This means the closure is given an `ImplicitCtxt` with the same `'tcx` lifetime /// as the `TyCtxt` passed in. /// This will panic if you pass it a `TyCtxt` which is different from the current /// `ImplicitCtxt`'s `tcx` field. #[inline] pub fn with_related_context<'tcx, F, R>(tcx: TyCtxt<'tcx>, f: F) -> R where F: FnOnce(&ImplicitCtxt<'_, 'tcx>) -> R, { with_context(|context| unsafe { assert!(ptr_eq(context.tcx.gcx, tcx.gcx)); let context: &ImplicitCtxt<'_, '_> = mem::transmute(context); f(context) }) } /// Allows access to the `TyCtxt` in the current `ImplicitCtxt`. /// Panics if there is no `ImplicitCtxt` available. #[inline] pub fn with(f: F) -> R where F: for<'tcx> FnOnce(TyCtxt<'tcx>) -> R, { with_context(|context| f(context.tcx)) } /// Allows access to the `TyCtxt` in the current `ImplicitCtxt`. /// The closure is passed None if there is no `ImplicitCtxt` available. #[inline] pub fn with_opt(f: F) -> R where F: for<'tcx> FnOnce(Option>) -> R, { with_context_opt(|opt_context| f(opt_context.map(|context| context.tcx))) } } macro_rules! sty_debug_print { ($fmt: expr, $ctxt: expr, $($variant: ident),*) => {{ // Curious inner module to allow variant names to be used as // variable names. #[allow(non_snake_case)] mod inner { use crate::ty::{self, TyCtxt}; use crate::ty::context::InternedInSet; #[derive(Copy, Clone)] struct DebugStat { total: usize, lt_infer: usize, ty_infer: usize, ct_infer: usize, all_infer: usize, } pub fn go(fmt: &mut std::fmt::Formatter<'_>, tcx: TyCtxt<'_>) -> std::fmt::Result { let mut total = DebugStat { total: 0, lt_infer: 0, ty_infer: 0, ct_infer: 0, all_infer: 0, }; $(let mut $variant = total;)* let shards = tcx.interners.type_.lock_shards(); let types = shards.iter().flat_map(|shard| shard.keys()); for &InternedInSet(t) in types { let variant = match t.kind { ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Str | ty::Never => continue, ty::Error(_) => /* unimportant */ continue, $(ty::$variant(..) => &mut $variant,)* }; let lt = t.flags.intersects(ty::TypeFlags::HAS_RE_INFER); let ty = t.flags.intersects(ty::TypeFlags::HAS_TY_INFER); let ct = t.flags.intersects(ty::TypeFlags::HAS_CT_INFER); variant.total += 1; total.total += 1; if lt { total.lt_infer += 1; variant.lt_infer += 1 } if ty { total.ty_infer += 1; variant.ty_infer += 1 } if ct { total.ct_infer += 1; variant.ct_infer += 1 } if lt && ty && ct { total.all_infer += 1; variant.all_infer += 1 } } writeln!(fmt, "Ty interner total ty lt ct all")?; $(writeln!(fmt, " {:18}: {uses:6} {usespc:4.1}%, \ {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%", stringify!($variant), uses = $variant.total, usespc = $variant.total as f64 * 100.0 / total.total as f64, ty = $variant.ty_infer as f64 * 100.0 / total.total as f64, lt = $variant.lt_infer as f64 * 100.0 / total.total as f64, ct = $variant.ct_infer as f64 * 100.0 / total.total as f64, all = $variant.all_infer as f64 * 100.0 / total.total as f64)?; )* writeln!(fmt, " total {uses:6} \ {ty:4.1}% {lt:5.1}% {ct:4.1}% {all:4.1}%", uses = total.total, ty = total.ty_infer as f64 * 100.0 / total.total as f64, lt = total.lt_infer as f64 * 100.0 / total.total as f64, ct = total.ct_infer as f64 * 100.0 / total.total as f64, all = total.all_infer as f64 * 100.0 / total.total as f64) } } inner::go($fmt, $ctxt) }} } impl<'tcx> TyCtxt<'tcx> { pub fn debug_stats(self) -> impl std::fmt::Debug + 'tcx { struct DebugStats<'tcx>(TyCtxt<'tcx>); impl<'tcx> std::fmt::Debug for DebugStats<'tcx> { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { sty_debug_print!( fmt, self.0, Adt, Array, Slice, RawPtr, Ref, FnDef, FnPtr, Placeholder, Generator, GeneratorWitness, Dynamic, Closure, Tuple, Bound, Param, Infer, Projection, Opaque, Foreign )?; writeln!(fmt, "InternalSubsts interner: #{}", self.0.interners.substs.len())?; writeln!(fmt, "Region interner: #{}", self.0.interners.region.len())?; writeln!( fmt, "Const Allocation interner: #{}", self.0.interners.const_allocation.len() )?; writeln!(fmt, "Layout interner: #{}", self.0.interners.layout.len())?; Ok(()) } } DebugStats(self) } } // This type holds a `T` in the interner. The `T` is stored in the arena and // this type just holds a pointer to it, but it still effectively owns it. It // impls `Borrow` so that it can be looked up using the original // (non-arena-memory-owning) types. struct InternedInSet<'tcx, T: ?Sized>(&'tcx T); impl<'tcx, T: 'tcx + ?Sized> Clone for InternedInSet<'tcx, T> { fn clone(&self) -> Self { InternedInSet(self.0) } } impl<'tcx, T: 'tcx + ?Sized> Copy for InternedInSet<'tcx, T> {} impl<'tcx, T: 'tcx + ?Sized> IntoPointer for InternedInSet<'tcx, T> { fn into_pointer(&self) -> *const () { self.0 as *const _ as *const () } } #[allow(rustc::usage_of_ty_tykind)] impl<'tcx> Borrow> for InternedInSet<'tcx, WithStableHash>> { fn borrow<'a>(&'a self) -> &'a TyKind<'tcx> { &self.0.kind } } impl<'tcx> PartialEq for InternedInSet<'tcx, WithStableHash>> { fn eq(&self, other: &InternedInSet<'tcx, WithStableHash>>) -> bool { // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals // `x == y`. self.0.kind == other.0.kind } } impl<'tcx> Eq for InternedInSet<'tcx, WithStableHash>> {} impl<'tcx> Hash for InternedInSet<'tcx, WithStableHash>> { fn hash(&self, s: &mut H) { // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`. self.0.kind.hash(s) } } impl<'tcx> Borrow>> for InternedInSet<'tcx, PredicateS<'tcx>> { fn borrow<'a>(&'a self) -> &'a Binder<'tcx, PredicateKind<'tcx>> { &self.0.kind } } impl<'tcx> PartialEq for InternedInSet<'tcx, PredicateS<'tcx>> { fn eq(&self, other: &InternedInSet<'tcx, PredicateS<'tcx>>) -> bool { // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals // `x == y`. self.0.kind == other.0.kind } } impl<'tcx> Eq for InternedInSet<'tcx, PredicateS<'tcx>> {} impl<'tcx> Hash for InternedInSet<'tcx, PredicateS<'tcx>> { fn hash(&self, s: &mut H) { // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`. self.0.kind.hash(s) } } impl<'tcx, T> Borrow<[T]> for InternedInSet<'tcx, List> { fn borrow<'a>(&'a self) -> &'a [T] { &self.0[..] } } impl<'tcx, T: PartialEq> PartialEq for InternedInSet<'tcx, List> { fn eq(&self, other: &InternedInSet<'tcx, List>) -> bool { // The `Borrow` trait requires that `x.borrow() == y.borrow()` equals // `x == y`. self.0[..] == other.0[..] } } impl<'tcx, T: Eq> Eq for InternedInSet<'tcx, List> {} impl<'tcx, T: Hash> Hash for InternedInSet<'tcx, List> { fn hash(&self, s: &mut H) { // The `Borrow` trait requires that `x.borrow().hash(s) == x.hash(s)`. self.0[..].hash(s) } } macro_rules! direct_interners { ($($name:ident: $method:ident($ty:ty): $ret_ctor:ident -> $ret_ty:ty,)+) => { $(impl<'tcx> Borrow<$ty> for InternedInSet<'tcx, $ty> { fn borrow<'a>(&'a self) -> &'a $ty { &self.0 } } impl<'tcx> PartialEq for InternedInSet<'tcx, $ty> { fn eq(&self, other: &Self) -> bool { // The `Borrow` trait requires that `x.borrow() == y.borrow()` // equals `x == y`. self.0 == other.0 } } impl<'tcx> Eq for InternedInSet<'tcx, $ty> {} impl<'tcx> Hash for InternedInSet<'tcx, $ty> { fn hash(&self, s: &mut H) { // The `Borrow` trait requires that `x.borrow().hash(s) == // x.hash(s)`. self.0.hash(s) } } impl<'tcx> TyCtxt<'tcx> { pub fn $method(self, v: $ty) -> $ret_ty { $ret_ctor(Interned::new_unchecked(self.interners.$name.intern(v, |v| { InternedInSet(self.interners.arena.alloc(v)) }).0)) } })+ } } direct_interners! { region: mk_region(RegionKind<'tcx>): Region -> Region<'tcx>, const_: mk_const(ConstS<'tcx>): Const -> Const<'tcx>, const_allocation: intern_const_alloc(Allocation): ConstAllocation -> ConstAllocation<'tcx>, layout: intern_layout(LayoutS<'tcx>): Layout -> Layout<'tcx>, adt_def: intern_adt_def(AdtDefData): AdtDef -> AdtDef<'tcx>, } macro_rules! slice_interners { ($($field:ident: $method:ident($ty:ty)),+ $(,)?) => ( impl<'tcx> TyCtxt<'tcx> { $(pub fn $method(self, v: &[$ty]) -> &'tcx List<$ty> { self.interners.$field.intern_ref(v, || { InternedInSet(List::from_arena(&*self.arena, v)) }).0 })+ } ); } slice_interners!( substs: _intern_substs(GenericArg<'tcx>), canonical_var_infos: _intern_canonical_var_infos(CanonicalVarInfo<'tcx>), poly_existential_predicates: _intern_poly_existential_predicates(ty::Binder<'tcx, ExistentialPredicate<'tcx>>), predicates: _intern_predicates(Predicate<'tcx>), projs: _intern_projs(ProjectionKind), place_elems: _intern_place_elems(PlaceElem<'tcx>), bound_variable_kinds: _intern_bound_variable_kinds(ty::BoundVariableKind), ); impl<'tcx> TyCtxt<'tcx> { /// Given a `fn` type, returns an equivalent `unsafe fn` type; /// that is, a `fn` type that is equivalent in every way for being /// unsafe. pub fn safe_to_unsafe_fn_ty(self, sig: PolyFnSig<'tcx>) -> Ty<'tcx> { assert_eq!(sig.unsafety(), hir::Unsafety::Normal); self.mk_fn_ptr(sig.map_bound(|sig| ty::FnSig { unsafety: hir::Unsafety::Unsafe, ..sig })) } /// Given the def_id of a Trait `trait_def_id` and the name of an associated item `assoc_name` /// returns true if the `trait_def_id` defines an associated item of name `assoc_name`. pub fn trait_may_define_assoc_type(self, trait_def_id: DefId, assoc_name: Ident) -> bool { self.super_traits_of(trait_def_id).any(|trait_did| { self.associated_items(trait_did) .find_by_name_and_kind(self, assoc_name, ty::AssocKind::Type, trait_did) .is_some() }) } /// Given a `ty`, return whether it's an `impl Future<...>`. pub fn ty_is_opaque_future(self, ty: Ty<'_>) -> bool { let ty::Opaque(def_id, _) = ty.kind() else { return false }; let future_trait = self.lang_items().future_trait().unwrap(); self.explicit_item_bounds(def_id).iter().any(|(predicate, _)| { let ty::PredicateKind::Trait(trait_predicate) = predicate.kind().skip_binder() else { return false; }; trait_predicate.trait_ref.def_id == future_trait && trait_predicate.polarity == ImplPolarity::Positive }) } /// Computes the def-ids of the transitive supertraits of `trait_def_id`. This (intentionally) /// does not compute the full elaborated super-predicates but just the set of def-ids. It is used /// to identify which traits may define a given associated type to help avoid cycle errors. /// Returns a `DefId` iterator. fn super_traits_of(self, trait_def_id: DefId) -> impl Iterator + 'tcx { let mut set = FxHashSet::default(); let mut stack = vec![trait_def_id]; set.insert(trait_def_id); iter::from_fn(move || -> Option { let trait_did = stack.pop()?; let generic_predicates = self.super_predicates_of(trait_did); for (predicate, _) in generic_predicates.predicates { if let ty::PredicateKind::Trait(data) = predicate.kind().skip_binder() { if set.insert(data.def_id()) { stack.push(data.def_id()); } } } Some(trait_did) }) } /// Given a closure signature, returns an equivalent fn signature. Detuples /// and so forth -- so e.g., if we have a sig with `Fn<(u32, i32)>` then /// you would get a `fn(u32, i32)`. /// `unsafety` determines the unsafety of the fn signature. If you pass /// `hir::Unsafety::Unsafe` in the previous example, then you would get /// an `unsafe fn (u32, i32)`. /// It cannot convert a closure that requires unsafe. pub fn signature_unclosure( self, sig: PolyFnSig<'tcx>, unsafety: hir::Unsafety, ) -> PolyFnSig<'tcx> { sig.map_bound(|s| { let params_iter = match s.inputs()[0].kind() { ty::Tuple(params) => params.into_iter(), _ => bug!(), }; self.mk_fn_sig(params_iter, s.output(), s.c_variadic, unsafety, abi::Abi::Rust) }) } /// Same a `self.mk_region(kind)`, but avoids accessing the interners if /// `*r == kind`. #[inline] pub fn reuse_or_mk_region(self, r: Region<'tcx>, kind: RegionKind<'tcx>) -> Region<'tcx> { if *r == kind { r } else { self.mk_region(kind) } } #[allow(rustc::usage_of_ty_tykind)] #[inline] pub fn mk_ty(self, st: TyKind<'tcx>) -> Ty<'tcx> { self.interners.intern_ty( st, self.sess, &self.definitions.read(), &*self.untracked_resolutions.cstore, // This is only used to create a stable hashing context. &self.untracked_resolutions.source_span, ) } #[inline] pub fn mk_predicate(self, binder: Binder<'tcx, PredicateKind<'tcx>>) -> Predicate<'tcx> { self.interners.intern_predicate(binder) } #[inline] pub fn reuse_or_mk_predicate( self, pred: Predicate<'tcx>, binder: Binder<'tcx, PredicateKind<'tcx>>, ) -> Predicate<'tcx> { if pred.kind() != binder { self.mk_predicate(binder) } else { pred } } pub fn mk_mach_int(self, tm: IntTy) -> Ty<'tcx> { match tm { IntTy::Isize => self.types.isize, IntTy::I8 => self.types.i8, IntTy::I16 => self.types.i16, IntTy::I32 => self.types.i32, IntTy::I64 => self.types.i64, IntTy::I128 => self.types.i128, } } pub fn mk_mach_uint(self, tm: UintTy) -> Ty<'tcx> { match tm { UintTy::Usize => self.types.usize, UintTy::U8 => self.types.u8, UintTy::U16 => self.types.u16, UintTy::U32 => self.types.u32, UintTy::U64 => self.types.u64, UintTy::U128 => self.types.u128, } } pub fn mk_mach_float(self, tm: FloatTy) -> Ty<'tcx> { match tm { FloatTy::F32 => self.types.f32, FloatTy::F64 => self.types.f64, } } #[inline] pub fn mk_static_str(self) -> Ty<'tcx> { self.mk_imm_ref(self.lifetimes.re_static, self.types.str_) } #[inline] pub fn mk_adt(self, def: AdtDef<'tcx>, substs: SubstsRef<'tcx>) -> Ty<'tcx> { // Take a copy of substs so that we own the vectors inside. self.mk_ty(Adt(def, substs)) } #[inline] pub fn mk_foreign(self, def_id: DefId) -> Ty<'tcx> { self.mk_ty(Foreign(def_id)) } fn mk_generic_adt(self, wrapper_def_id: DefId, ty_param: Ty<'tcx>) -> Ty<'tcx> { let adt_def = self.adt_def(wrapper_def_id); let substs = InternalSubsts::for_item(self, wrapper_def_id, |param, substs| match param.kind { GenericParamDefKind::Lifetime | GenericParamDefKind::Const { .. } => bug!(), GenericParamDefKind::Type { has_default, .. } => { if param.index == 0 { ty_param.into() } else { assert!(has_default); self.bound_type_of(param.def_id).subst(self, substs).into() } } }); self.mk_ty(Adt(adt_def, substs)) } #[inline] pub fn mk_box(self, ty: Ty<'tcx>) -> Ty<'tcx> { let def_id = self.require_lang_item(LangItem::OwnedBox, None); self.mk_generic_adt(def_id, ty) } #[inline] pub fn mk_lang_item(self, ty: Ty<'tcx>, item: LangItem) -> Option> { let def_id = self.lang_items().require(item).ok()?; Some(self.mk_generic_adt(def_id, ty)) } #[inline] pub fn mk_diagnostic_item(self, ty: Ty<'tcx>, name: Symbol) -> Option> { let def_id = self.get_diagnostic_item(name)?; Some(self.mk_generic_adt(def_id, ty)) } #[inline] pub fn mk_maybe_uninit(self, ty: Ty<'tcx>) -> Ty<'tcx> { let def_id = self.require_lang_item(LangItem::MaybeUninit, None); self.mk_generic_adt(def_id, ty) } #[inline] pub fn mk_ptr(self, tm: TypeAndMut<'tcx>) -> Ty<'tcx> { self.mk_ty(RawPtr(tm)) } #[inline] pub fn mk_ref(self, r: Region<'tcx>, tm: TypeAndMut<'tcx>) -> Ty<'tcx> { self.mk_ty(Ref(r, tm.ty, tm.mutbl)) } #[inline] pub fn mk_mut_ref(self, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ref(r, TypeAndMut { ty, mutbl: hir::Mutability::Mut }) } #[inline] pub fn mk_imm_ref(self, r: Region<'tcx>, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ref(r, TypeAndMut { ty, mutbl: hir::Mutability::Not }) } #[inline] pub fn mk_mut_ptr(self, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ptr(TypeAndMut { ty, mutbl: hir::Mutability::Mut }) } #[inline] pub fn mk_imm_ptr(self, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ptr(TypeAndMut { ty, mutbl: hir::Mutability::Not }) } #[inline] pub fn mk_array(self, ty: Ty<'tcx>, n: u64) -> Ty<'tcx> { self.mk_ty(Array(ty, ty::Const::from_usize(self, n))) } #[inline] pub fn mk_slice(self, ty: Ty<'tcx>) -> Ty<'tcx> { self.mk_ty(Slice(ty)) } #[inline] pub fn intern_tup(self, ts: &[Ty<'tcx>]) -> Ty<'tcx> { self.mk_ty(Tuple(self.intern_type_list(&ts))) } pub fn mk_tup], Ty<'tcx>>>(self, iter: I) -> I::Output { iter.intern_with(|ts| self.mk_ty(Tuple(self.intern_type_list(&ts)))) } #[inline] pub fn mk_unit(self) -> Ty<'tcx> { self.types.unit } #[inline] pub fn mk_diverging_default(self) -> Ty<'tcx> { if self.features().never_type_fallback { self.types.never } else { self.types.unit } } #[inline] pub fn mk_fn_def(self, def_id: DefId, substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(FnDef(def_id, substs)) } #[inline] pub fn mk_fn_ptr(self, fty: PolyFnSig<'tcx>) -> Ty<'tcx> { self.mk_ty(FnPtr(fty)) } #[inline] pub fn mk_dynamic( self, obj: &'tcx List>>, reg: ty::Region<'tcx>, repr: DynKind, ) -> Ty<'tcx> { self.mk_ty(Dynamic(obj, reg, repr)) } #[inline] pub fn mk_projection(self, item_def_id: DefId, substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(Projection(ProjectionTy { item_def_id, substs })) } #[inline] pub fn mk_closure(self, closure_id: DefId, closure_substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(Closure(closure_id, closure_substs)) } #[inline] pub fn mk_generator( self, id: DefId, generator_substs: SubstsRef<'tcx>, movability: hir::Movability, ) -> Ty<'tcx> { self.mk_ty(Generator(id, generator_substs, movability)) } #[inline] pub fn mk_generator_witness(self, types: ty::Binder<'tcx, &'tcx List>>) -> Ty<'tcx> { self.mk_ty(GeneratorWitness(types)) } #[inline] pub fn mk_ty_var(self, v: TyVid) -> Ty<'tcx> { self.mk_ty_infer(TyVar(v)) } #[inline] pub fn mk_const_var(self, v: ConstVid<'tcx>, ty: Ty<'tcx>) -> Const<'tcx> { self.mk_const(ty::ConstS { kind: ty::ConstKind::Infer(InferConst::Var(v)), ty }) } #[inline] pub fn mk_int_var(self, v: IntVid) -> Ty<'tcx> { self.mk_ty_infer(IntVar(v)) } #[inline] pub fn mk_float_var(self, v: FloatVid) -> Ty<'tcx> { self.mk_ty_infer(FloatVar(v)) } #[inline] pub fn mk_ty_infer(self, it: InferTy) -> Ty<'tcx> { self.mk_ty(Infer(it)) } #[inline] pub fn mk_const_infer(self, ic: InferConst<'tcx>, ty: Ty<'tcx>) -> ty::Const<'tcx> { self.mk_const(ty::ConstS { kind: ty::ConstKind::Infer(ic), ty }) } #[inline] pub fn mk_ty_param(self, index: u32, name: Symbol) -> Ty<'tcx> { self.mk_ty(Param(ParamTy { index, name })) } #[inline] pub fn mk_const_param(self, index: u32, name: Symbol, ty: Ty<'tcx>) -> Const<'tcx> { self.mk_const(ty::ConstS { kind: ty::ConstKind::Param(ParamConst { index, name }), ty }) } pub fn mk_param_from_def(self, param: &ty::GenericParamDef) -> GenericArg<'tcx> { match param.kind { GenericParamDefKind::Lifetime => { self.mk_region(ty::ReEarlyBound(param.to_early_bound_region_data())).into() } GenericParamDefKind::Type { .. } => self.mk_ty_param(param.index, param.name).into(), GenericParamDefKind::Const { .. } => { self.mk_const_param(param.index, param.name, self.type_of(param.def_id)).into() } } } #[inline] pub fn mk_opaque(self, def_id: DefId, substs: SubstsRef<'tcx>) -> Ty<'tcx> { self.mk_ty(Opaque(def_id, substs)) } pub fn mk_place_field(self, place: Place<'tcx>, f: Field, ty: Ty<'tcx>) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Field(f, ty)) } pub fn mk_place_deref(self, place: Place<'tcx>) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Deref) } pub fn mk_place_downcast( self, place: Place<'tcx>, adt_def: AdtDef<'tcx>, variant_index: VariantIdx, ) -> Place<'tcx> { self.mk_place_elem( place, PlaceElem::Downcast(Some(adt_def.variant(variant_index).name), variant_index), ) } pub fn mk_place_downcast_unnamed( self, place: Place<'tcx>, variant_index: VariantIdx, ) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Downcast(None, variant_index)) } pub fn mk_place_index(self, place: Place<'tcx>, index: Local) -> Place<'tcx> { self.mk_place_elem(place, PlaceElem::Index(index)) } /// This method copies `Place`'s projection, add an element and reintern it. Should not be used /// to build a full `Place` it's just a convenient way to grab a projection and modify it in /// flight. pub fn mk_place_elem(self, place: Place<'tcx>, elem: PlaceElem<'tcx>) -> Place<'tcx> { let mut projection = place.projection.to_vec(); projection.push(elem); Place { local: place.local, projection: self.intern_place_elems(&projection) } } pub fn intern_poly_existential_predicates( self, eps: &[ty::Binder<'tcx, ExistentialPredicate<'tcx>>], ) -> &'tcx List>> { assert!(!eps.is_empty()); assert!( eps.array_windows() .all(|[a, b]| a.skip_binder().stable_cmp(self, &b.skip_binder()) != Ordering::Greater) ); self._intern_poly_existential_predicates(eps) } pub fn intern_predicates(self, preds: &[Predicate<'tcx>]) -> &'tcx List> { // FIXME consider asking the input slice to be sorted to avoid // re-interning permutations, in which case that would be asserted // here. if preds.is_empty() { // The macro-generated method below asserts we don't intern an empty slice. List::empty() } else { self._intern_predicates(preds) } } pub fn intern_type_list(self, ts: &[Ty<'tcx>]) -> &'tcx List> { if ts.is_empty() { List::empty() } else { // Actually intern type lists as lists of `GenericArg`s. // // Transmuting from `Ty<'tcx>` to `GenericArg<'tcx>` is sound // as explained in ty_slice_as_generic_arg`. With this, // we guarantee that even when transmuting between `List>` // and `List>`, the uniqueness requirement for // lists is upheld. let substs = self._intern_substs(ty::subst::ty_slice_as_generic_args(ts)); substs.try_as_type_list().unwrap() } } pub fn intern_substs(self, ts: &[GenericArg<'tcx>]) -> &'tcx List> { if ts.is_empty() { List::empty() } else { self._intern_substs(ts) } } pub fn intern_projs(self, ps: &[ProjectionKind]) -> &'tcx List { if ps.is_empty() { List::empty() } else { self._intern_projs(ps) } } pub fn intern_place_elems(self, ts: &[PlaceElem<'tcx>]) -> &'tcx List> { if ts.is_empty() { List::empty() } else { self._intern_place_elems(ts) } } pub fn intern_canonical_var_infos( self, ts: &[CanonicalVarInfo<'tcx>], ) -> CanonicalVarInfos<'tcx> { if ts.is_empty() { List::empty() } else { self._intern_canonical_var_infos(ts) } } pub fn intern_bound_variable_kinds( self, ts: &[ty::BoundVariableKind], ) -> &'tcx List { if ts.is_empty() { List::empty() } else { self._intern_bound_variable_kinds(ts) } } pub fn mk_fn_sig( self, inputs: I, output: I::Item, c_variadic: bool, unsafety: hir::Unsafety, abi: abi::Abi, ) -> , ty::FnSig<'tcx>>>::Output where I: Iterator, ty::FnSig<'tcx>>>, { inputs.chain(iter::once(output)).intern_with(|xs| ty::FnSig { inputs_and_output: self.intern_type_list(xs), c_variadic, unsafety, abi, }) } pub fn mk_poly_existential_predicates< I: InternAs< [ty::Binder<'tcx, ExistentialPredicate<'tcx>>], &'tcx List>>, >, >( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_poly_existential_predicates(xs)) } pub fn mk_predicates], &'tcx List>>>( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_predicates(xs)) } pub fn mk_type_list], &'tcx List>>>(self, iter: I) -> I::Output { iter.intern_with(|xs| self.intern_type_list(xs)) } pub fn mk_substs], &'tcx List>>>( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_substs(xs)) } pub fn mk_place_elems], &'tcx List>>>( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_place_elems(xs)) } pub fn mk_substs_trait(self, self_ty: Ty<'tcx>, rest: &[GenericArg<'tcx>]) -> SubstsRef<'tcx> { self.mk_substs(iter::once(self_ty.into()).chain(rest.iter().cloned())) } pub fn mk_bound_variable_kinds< I: InternAs<[ty::BoundVariableKind], &'tcx List>, >( self, iter: I, ) -> I::Output { iter.intern_with(|xs| self.intern_bound_variable_kinds(xs)) } /// Emit a lint at `span` from a lint struct (some type that implements `DecorateLint`, /// typically generated by `#[derive(LintDiagnostic)]`). pub fn emit_spanned_lint( self, lint: &'static Lint, hir_id: HirId, span: impl Into, decorator: impl for<'a> DecorateLint<'a, ()>, ) { self.struct_span_lint_hir(lint, hir_id, span, decorator.msg(), |diag| { decorator.decorate_lint(diag) }) } /// Emit a lint at the appropriate level for a hir node, with an associated span. /// /// Return value of the `decorate` closure is ignored, see [`struct_lint_level`] for a detailed explanation. /// /// [`struct_lint_level`]: rustc_middle::lint::struct_lint_level#decorate-signature pub fn struct_span_lint_hir( self, lint: &'static Lint, hir_id: HirId, span: impl Into, msg: impl Into, decorate: impl for<'a, 'b> FnOnce( &'b mut DiagnosticBuilder<'a, ()>, ) -> &'b mut DiagnosticBuilder<'a, ()>, ) { let (level, src) = self.lint_level_at_node(lint, hir_id); struct_lint_level(self.sess, lint, level, src, Some(span.into()), msg, decorate); } /// Emit a lint from a lint struct (some type that implements `DecorateLint`, typically /// generated by `#[derive(LintDiagnostic)]`). pub fn emit_lint( self, lint: &'static Lint, id: HirId, decorator: impl for<'a> DecorateLint<'a, ()>, ) { self.struct_lint_node(lint, id, decorator.msg(), |diag| decorator.decorate_lint(diag)) } /// Emit a lint at the appropriate level for a hir node. /// /// Return value of the `decorate` closure is ignored, see [`struct_lint_level`] for a detailed explanation. /// /// [`struct_lint_level`]: rustc_middle::lint::struct_lint_level#decorate-signature pub fn struct_lint_node( self, lint: &'static Lint, id: HirId, msg: impl Into, decorate: impl for<'a, 'b> FnOnce( &'b mut DiagnosticBuilder<'a, ()>, ) -> &'b mut DiagnosticBuilder<'a, ()>, ) { let (level, src) = self.lint_level_at_node(lint, id); struct_lint_level(self.sess, lint, level, src, None, msg, decorate); } pub fn in_scope_traits(self, id: HirId) -> Option<&'tcx [TraitCandidate]> { let map = self.in_scope_traits_map(id.owner)?; let candidates = map.get(&id.local_id)?; Some(&*candidates) } pub fn named_region(self, id: HirId) -> Option { debug!(?id, "named_region"); self.named_region_map(id.owner).and_then(|map| map.get(&id.local_id).cloned()) } pub fn is_late_bound(self, id: HirId) -> bool { self.is_late_bound_map(id.owner.def_id).map_or(false, |set| { let def_id = self.hir().local_def_id(id); set.contains(&def_id) }) } pub fn late_bound_vars(self, id: HirId) -> &'tcx List { self.mk_bound_variable_kinds( self.late_bound_vars_map(id.owner) .and_then(|map| map.get(&id.local_id).cloned()) .unwrap_or_else(|| { bug!("No bound vars found for {:?} ({:?})", self.hir().node_to_string(id), id) }) .iter(), ) } /// Whether the `def_id` counts as const fn in the current crate, considering all active /// feature gates pub fn is_const_fn(self, def_id: DefId) -> bool { if self.is_const_fn_raw(def_id) { match self.lookup_const_stability(def_id) { Some(stability) if stability.is_const_unstable() => { // has a `rustc_const_unstable` attribute, check whether the user enabled the // corresponding feature gate. self.features() .declared_lib_features .iter() .any(|&(sym, _)| sym == stability.feature) } // functions without const stability are either stable user written // const fn or the user is using feature gates and we thus don't // care what they do _ => true, } } else { false } } /// Whether the trait impl is marked const. This does not consider stability or feature gates. pub fn is_const_trait_impl_raw(self, def_id: DefId) -> bool { let Some(local_def_id) = def_id.as_local() else { return false }; let hir_id = self.local_def_id_to_hir_id(local_def_id); let node = self.hir().get(hir_id); matches!( node, hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(hir::Impl { constness: hir::Constness::Const, .. }), .. }) ) } } impl<'tcx> TyCtxtAt<'tcx> { /// Constructs a `TyKind::Error` type and registers a `delay_span_bug` to ensure it gets used. #[track_caller] pub fn ty_error(self) -> Ty<'tcx> { self.tcx.ty_error_with_message(self.span, "TyKind::Error constructed but no error reported") } /// Constructs a `TyKind::Error` type and registers a `delay_span_bug` with the given `msg to /// ensure it gets used. #[track_caller] pub fn ty_error_with_message(self, msg: &str) -> Ty<'tcx> { self.tcx.ty_error_with_message(self.span, msg) } } /// Parameter attributes that can only be determined by examining the body of a function instead /// of just its signature. /// /// These can be useful for optimization purposes when a function is directly called. We compute /// them and store them into the crate metadata so that downstream crates can make use of them. /// /// Right now, we only have `read_only`, but `no_capture` and `no_alias` might be useful in the /// future. #[derive(Clone, Copy, PartialEq, Debug, Default, TyDecodable, TyEncodable, HashStable)] pub struct DeducedParamAttrs { /// The parameter is marked immutable in the function and contains no `UnsafeCell` (i.e. its /// type is freeze). pub read_only: bool, } // We are comparing types with different invariant lifetimes, so `ptr::eq` // won't work for us. fn ptr_eq(t: *const T, u: *const U) -> bool { t as *const () == u as *const () } pub fn provide(providers: &mut ty::query::Providers) { providers.resolutions = |tcx, ()| &tcx.untracked_resolutions; providers.resolver_for_lowering = |tcx, ()| &tcx.untracked_resolver_for_lowering; providers.module_reexports = |tcx, id| tcx.resolutions(()).reexport_map.get(&id).map(|v| &v[..]); providers.crate_name = |tcx, id| { assert_eq!(id, LOCAL_CRATE); tcx.crate_name }; providers.maybe_unused_trait_imports = |tcx, ()| &tcx.resolutions(()).maybe_unused_trait_imports; providers.maybe_unused_extern_crates = |tcx, ()| &tcx.resolutions(()).maybe_unused_extern_crates[..]; providers.names_imported_by_glob_use = |tcx, id| { tcx.arena.alloc(tcx.resolutions(()).glob_map.get(&id).cloned().unwrap_or_default()) }; providers.extern_mod_stmt_cnum = |tcx, id| tcx.resolutions(()).extern_crate_map.get(&id).cloned(); providers.output_filenames = |tcx, ()| &tcx.output_filenames; providers.features_query = |tcx, ()| tcx.sess.features_untracked(); providers.is_panic_runtime = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); tcx.sess.contains_name(tcx.hir().krate_attrs(), sym::panic_runtime) }; providers.is_compiler_builtins = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); tcx.sess.contains_name(tcx.hir().krate_attrs(), sym::compiler_builtins) }; providers.has_panic_handler = |tcx, cnum| { assert_eq!(cnum, LOCAL_CRATE); // We want to check if the panic handler was defined in this crate tcx.lang_items().panic_impl().map_or(false, |did| did.is_local()) }; }