//! A folding traversal mechanism for complex data structures that contain type //! information. //! //! This is a modifying traversal. It consumes the data structure, producing a //! (possibly) modified version of it. Both fallible and infallible versions are //! available. The name is potentially confusing, because this traversal is more //! like `Iterator::map` than `Iterator::fold`. //! //! This traversal has limited flexibility. Only a small number of "types of //! interest" within the complex data structures can receive custom //! modification. These are the ones containing the most important type-related //! information, such as `Ty`, `Predicate`, `Region`, and `Const`. //! //! There are three groups of traits involved in each traversal. //! - `TypeFoldable`. This is implemented once for many types, including: //! - Types of interest, for which the methods delegate to the folder. //! - All other types, including generic containers like `Vec` and `Option`. //! It defines a "skeleton" of how they should be folded. //! - `TypeSuperFoldable`. This is implemented only for each type of interest, //! and defines the folding "skeleton" for these types. //! - `TypeFolder`/`FallibleTypeFolder. One of these is implemented for each //! folder. This defines how types of interest are folded. //! //! This means each fold is a mixture of (a) generic folding operations, and (b) //! custom fold operations that are specific to the folder. //! - The `TypeFoldable` impls handle most of the traversal, and call into //! `TypeFolder`/`FallibleTypeFolder` when they encounter a type of interest. //! - A `TypeFolder`/`FallibleTypeFolder` may call into another `TypeFoldable` //! impl, because some of the types of interest are recursive and can contain //! other types of interest. //! - A `TypeFolder`/`FallibleTypeFolder` may also call into a `TypeSuperFoldable` //! impl, because each folder might provide custom handling only for some types //! of interest, or only for some variants of each type of interest, and then //! use default traversal for the remaining cases. //! //! For example, if you have `struct S(Ty, U)` where `S: TypeFoldable` and `U: //! TypeFoldable`, and an instance `s = S(ty, u)`, it would be folded like so: //! ```text //! s.fold_with(folder) calls //! - ty.fold_with(folder) calls //! - folder.fold_ty(ty) may call //! - ty.super_fold_with(folder) //! - u.fold_with(folder) //! ``` use crate::ty::{self, Binder, BoundTy, Ty, TyCtxt, TypeVisitable}; use rustc_data_structures::fx::FxIndexMap; use rustc_hir::def_id::DefId; use std::collections::BTreeMap; /// This trait is implemented for every type that can be folded, /// providing the skeleton of the traversal. /// /// To implement this conveniently, use the derive macro located in /// `rustc_macros`. pub trait TypeFoldable<'tcx>: TypeVisitable<'tcx> { /// The entry point for folding. To fold a value `t` with a folder `f` /// call: `t.try_fold_with(f)`. /// /// For most types, this just traverses the value, calling `try_fold_with` /// on each field/element. /// /// For types of interest (such as `Ty`), the implementation of method /// calls a folder method specifically for that type (such as /// `F::try_fold_ty`). This is where control transfers from `TypeFoldable` /// to `TypeFolder`. fn try_fold_with>(self, folder: &mut F) -> Result; /// A convenient alternative to `try_fold_with` for use with infallible /// folders. Do not override this method, to ensure coherence with /// `try_fold_with`. fn fold_with>(self, folder: &mut F) -> Self { self.try_fold_with(folder).into_ok() } } // This trait is implemented for types of interest. pub trait TypeSuperFoldable<'tcx>: TypeFoldable<'tcx> { /// Provides a default fold for a type of interest. This should only be /// called within `TypeFolder` methods, when a non-custom traversal is /// desired for the value of the type of interest passed to that method. /// For example, in `MyFolder::try_fold_ty(ty)`, it is valid to call /// `ty.try_super_fold_with(self)`, but any other folding should be done /// with `xyz.try_fold_with(self)`. fn try_super_fold_with>( self, folder: &mut F, ) -> Result; /// A convenient alternative to `try_super_fold_with` for use with /// infallible folders. Do not override this method, to ensure coherence /// with `try_super_fold_with`. fn super_fold_with>(self, folder: &mut F) -> Self { self.try_super_fold_with(folder).into_ok() } } /// This trait is implemented for every infallible folding traversal. There is /// a fold method defined for every type of interest. Each such method has a /// default that does an "identity" fold. Implementations of these methods /// often fall back to a `super_fold_with` method if the primary argument /// doesn't satisfy a particular condition. /// /// A blanket implementation of [`FallibleTypeFolder`] will defer to /// the infallible methods of this trait to ensure that the two APIs /// are coherent. pub trait TypeFolder<'tcx>: FallibleTypeFolder<'tcx, Error = !> { fn tcx<'a>(&'a self) -> TyCtxt<'tcx>; fn fold_binder(&mut self, t: Binder<'tcx, T>) -> Binder<'tcx, T> where T: TypeFoldable<'tcx>, { t.super_fold_with(self) } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { t.super_fold_with(self) } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { r.super_fold_with(self) } fn fold_const(&mut self, c: ty::Const<'tcx>) -> ty::Const<'tcx> { c.super_fold_with(self) } fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> { p.super_fold_with(self) } } /// This trait is implemented for every folding traversal. There is a fold /// method defined for every type of interest. Each such method has a default /// that does an "identity" fold. /// /// A blanket implementation of this trait (that defers to the relevant /// method of [`TypeFolder`]) is provided for all infallible folders in /// order to ensure the two APIs are coherent. pub trait FallibleTypeFolder<'tcx>: Sized { type Error; fn tcx<'a>(&'a self) -> TyCtxt<'tcx>; fn try_fold_binder(&mut self, t: Binder<'tcx, T>) -> Result, Self::Error> where T: TypeFoldable<'tcx>, { t.try_super_fold_with(self) } fn try_fold_ty(&mut self, t: Ty<'tcx>) -> Result, Self::Error> { t.try_super_fold_with(self) } fn try_fold_region(&mut self, r: ty::Region<'tcx>) -> Result, Self::Error> { r.try_super_fold_with(self) } fn try_fold_const(&mut self, c: ty::Const<'tcx>) -> Result, Self::Error> { c.try_super_fold_with(self) } fn try_fold_predicate( &mut self, p: ty::Predicate<'tcx>, ) -> Result, Self::Error> { p.try_super_fold_with(self) } } // This blanket implementation of the fallible trait for infallible folders // delegates to infallible methods to ensure coherence. impl<'tcx, F> FallibleTypeFolder<'tcx> for F where F: TypeFolder<'tcx>, { type Error = !; fn tcx<'a>(&'a self) -> TyCtxt<'tcx> { TypeFolder::tcx(self) } fn try_fold_binder(&mut self, t: Binder<'tcx, T>) -> Result, !> where T: TypeFoldable<'tcx>, { Ok(self.fold_binder(t)) } fn try_fold_ty(&mut self, t: Ty<'tcx>) -> Result, !> { Ok(self.fold_ty(t)) } fn try_fold_region(&mut self, r: ty::Region<'tcx>) -> Result, !> { Ok(self.fold_region(r)) } fn try_fold_const(&mut self, c: ty::Const<'tcx>) -> Result, !> { Ok(self.fold_const(c)) } fn try_fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> Result, !> { Ok(self.fold_predicate(p)) } } /////////////////////////////////////////////////////////////////////////// // Some sample folders pub struct BottomUpFolder<'tcx, F, G, H> where F: FnMut(Ty<'tcx>) -> Ty<'tcx>, G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>, H: FnMut(ty::Const<'tcx>) -> ty::Const<'tcx>, { pub tcx: TyCtxt<'tcx>, pub ty_op: F, pub lt_op: G, pub ct_op: H, } impl<'tcx, F, G, H> TypeFolder<'tcx> for BottomUpFolder<'tcx, F, G, H> where F: FnMut(Ty<'tcx>) -> Ty<'tcx>, G: FnMut(ty::Region<'tcx>) -> ty::Region<'tcx>, H: FnMut(ty::Const<'tcx>) -> ty::Const<'tcx>, { fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.tcx } fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { let t = ty.super_fold_with(self); (self.ty_op)(t) } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { let r = r.super_fold_with(self); (self.lt_op)(r) } fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { let ct = ct.super_fold_with(self); (self.ct_op)(ct) } } /////////////////////////////////////////////////////////////////////////// // Region folder impl<'tcx> TyCtxt<'tcx> { /// Folds the escaping and free regions in `value` using `f`, and /// sets `skipped_regions` to true if any late-bound region was found /// and skipped. pub fn fold_regions( self, value: T, mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>, ) -> T where T: TypeFoldable<'tcx>, { value.fold_with(&mut RegionFolder::new(self, &mut f)) } pub fn super_fold_regions( self, value: T, mut f: impl FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>, ) -> T where T: TypeSuperFoldable<'tcx>, { value.super_fold_with(&mut RegionFolder::new(self, &mut f)) } } /// Folds over the substructure of a type, visiting its component /// types and all regions that occur *free* within it. /// /// That is, `Ty` can contain function or method types that bind /// regions at the call site (`ReLateBound`), and occurrences of /// regions (aka "lifetimes") that are bound within a type are not /// visited by this folder; only regions that occur free will be /// visited by `fld_r`. pub struct RegionFolder<'a, 'tcx> { tcx: TyCtxt<'tcx>, /// Stores the index of a binder *just outside* the stuff we have /// visited. So this begins as INNERMOST; when we pass through a /// binder, it is incremented (via `shift_in`). current_index: ty::DebruijnIndex, /// Callback invokes for each free region. The `DebruijnIndex` /// points to the binder *just outside* the ones we have passed /// through. fold_region_fn: &'a mut (dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx> + 'a), } impl<'a, 'tcx> RegionFolder<'a, 'tcx> { #[inline] pub fn new( tcx: TyCtxt<'tcx>, fold_region_fn: &'a mut dyn FnMut(ty::Region<'tcx>, ty::DebruijnIndex) -> ty::Region<'tcx>, ) -> RegionFolder<'a, 'tcx> { RegionFolder { tcx, current_index: ty::INNERMOST, fold_region_fn } } } impl<'a, 'tcx> TypeFolder<'tcx> for RegionFolder<'a, 'tcx> { fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.tcx } fn fold_binder>( &mut self, t: ty::Binder<'tcx, T>, ) -> ty::Binder<'tcx, T> { self.current_index.shift_in(1); let t = t.super_fold_with(self); self.current_index.shift_out(1); t } #[instrument(skip(self), level = "debug", ret)] fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { match *r { ty::ReLateBound(debruijn, _) if debruijn < self.current_index => { debug!(?self.current_index, "skipped bound region"); r } _ => { debug!(?self.current_index, "folding free region"); (self.fold_region_fn)(r, self.current_index) } } } } /////////////////////////////////////////////////////////////////////////// // Bound vars replacer pub trait BoundVarReplacerDelegate<'tcx> { fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx>; fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx>; fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx>; } pub struct FnMutDelegate<'a, 'tcx> { pub regions: &'a mut (dyn FnMut(ty::BoundRegion) -> ty::Region<'tcx> + 'a), pub types: &'a mut (dyn FnMut(ty::BoundTy) -> Ty<'tcx> + 'a), pub consts: &'a mut (dyn FnMut(ty::BoundVar, Ty<'tcx>) -> ty::Const<'tcx> + 'a), } impl<'a, 'tcx> BoundVarReplacerDelegate<'tcx> for FnMutDelegate<'a, 'tcx> { fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> { (self.regions)(br) } fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> { (self.types)(bt) } fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> { (self.consts)(bv, ty) } } /// Replaces the escaping bound vars (late bound regions or bound types) in a type. struct BoundVarReplacer<'tcx, D> { tcx: TyCtxt<'tcx>, /// As with `RegionFolder`, represents the index of a binder *just outside* /// the ones we have visited. current_index: ty::DebruijnIndex, delegate: D, } impl<'tcx, D: BoundVarReplacerDelegate<'tcx>> BoundVarReplacer<'tcx, D> { fn new(tcx: TyCtxt<'tcx>, delegate: D) -> Self { BoundVarReplacer { tcx, current_index: ty::INNERMOST, delegate } } } impl<'tcx, D> TypeFolder<'tcx> for BoundVarReplacer<'tcx, D> where D: BoundVarReplacerDelegate<'tcx>, { fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.tcx } fn fold_binder>( &mut self, t: ty::Binder<'tcx, T>, ) -> ty::Binder<'tcx, T> { self.current_index.shift_in(1); let t = t.super_fold_with(self); self.current_index.shift_out(1); t } fn fold_ty(&mut self, t: Ty<'tcx>) -> Ty<'tcx> { match *t.kind() { ty::Bound(debruijn, bound_ty) if debruijn == self.current_index => { let ty = self.delegate.replace_ty(bound_ty); debug_assert!(!ty.has_vars_bound_above(ty::INNERMOST)); ty::fold::shift_vars(self.tcx, ty, self.current_index.as_u32()) } _ if t.has_vars_bound_at_or_above(self.current_index) => t.super_fold_with(self), _ => t, } } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { match *r { ty::ReLateBound(debruijn, br) if debruijn == self.current_index => { let region = self.delegate.replace_region(br); if let ty::ReLateBound(debruijn1, br) = *region { // If the callback returns a late-bound region, // that region should always use the INNERMOST // debruijn index. Then we adjust it to the // correct depth. assert_eq!(debruijn1, ty::INNERMOST); self.tcx.reuse_or_mk_region(region, ty::ReLateBound(debruijn, br)) } else { region } } _ => r, } } fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { match ct.kind() { ty::ConstKind::Bound(debruijn, bound_const) if debruijn == self.current_index => { let ct = self.delegate.replace_const(bound_const, ct.ty()); debug_assert!(!ct.has_vars_bound_above(ty::INNERMOST)); ty::fold::shift_vars(self.tcx, ct, self.current_index.as_u32()) } _ => ct.super_fold_with(self), } } fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> { if p.has_vars_bound_at_or_above(self.current_index) { p.super_fold_with(self) } else { p } } } impl<'tcx> TyCtxt<'tcx> { /// Replaces all regions bound by the given `Binder` with the /// results returned by the closure; the closure is expected to /// return a free region (relative to this binder), and hence the /// binder is removed in the return type. The closure is invoked /// once for each unique `BoundRegionKind`; multiple references to the /// same `BoundRegionKind` will reuse the previous result. A map is /// returned at the end with each bound region and the free region /// that replaced it. /// /// # Panics /// /// This method only replaces late bound regions. Any types or /// constants bound by `value` will cause an ICE. pub fn replace_late_bound_regions( self, value: Binder<'tcx, T>, mut fld_r: F, ) -> (T, BTreeMap>) where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>, T: TypeFoldable<'tcx>, { let mut region_map = BTreeMap::new(); let real_fld_r = |br: ty::BoundRegion| *region_map.entry(br).or_insert_with(|| fld_r(br)); let value = self.replace_late_bound_regions_uncached(value, real_fld_r); (value, region_map) } pub fn replace_late_bound_regions_uncached( self, value: Binder<'tcx, T>, mut replace_regions: F, ) -> T where F: FnMut(ty::BoundRegion) -> ty::Region<'tcx>, T: TypeFoldable<'tcx>, { let value = value.skip_binder(); if !value.has_escaping_bound_vars() { value } else { let delegate = FnMutDelegate { regions: &mut replace_regions, types: &mut |b| bug!("unexpected bound ty in binder: {b:?}"), consts: &mut |b, ty| bug!("unexpected bound ct in binder: {b:?} {ty}"), }; let mut replacer = BoundVarReplacer::new(self, delegate); value.fold_with(&mut replacer) } } /// Replaces all escaping bound vars. The `fld_r` closure replaces escaping /// bound regions; the `fld_t` closure replaces escaping bound types and the `fld_c` /// closure replaces escaping bound consts. pub fn replace_escaping_bound_vars_uncached>( self, value: T, delegate: impl BoundVarReplacerDelegate<'tcx>, ) -> T { if !value.has_escaping_bound_vars() { value } else { let mut replacer = BoundVarReplacer::new(self, delegate); value.fold_with(&mut replacer) } } /// Replaces all types or regions bound by the given `Binder`. The `fld_r` /// closure replaces bound regions, the `fld_t` closure replaces bound /// types, and `fld_c` replaces bound constants. pub fn replace_bound_vars_uncached>( self, value: Binder<'tcx, T>, delegate: impl BoundVarReplacerDelegate<'tcx>, ) -> T { self.replace_escaping_bound_vars_uncached(value.skip_binder(), delegate) } /// Replaces any late-bound regions bound in `value` with /// free variants attached to `all_outlive_scope`. pub fn liberate_late_bound_regions( self, all_outlive_scope: DefId, value: ty::Binder<'tcx, T>, ) -> T where T: TypeFoldable<'tcx>, { self.replace_late_bound_regions_uncached(value, |br| { self.mk_region(ty::ReFree(ty::FreeRegion { scope: all_outlive_scope, bound_region: br.kind, })) }) } pub fn shift_bound_var_indices(self, bound_vars: usize, value: T) -> T where T: TypeFoldable<'tcx>, { let shift_bv = |bv: ty::BoundVar| ty::BoundVar::from_usize(bv.as_usize() + bound_vars); self.replace_escaping_bound_vars_uncached( value, FnMutDelegate { regions: &mut |r: ty::BoundRegion| { self.mk_region(ty::ReLateBound( ty::INNERMOST, ty::BoundRegion { var: shift_bv(r.var), kind: r.kind }, )) }, types: &mut |t: ty::BoundTy| { self.mk_ty(ty::Bound( ty::INNERMOST, ty::BoundTy { var: shift_bv(t.var), kind: t.kind }, )) }, consts: &mut |c, ty: Ty<'tcx>| { self.mk_const(ty::ConstKind::Bound(ty::INNERMOST, shift_bv(c)), ty) }, }, ) } /// Replaces any late-bound regions bound in `value` with `'erased`. Useful in codegen but also /// method lookup and a few other places where precise region relationships are not required. pub fn erase_late_bound_regions(self, value: Binder<'tcx, T>) -> T where T: TypeFoldable<'tcx>, { self.replace_late_bound_regions(value, |_| self.lifetimes.re_erased).0 } /// Anonymize all bound variables in `value`, this is mostly used to improve caching. pub fn anonymize_bound_vars(self, value: Binder<'tcx, T>) -> Binder<'tcx, T> where T: TypeFoldable<'tcx>, { struct Anonymize<'a, 'tcx> { tcx: TyCtxt<'tcx>, map: &'a mut FxIndexMap, } impl<'tcx> BoundVarReplacerDelegate<'tcx> for Anonymize<'_, 'tcx> { fn replace_region(&mut self, br: ty::BoundRegion) -> ty::Region<'tcx> { let entry = self.map.entry(br.var); let index = entry.index(); let var = ty::BoundVar::from_usize(index); let kind = entry .or_insert_with(|| { ty::BoundVariableKind::Region(ty::BrAnon(index as u32, None)) }) .expect_region(); let br = ty::BoundRegion { var, kind }; self.tcx.mk_region(ty::ReLateBound(ty::INNERMOST, br)) } fn replace_ty(&mut self, bt: ty::BoundTy) -> Ty<'tcx> { let entry = self.map.entry(bt.var); let index = entry.index(); let var = ty::BoundVar::from_usize(index); let kind = entry .or_insert_with(|| ty::BoundVariableKind::Ty(ty::BoundTyKind::Anon)) .expect_ty(); self.tcx.mk_ty(ty::Bound(ty::INNERMOST, BoundTy { var, kind })) } fn replace_const(&mut self, bv: ty::BoundVar, ty: Ty<'tcx>) -> ty::Const<'tcx> { let entry = self.map.entry(bv); let index = entry.index(); let var = ty::BoundVar::from_usize(index); let () = entry.or_insert_with(|| ty::BoundVariableKind::Const).expect_const(); self.tcx.mk_const(ty::ConstKind::Bound(ty::INNERMOST, var), ty) } } let mut map = Default::default(); let delegate = Anonymize { tcx: self, map: &mut map }; let inner = self.replace_escaping_bound_vars_uncached(value.skip_binder(), delegate); let bound_vars = self.mk_bound_variable_kinds(map.into_values()); Binder::bind_with_vars(inner, bound_vars) } } /////////////////////////////////////////////////////////////////////////// // Shifter // // Shifts the De Bruijn indices on all escaping bound vars by a // fixed amount. Useful in substitution or when otherwise introducing // a binding level that is not intended to capture the existing bound // vars. See comment on `shift_vars_through_binders` method in // `subst.rs` for more details. struct Shifter<'tcx> { tcx: TyCtxt<'tcx>, current_index: ty::DebruijnIndex, amount: u32, } impl<'tcx> Shifter<'tcx> { pub fn new(tcx: TyCtxt<'tcx>, amount: u32) -> Self { Shifter { tcx, current_index: ty::INNERMOST, amount } } } impl<'tcx> TypeFolder<'tcx> for Shifter<'tcx> { fn tcx<'b>(&'b self) -> TyCtxt<'tcx> { self.tcx } fn fold_binder>( &mut self, t: ty::Binder<'tcx, T>, ) -> ty::Binder<'tcx, T> { self.current_index.shift_in(1); let t = t.super_fold_with(self); self.current_index.shift_out(1); t } fn fold_region(&mut self, r: ty::Region<'tcx>) -> ty::Region<'tcx> { match *r { ty::ReLateBound(debruijn, br) if debruijn >= self.current_index => { let debruijn = debruijn.shifted_in(self.amount); let shifted = ty::ReLateBound(debruijn, br); self.tcx.mk_region(shifted) } _ => r, } } fn fold_ty(&mut self, ty: Ty<'tcx>) -> Ty<'tcx> { match *ty.kind() { ty::Bound(debruijn, bound_ty) if debruijn >= self.current_index => { let debruijn = debruijn.shifted_in(self.amount); self.tcx.mk_ty(ty::Bound(debruijn, bound_ty)) } _ if ty.has_vars_bound_at_or_above(self.current_index) => ty.super_fold_with(self), _ => ty, } } fn fold_const(&mut self, ct: ty::Const<'tcx>) -> ty::Const<'tcx> { if let ty::ConstKind::Bound(debruijn, bound_ct) = ct.kind() && debruijn >= self.current_index { let debruijn = debruijn.shifted_in(self.amount); self.tcx.mk_const(ty::ConstKind::Bound(debruijn, bound_ct), ct.ty()) } else { ct.super_fold_with(self) } } fn fold_predicate(&mut self, p: ty::Predicate<'tcx>) -> ty::Predicate<'tcx> { if p.has_vars_bound_at_or_above(self.current_index) { p.super_fold_with(self) } else { p } } } pub fn shift_region<'tcx>( tcx: TyCtxt<'tcx>, region: ty::Region<'tcx>, amount: u32, ) -> ty::Region<'tcx> { match *region { ty::ReLateBound(debruijn, br) if amount > 0 => { tcx.mk_region(ty::ReLateBound(debruijn.shifted_in(amount), br)) } _ => region, } } pub fn shift_vars<'tcx, T>(tcx: TyCtxt<'tcx>, value: T, amount: u32) -> T where T: TypeFoldable<'tcx>, { debug!("shift_vars(value={:?}, amount={})", value, amount); if amount == 0 || !value.has_escaping_bound_vars() { return value; } value.fold_with(&mut Shifter::new(tcx, amount)) }