//! This module contains implements of the `Lift` and `TypeFoldable` //! traits for various types in the Rust compiler. Most are written by //! hand, though we've recently added some macros and proc-macros to help with the tedium. use crate::mir::interpret; use crate::mir::ProjectionKind; use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable}; use crate::ty::print::{with_no_trimmed_paths, FmtPrinter, Printer}; use crate::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor}; use crate::ty::{self, InferConst, Lift, Term, Ty, TyCtxt}; use rustc_data_structures::functor::IdFunctor; use rustc_hir as hir; use rustc_hir::def::Namespace; use rustc_index::vec::{Idx, IndexVec}; use std::fmt; use std::mem::ManuallyDrop; use std::ops::ControlFlow; use std::rc::Rc; use std::sync::Arc; impl fmt::Debug for ty::TraitDef { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { ty::tls::with(|tcx| { with_no_trimmed_paths!({ f.write_str( &FmtPrinter::new(tcx, Namespace::TypeNS) .print_def_path(self.def_id, &[])? .into_buffer(), ) }) }) } } impl<'tcx> fmt::Debug for ty::AdtDef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { ty::tls::with(|tcx| { with_no_trimmed_paths!({ f.write_str( &FmtPrinter::new(tcx, Namespace::TypeNS) .print_def_path(self.did(), &[])? .into_buffer(), ) }) }) } } impl fmt::Debug for ty::UpvarId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let name = ty::tls::with(|tcx| tcx.hir().name(self.var_path.hir_id)); write!(f, "UpvarId({:?};`{}`;{:?})", self.var_path.hir_id, name, self.closure_expr_id) } } impl<'tcx> fmt::Debug for ty::ExistentialTraitRef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl<'tcx> fmt::Debug for ty::adjustment::Adjustment<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?} -> {}", self.kind, self.target) } } impl fmt::Debug for ty::BoundRegionKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ty::BrAnon(n) => write!(f, "BrAnon({:?})", n), ty::BrNamed(did, name) => { if did.is_crate_root() { write!(f, "BrNamed({})", name) } else { write!(f, "BrNamed({:?}, {})", did, name) } } ty::BrEnv => write!(f, "BrEnv"), } } } impl fmt::Debug for ty::FreeRegion { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "ReFree({:?}, {:?})", self.scope, self.bound_region) } } impl<'tcx> fmt::Debug for ty::FnSig<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "({:?}; c_variadic: {})->{:?}", self.inputs(), self.c_variadic, self.output()) } } impl<'tcx> fmt::Debug for ty::ConstVid<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "_#{}c", self.index) } } impl fmt::Debug for ty::RegionVid { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "'_#{}r", self.index()) } } impl<'tcx> fmt::Debug for ty::TraitRef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl<'tcx> fmt::Debug for Ty<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl fmt::Debug for ty::ParamTy { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/#{}", self.name, self.index) } } impl fmt::Debug for ty::ParamConst { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/#{}", self.name, self.index) } } impl<'tcx> fmt::Debug for ty::TraitPredicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let ty::BoundConstness::ConstIfConst = self.constness { write!(f, "~const ")?; } write!(f, "TraitPredicate({:?}, polarity:{:?})", self.trait_ref, self.polarity) } } impl<'tcx> fmt::Debug for ty::ProjectionPredicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "ProjectionPredicate({:?}, {:?})", self.projection_ty, self.term) } } impl<'tcx> fmt::Debug for ty::Predicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", self.kind()) } } impl<'tcx> fmt::Debug for ty::PredicateKind<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ty::PredicateKind::Trait(ref a) => a.fmt(f), ty::PredicateKind::Subtype(ref pair) => pair.fmt(f), ty::PredicateKind::Coerce(ref pair) => pair.fmt(f), ty::PredicateKind::RegionOutlives(ref pair) => pair.fmt(f), ty::PredicateKind::TypeOutlives(ref pair) => pair.fmt(f), ty::PredicateKind::Projection(ref pair) => pair.fmt(f), ty::PredicateKind::WellFormed(data) => write!(f, "WellFormed({:?})", data), ty::PredicateKind::ObjectSafe(trait_def_id) => { write!(f, "ObjectSafe({:?})", trait_def_id) } ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => { write!(f, "ClosureKind({:?}, {:?}, {:?})", closure_def_id, closure_substs, kind) } ty::PredicateKind::ConstEvaluatable(uv) => { write!(f, "ConstEvaluatable({:?}, {:?})", uv.def, uv.substs) } ty::PredicateKind::ConstEquate(c1, c2) => write!(f, "ConstEquate({:?}, {:?})", c1, c2), ty::PredicateKind::TypeWellFormedFromEnv(ty) => { write!(f, "TypeWellFormedFromEnv({:?})", ty) } } } } /////////////////////////////////////////////////////////////////////////// // Atomic structs // // For things that don't carry any arena-allocated data (and are // copy...), just add them to this list. TrivialTypeTraversalAndLiftImpls! { (), bool, usize, ::rustc_target::abi::VariantIdx, u32, u64, String, crate::middle::region::Scope, crate::ty::FloatTy, ::rustc_ast::InlineAsmOptions, ::rustc_ast::InlineAsmTemplatePiece, ::rustc_ast::NodeId, ::rustc_span::symbol::Symbol, ::rustc_hir::def::Res, ::rustc_hir::def_id::DefId, ::rustc_hir::def_id::LocalDefId, ::rustc_hir::HirId, ::rustc_hir::MatchSource, ::rustc_hir::Mutability, ::rustc_hir::Unsafety, ::rustc_target::asm::InlineAsmRegOrRegClass, ::rustc_target::spec::abi::Abi, crate::mir::coverage::ExpressionOperandId, crate::mir::coverage::CounterValueReference, crate::mir::coverage::InjectedExpressionId, crate::mir::coverage::InjectedExpressionIndex, crate::mir::coverage::MappedExpressionIndex, crate::mir::Local, crate::mir::Promoted, crate::traits::Reveal, crate::ty::adjustment::AutoBorrowMutability, crate::ty::AdtKind, crate::ty::BoundConstness, // Including `BoundRegionKind` is a *bit* dubious, but direct // references to bound region appear in `ty::Error`, and aren't // really meant to be folded. In general, we can only fold a fully // general `Region`. crate::ty::BoundRegionKind, crate::ty::AssocItem, crate::ty::AssocKind, crate::ty::Placeholder, crate::ty::ClosureKind, crate::ty::FreeRegion, crate::ty::InferTy, crate::ty::IntVarValue, crate::ty::ParamConst, crate::ty::ParamTy, crate::ty::adjustment::PointerCast, crate::ty::RegionVid, crate::ty::UniverseIndex, crate::ty::Variance, ::rustc_span::Span, ::rustc_errors::ErrorGuaranteed, } /////////////////////////////////////////////////////////////////////////// // Lift implementations // FIXME(eddyb) replace all the uses of `Option::map` with `?`. impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>> Lift<'tcx> for (A, B) { type Lifted = (A::Lifted, B::Lifted); fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some((tcx.lift(self.0)?, tcx.lift(self.1)?)) } } impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>, C: Lift<'tcx>> Lift<'tcx> for (A, B, C) { type Lifted = (A::Lifted, B::Lifted, C::Lifted); fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some((tcx.lift(self.0)?, tcx.lift(self.1)?, tcx.lift(self.2)?)) } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Option { type Lifted = Option; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { Some(x) => tcx.lift(x).map(Some), None => Some(None), } } } impl<'tcx, T: Lift<'tcx>, E: Lift<'tcx>> Lift<'tcx> for Result { type Lifted = Result; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { Ok(x) => tcx.lift(x).map(Ok), Err(e) => tcx.lift(e).map(Err), } } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Box { type Lifted = Box; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(*self).map(Box::new) } } impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Rc { type Lifted = Rc; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.as_ref().clone()).map(Rc::new) } } impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Arc { type Lifted = Arc; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.as_ref().clone()).map(Arc::new) } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Vec { type Lifted = Vec; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { self.into_iter().map(|v| tcx.lift(v)).collect() } } impl<'tcx, I: Idx, T: Lift<'tcx>> Lift<'tcx> for IndexVec { type Lifted = IndexVec; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { self.into_iter().map(|e| tcx.lift(e)).collect() } } impl<'a, 'tcx> Lift<'tcx> for ty::TraitRef<'a> { type Lifted = ty::TraitRef<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.substs).map(|substs| ty::TraitRef { def_id: self.def_id, substs }) } } impl<'a, 'tcx> Lift<'tcx> for ty::ExistentialTraitRef<'a> { type Lifted = ty::ExistentialTraitRef<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.substs).map(|substs| ty::ExistentialTraitRef { def_id: self.def_id, substs }) } } impl<'a, 'tcx> Lift<'tcx> for ty::ExistentialPredicate<'a> { type Lifted = ty::ExistentialPredicate<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { ty::ExistentialPredicate::Trait(x) => tcx.lift(x).map(ty::ExistentialPredicate::Trait), ty::ExistentialPredicate::Projection(x) => { tcx.lift(x).map(ty::ExistentialPredicate::Projection) } ty::ExistentialPredicate::AutoTrait(def_id) => { Some(ty::ExistentialPredicate::AutoTrait(def_id)) } } } } impl<'a, 'tcx> Lift<'tcx> for Term<'a> { type Lifted = ty::Term<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(match self { Term::Ty(ty) => Term::Ty(tcx.lift(ty)?), Term::Const(c) => Term::Const(tcx.lift(c)?), }) } } impl<'a, 'tcx> Lift<'tcx> for ty::TraitPredicate<'a> { type Lifted = ty::TraitPredicate<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option> { tcx.lift(self.trait_ref).map(|trait_ref| ty::TraitPredicate { trait_ref, constness: self.constness, polarity: self.polarity, }) } } impl<'a, 'tcx> Lift<'tcx> for ty::SubtypePredicate<'a> { type Lifted = ty::SubtypePredicate<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option> { tcx.lift((self.a, self.b)).map(|(a, b)| ty::SubtypePredicate { a_is_expected: self.a_is_expected, a, b, }) } } impl<'a, 'tcx> Lift<'tcx> for ty::CoercePredicate<'a> { type Lifted = ty::CoercePredicate<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option> { tcx.lift((self.a, self.b)).map(|(a, b)| ty::CoercePredicate { a, b }) } } impl<'tcx, A: Copy + Lift<'tcx>, B: Copy + Lift<'tcx>> Lift<'tcx> for ty::OutlivesPredicate { type Lifted = ty::OutlivesPredicate; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift((self.0, self.1)).map(|(a, b)| ty::OutlivesPredicate(a, b)) } } impl<'a, 'tcx> Lift<'tcx> for ty::ProjectionTy<'a> { type Lifted = ty::ProjectionTy<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option> { tcx.lift(self.substs) .map(|substs| ty::ProjectionTy { item_def_id: self.item_def_id, substs }) } } impl<'a, 'tcx> Lift<'tcx> for ty::ProjectionPredicate<'a> { type Lifted = ty::ProjectionPredicate<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option> { tcx.lift((self.projection_ty, self.term)) .map(|(projection_ty, term)| ty::ProjectionPredicate { projection_ty, term }) } } impl<'a, 'tcx> Lift<'tcx> for ty::ExistentialProjection<'a> { type Lifted = ty::ExistentialProjection<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.substs).map(|substs| ty::ExistentialProjection { substs, term: tcx.lift(self.term).expect("type must lift when substs do"), item_def_id: self.item_def_id, }) } } impl<'a, 'tcx> Lift<'tcx> for ty::PredicateKind<'a> { type Lifted = ty::PredicateKind<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { ty::PredicateKind::Trait(data) => tcx.lift(data).map(ty::PredicateKind::Trait), ty::PredicateKind::Subtype(data) => tcx.lift(data).map(ty::PredicateKind::Subtype), ty::PredicateKind::Coerce(data) => tcx.lift(data).map(ty::PredicateKind::Coerce), ty::PredicateKind::RegionOutlives(data) => { tcx.lift(data).map(ty::PredicateKind::RegionOutlives) } ty::PredicateKind::TypeOutlives(data) => { tcx.lift(data).map(ty::PredicateKind::TypeOutlives) } ty::PredicateKind::Projection(data) => { tcx.lift(data).map(ty::PredicateKind::Projection) } ty::PredicateKind::WellFormed(ty) => tcx.lift(ty).map(ty::PredicateKind::WellFormed), ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => { tcx.lift(closure_substs).map(|closure_substs| { ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) }) } ty::PredicateKind::ObjectSafe(trait_def_id) => { Some(ty::PredicateKind::ObjectSafe(trait_def_id)) } ty::PredicateKind::ConstEvaluatable(uv) => { tcx.lift(uv).map(|uv| ty::PredicateKind::ConstEvaluatable(uv)) } ty::PredicateKind::ConstEquate(c1, c2) => { tcx.lift((c1, c2)).map(|(c1, c2)| ty::PredicateKind::ConstEquate(c1, c2)) } ty::PredicateKind::TypeWellFormedFromEnv(ty) => { tcx.lift(ty).map(ty::PredicateKind::TypeWellFormedFromEnv) } } } } impl<'a, 'tcx, T: Lift<'tcx>> Lift<'tcx> for ty::Binder<'a, T> where >::Lifted: TypeVisitable<'tcx>, { type Lifted = ty::Binder<'tcx, T::Lifted>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { let bound_vars = tcx.lift(self.bound_vars()); tcx.lift(self.skip_binder()) .zip(bound_vars) .map(|(value, vars)| ty::Binder::bind_with_vars(value, vars)) } } impl<'a, 'tcx> Lift<'tcx> for ty::ParamEnv<'a> { type Lifted = ty::ParamEnv<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.caller_bounds()) .map(|caller_bounds| ty::ParamEnv::new(caller_bounds, self.reveal(), self.constness())) } } impl<'a, 'tcx, T: Lift<'tcx>> Lift<'tcx> for ty::ParamEnvAnd<'a, T> { type Lifted = ty::ParamEnvAnd<'tcx, T::Lifted>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.param_env).and_then(|param_env| { tcx.lift(self.value).map(|value| ty::ParamEnvAnd { param_env, value }) }) } } impl<'a, 'tcx> Lift<'tcx> for ty::ClosureSubsts<'a> { type Lifted = ty::ClosureSubsts<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.substs).map(|substs| ty::ClosureSubsts { substs }) } } impl<'a, 'tcx> Lift<'tcx> for ty::GeneratorSubsts<'a> { type Lifted = ty::GeneratorSubsts<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.substs).map(|substs| ty::GeneratorSubsts { substs }) } } impl<'a, 'tcx> Lift<'tcx> for ty::adjustment::Adjustment<'a> { type Lifted = ty::adjustment::Adjustment<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { let ty::adjustment::Adjustment { kind, target } = self; tcx.lift(kind).and_then(|kind| { tcx.lift(target).map(|target| ty::adjustment::Adjustment { kind, target }) }) } } impl<'a, 'tcx> Lift<'tcx> for ty::adjustment::Adjust<'a> { type Lifted = ty::adjustment::Adjust<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { ty::adjustment::Adjust::NeverToAny => Some(ty::adjustment::Adjust::NeverToAny), ty::adjustment::Adjust::Pointer(ptr) => Some(ty::adjustment::Adjust::Pointer(ptr)), ty::adjustment::Adjust::Deref(overloaded) => { tcx.lift(overloaded).map(ty::adjustment::Adjust::Deref) } ty::adjustment::Adjust::Borrow(autoref) => { tcx.lift(autoref).map(ty::adjustment::Adjust::Borrow) } } } } impl<'a, 'tcx> Lift<'tcx> for ty::adjustment::OverloadedDeref<'a> { type Lifted = ty::adjustment::OverloadedDeref<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.region).map(|region| ty::adjustment::OverloadedDeref { region, mutbl: self.mutbl, span: self.span, }) } } impl<'a, 'tcx> Lift<'tcx> for ty::adjustment::AutoBorrow<'a> { type Lifted = ty::adjustment::AutoBorrow<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { ty::adjustment::AutoBorrow::Ref(r, m) => { tcx.lift(r).map(|r| ty::adjustment::AutoBorrow::Ref(r, m)) } ty::adjustment::AutoBorrow::RawPtr(m) => Some(ty::adjustment::AutoBorrow::RawPtr(m)), } } } impl<'a, 'tcx> Lift<'tcx> for ty::GenSig<'a> { type Lifted = ty::GenSig<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift((self.resume_ty, self.yield_ty, self.return_ty)) .map(|(resume_ty, yield_ty, return_ty)| ty::GenSig { resume_ty, yield_ty, return_ty }) } } impl<'a, 'tcx> Lift<'tcx> for ty::FnSig<'a> { type Lifted = ty::FnSig<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.inputs_and_output).map(|x| ty::FnSig { inputs_and_output: x, c_variadic: self.c_variadic, unsafety: self.unsafety, abi: self.abi, }) } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for ty::error::ExpectedFound { type Lifted = ty::error::ExpectedFound; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { let ty::error::ExpectedFound { expected, found } = self; tcx.lift(expected).and_then(|expected| { tcx.lift(found).map(|found| ty::error::ExpectedFound { expected, found }) }) } } impl<'a, 'tcx> Lift<'tcx> for ty::error::TypeError<'a> { type Lifted = ty::error::TypeError<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { use crate::ty::error::TypeError::*; Some(match self { Mismatch => Mismatch, ConstnessMismatch(x) => ConstnessMismatch(x), PolarityMismatch(x) => PolarityMismatch(x), UnsafetyMismatch(x) => UnsafetyMismatch(x), AbiMismatch(x) => AbiMismatch(x), Mutability => Mutability, ArgumentMutability(i) => ArgumentMutability(i), TupleSize(x) => TupleSize(x), FixedArraySize(x) => FixedArraySize(x), ArgCount => ArgCount, FieldMisMatch(x, y) => FieldMisMatch(x, y), RegionsDoesNotOutlive(a, b) => { return tcx.lift((a, b)).map(|(a, b)| RegionsDoesNotOutlive(a, b)); } RegionsInsufficientlyPolymorphic(a, b) => { return tcx.lift(b).map(|b| RegionsInsufficientlyPolymorphic(a, b)); } RegionsOverlyPolymorphic(a, b) => { return tcx.lift(b).map(|b| RegionsOverlyPolymorphic(a, b)); } RegionsPlaceholderMismatch => RegionsPlaceholderMismatch, IntMismatch(x) => IntMismatch(x), FloatMismatch(x) => FloatMismatch(x), Traits(x) => Traits(x), VariadicMismatch(x) => VariadicMismatch(x), CyclicTy(t) => return tcx.lift(t).map(|t| CyclicTy(t)), CyclicConst(ct) => return tcx.lift(ct).map(|ct| CyclicConst(ct)), ProjectionMismatched(x) => ProjectionMismatched(x), ArgumentSorts(x, i) => return tcx.lift(x).map(|x| ArgumentSorts(x, i)), Sorts(x) => return tcx.lift(x).map(Sorts), ExistentialMismatch(x) => return tcx.lift(x).map(ExistentialMismatch), ConstMismatch(x) => return tcx.lift(x).map(ConstMismatch), IntrinsicCast => IntrinsicCast, TargetFeatureCast(x) => TargetFeatureCast(x), ObjectUnsafeCoercion(x) => return tcx.lift(x).map(ObjectUnsafeCoercion), }) } } impl<'a, 'tcx> Lift<'tcx> for ty::InstanceDef<'a> { type Lifted = ty::InstanceDef<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { ty::InstanceDef::Item(def_id) => Some(ty::InstanceDef::Item(def_id)), ty::InstanceDef::VTableShim(def_id) => Some(ty::InstanceDef::VTableShim(def_id)), ty::InstanceDef::ReifyShim(def_id) => Some(ty::InstanceDef::ReifyShim(def_id)), ty::InstanceDef::Intrinsic(def_id) => Some(ty::InstanceDef::Intrinsic(def_id)), ty::InstanceDef::FnPtrShim(def_id, ty) => { Some(ty::InstanceDef::FnPtrShim(def_id, tcx.lift(ty)?)) } ty::InstanceDef::Virtual(def_id, n) => Some(ty::InstanceDef::Virtual(def_id, n)), ty::InstanceDef::ClosureOnceShim { call_once, track_caller } => { Some(ty::InstanceDef::ClosureOnceShim { call_once, track_caller }) } ty::InstanceDef::DropGlue(def_id, ty) => { Some(ty::InstanceDef::DropGlue(def_id, tcx.lift(ty)?)) } ty::InstanceDef::CloneShim(def_id, ty) => { Some(ty::InstanceDef::CloneShim(def_id, tcx.lift(ty)?)) } } } } /////////////////////////////////////////////////////////////////////////// // TypeFoldable implementations. /// AdtDefs are basically the same as a DefId. impl<'tcx> TypeFoldable<'tcx> for ty::AdtDef<'tcx> { fn try_fold_with>(self, _folder: &mut F) -> Result { Ok(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::AdtDef<'tcx> { fn visit_with>(&self, _visitor: &mut V) -> ControlFlow { ControlFlow::CONTINUE } } impl<'tcx, T: TypeFoldable<'tcx>, U: TypeFoldable<'tcx>> TypeFoldable<'tcx> for (T, U) { fn try_fold_with>( self, folder: &mut F, ) -> Result<(T, U), F::Error> { Ok((self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?)) } } impl<'tcx, T: TypeVisitable<'tcx>, U: TypeVisitable<'tcx>> TypeVisitable<'tcx> for (T, U) { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.0.visit_with(visitor)?; self.1.visit_with(visitor) } } impl<'tcx, A: TypeFoldable<'tcx>, B: TypeFoldable<'tcx>, C: TypeFoldable<'tcx>> TypeFoldable<'tcx> for (A, B, C) { fn try_fold_with>( self, folder: &mut F, ) -> Result<(A, B, C), F::Error> { Ok(( self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?, self.2.try_fold_with(folder)?, )) } } impl<'tcx, A: TypeVisitable<'tcx>, B: TypeVisitable<'tcx>, C: TypeVisitable<'tcx>> TypeVisitable<'tcx> for (A, B, C) { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.0.visit_with(visitor)?; self.1.visit_with(visitor)?; self.2.visit_with(visitor) } } EnumTypeTraversalImpl! { impl<'tcx, T> TypeFoldable<'tcx> for Option { (Some)(a), (None), } where T: TypeFoldable<'tcx> } EnumTypeTraversalImpl! { impl<'tcx, T> TypeVisitable<'tcx> for Option { (Some)(a), (None), } where T: TypeVisitable<'tcx> } EnumTypeTraversalImpl! { impl<'tcx, T, E> TypeFoldable<'tcx> for Result { (Ok)(a), (Err)(a), } where T: TypeFoldable<'tcx>, E: TypeFoldable<'tcx>, } EnumTypeTraversalImpl! { impl<'tcx, T, E> TypeVisitable<'tcx> for Result { (Ok)(a), (Err)(a), } where T: TypeVisitable<'tcx>, E: TypeVisitable<'tcx>, } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Rc { fn try_fold_with>( mut self, folder: &mut F, ) -> Result { // We merely want to replace the contained `T`, if at all possible, // so that we don't needlessly allocate a new `Rc` or indeed clone // the contained type. unsafe { // First step is to ensure that we have a unique reference to // the contained type, which `Rc::make_mut` will accomplish (by // allocating a new `Rc` and cloning the `T` only if required). // This is done *before* casting to `Rc>` so that // panicking during `make_mut` does not leak the `T`. Rc::make_mut(&mut self); // Casting to `Rc>` is safe because `ManuallyDrop` // is `repr(transparent)`. let ptr = Rc::into_raw(self).cast::>(); let mut unique = Rc::from_raw(ptr); // Call to `Rc::make_mut` above guarantees that `unique` is the // sole reference to the contained value, so we can avoid doing // a checked `get_mut` here. let slot = Rc::get_mut_unchecked(&mut unique); // Semantically move the contained type out from `unique`, fold // it, then move the folded value back into `unique`. Should // folding fail, `ManuallyDrop` ensures that the "moved-out" // value is not re-dropped. let owned = ManuallyDrop::take(slot); let folded = owned.try_fold_with(folder)?; *slot = ManuallyDrop::new(folded); // Cast back to `Rc`. Ok(Rc::from_raw(Rc::into_raw(unique).cast())) } } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Rc { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { (**self).visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Arc { fn try_fold_with>( mut self, folder: &mut F, ) -> Result { // We merely want to replace the contained `T`, if at all possible, // so that we don't needlessly allocate a new `Arc` or indeed clone // the contained type. unsafe { // First step is to ensure that we have a unique reference to // the contained type, which `Arc::make_mut` will accomplish (by // allocating a new `Arc` and cloning the `T` only if required). // This is done *before* casting to `Arc>` so that // panicking during `make_mut` does not leak the `T`. Arc::make_mut(&mut self); // Casting to `Arc>` is safe because `ManuallyDrop` // is `repr(transparent)`. let ptr = Arc::into_raw(self).cast::>(); let mut unique = Arc::from_raw(ptr); // Call to `Arc::make_mut` above guarantees that `unique` is the // sole reference to the contained value, so we can avoid doing // a checked `get_mut` here. let slot = Arc::get_mut_unchecked(&mut unique); // Semantically move the contained type out from `unique`, fold // it, then move the folded value back into `unique`. Should // folding fail, `ManuallyDrop` ensures that the "moved-out" // value is not re-dropped. let owned = ManuallyDrop::take(slot); let folded = owned.try_fold_with(folder)?; *slot = ManuallyDrop::new(folded); // Cast back to `Arc`. Ok(Arc::from_raw(Arc::into_raw(unique).cast())) } } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Arc { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { (**self).visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Box { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|value| value.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Box { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { (**self).visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Vec { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|t| t.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Vec { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Box<[T]> { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|t| t.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Box<[T]> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for ty::EarlyBinder { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_bound(|ty| ty.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for ty::EarlyBinder { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.as_ref().0.visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for ty::Binder<'tcx, T> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_binder(self) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for ty::Binder<'tcx, T> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_binder(self) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeSuperFoldable<'tcx> for ty::Binder<'tcx, T> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { self.try_map_bound(|ty| ty.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeSuperVisitable<'tcx> for ty::Binder<'tcx, T> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.as_ref().skip_binder().visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List>> { fn try_fold_with>(self, folder: &mut F) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.intern_poly_existential_predicates(v)) } } impl<'tcx> TypeVisitable<'tcx> for &'tcx ty::List>> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|p| p.visit_with(visitor)) } } impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List { fn try_fold_with>(self, folder: &mut F) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.intern_projs(v)) } } impl<'tcx> TypeVisitable<'tcx> for &'tcx ty::List { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx> TypeFoldable<'tcx> for ty::instance::Instance<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { use crate::ty::InstanceDef::*; Ok(Self { substs: self.substs.try_fold_with(folder)?, def: match self.def { Item(def) => Item(def.try_fold_with(folder)?), VTableShim(did) => VTableShim(did.try_fold_with(folder)?), ReifyShim(did) => ReifyShim(did.try_fold_with(folder)?), Intrinsic(did) => Intrinsic(did.try_fold_with(folder)?), FnPtrShim(did, ty) => { FnPtrShim(did.try_fold_with(folder)?, ty.try_fold_with(folder)?) } Virtual(did, i) => Virtual(did.try_fold_with(folder)?, i), ClosureOnceShim { call_once, track_caller } => { ClosureOnceShim { call_once: call_once.try_fold_with(folder)?, track_caller } } DropGlue(did, ty) => { DropGlue(did.try_fold_with(folder)?, ty.try_fold_with(folder)?) } CloneShim(did, ty) => { CloneShim(did.try_fold_with(folder)?, ty.try_fold_with(folder)?) } }, }) } } impl<'tcx> TypeVisitable<'tcx> for ty::instance::Instance<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { use crate::ty::InstanceDef::*; self.substs.visit_with(visitor)?; match self.def { Item(def) => def.visit_with(visitor), VTableShim(did) | ReifyShim(did) | Intrinsic(did) | Virtual(did, _) => { did.visit_with(visitor) } FnPtrShim(did, ty) | CloneShim(did, ty) => { did.visit_with(visitor)?; ty.visit_with(visitor) } DropGlue(did, ty) => { did.visit_with(visitor)?; ty.visit_with(visitor) } ClosureOnceShim { call_once, track_caller: _ } => call_once.visit_with(visitor), } } } impl<'tcx> TypeFoldable<'tcx> for interpret::GlobalId<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { Ok(Self { instance: self.instance.try_fold_with(folder)?, promoted: self.promoted }) } } impl<'tcx> TypeVisitable<'tcx> for interpret::GlobalId<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.instance.visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for Ty<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_ty(self) } } impl<'tcx> TypeVisitable<'tcx> for Ty<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_ty(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for Ty<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { let kind = match *self.kind() { ty::RawPtr(tm) => ty::RawPtr(tm.try_fold_with(folder)?), ty::Array(typ, sz) => ty::Array(typ.try_fold_with(folder)?, sz.try_fold_with(folder)?), ty::Slice(typ) => ty::Slice(typ.try_fold_with(folder)?), ty::Adt(tid, substs) => ty::Adt(tid, substs.try_fold_with(folder)?), ty::Dynamic(trait_ty, region) => { ty::Dynamic(trait_ty.try_fold_with(folder)?, region.try_fold_with(folder)?) } ty::Tuple(ts) => ty::Tuple(ts.try_fold_with(folder)?), ty::FnDef(def_id, substs) => ty::FnDef(def_id, substs.try_fold_with(folder)?), ty::FnPtr(f) => ty::FnPtr(f.try_fold_with(folder)?), ty::Ref(r, ty, mutbl) => { ty::Ref(r.try_fold_with(folder)?, ty.try_fold_with(folder)?, mutbl) } ty::Generator(did, substs, movability) => { ty::Generator(did, substs.try_fold_with(folder)?, movability) } ty::GeneratorWitness(types) => ty::GeneratorWitness(types.try_fold_with(folder)?), ty::Closure(did, substs) => ty::Closure(did, substs.try_fold_with(folder)?), ty::Projection(data) => ty::Projection(data.try_fold_with(folder)?), ty::Opaque(did, substs) => ty::Opaque(did, substs.try_fold_with(folder)?), ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Error(_) | ty::Infer(_) | ty::Param(..) | ty::Bound(..) | ty::Placeholder(..) | ty::Never | ty::Foreign(..) => return Ok(self), }; Ok(if *self.kind() == kind { self } else { folder.tcx().mk_ty(kind) }) } } impl<'tcx> TypeSuperVisitable<'tcx> for Ty<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { match self.kind() { ty::RawPtr(ref tm) => tm.visit_with(visitor), ty::Array(typ, sz) => { typ.visit_with(visitor)?; sz.visit_with(visitor) } ty::Slice(typ) => typ.visit_with(visitor), ty::Adt(_, substs) => substs.visit_with(visitor), ty::Dynamic(ref trait_ty, ref reg) => { trait_ty.visit_with(visitor)?; reg.visit_with(visitor) } ty::Tuple(ts) => ts.visit_with(visitor), ty::FnDef(_, substs) => substs.visit_with(visitor), ty::FnPtr(ref f) => f.visit_with(visitor), ty::Ref(r, ty, _) => { r.visit_with(visitor)?; ty.visit_with(visitor) } ty::Generator(_did, ref substs, _) => substs.visit_with(visitor), ty::GeneratorWitness(ref types) => types.visit_with(visitor), ty::Closure(_did, ref substs) => substs.visit_with(visitor), ty::Projection(ref data) => data.visit_with(visitor), ty::Opaque(_, ref substs) => substs.visit_with(visitor), ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Error(_) | ty::Infer(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Param(..) | ty::Never | ty::Foreign(..) => ControlFlow::CONTINUE, } } } impl<'tcx> TypeFoldable<'tcx> for ty::Region<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_region(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Region<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_region(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Region<'tcx> { fn try_super_fold_with>( self, _folder: &mut F, ) -> Result { Ok(self) } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Region<'tcx> { fn super_visit_with>(&self, _visitor: &mut V) -> ControlFlow { ControlFlow::CONTINUE } } impl<'tcx> TypeFoldable<'tcx> for ty::Predicate<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_predicate(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Predicate<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_predicate(*self) } #[inline] fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool { self.outer_exclusive_binder() > binder } #[inline] fn has_type_flags(&self, flags: ty::TypeFlags) -> bool { self.flags().intersects(flags) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Predicate<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { let new = self.kind().try_fold_with(folder)?; Ok(folder.tcx().reuse_or_mk_predicate(self, new)) } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Predicate<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.kind().visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List> { fn try_fold_with>(self, folder: &mut F) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.intern_predicates(v)) } } impl<'tcx> TypeVisitable<'tcx> for &'tcx ty::List> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|p| p.visit_with(visitor)) } } impl<'tcx, T: TypeFoldable<'tcx>, I: Idx> TypeFoldable<'tcx> for IndexVec { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|x| x.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>, I: Idx> TypeVisitable<'tcx> for IndexVec { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx> TypeFoldable<'tcx> for ty::Const<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_const(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Const<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_const(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Const<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { let ty = self.ty().try_fold_with(folder)?; let kind = self.kind().try_fold_with(folder)?; if ty != self.ty() || kind != self.kind() { Ok(folder.tcx().mk_const(ty::ConstS { ty, kind })) } else { Ok(self) } } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Const<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.ty().visit_with(visitor)?; self.kind().visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for ty::ConstKind<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { Ok(match self { ty::ConstKind::Infer(ic) => ty::ConstKind::Infer(ic.try_fold_with(folder)?), ty::ConstKind::Param(p) => ty::ConstKind::Param(p.try_fold_with(folder)?), ty::ConstKind::Unevaluated(uv) => ty::ConstKind::Unevaluated(uv.try_fold_with(folder)?), ty::ConstKind::Value(_) | ty::ConstKind::Bound(..) | ty::ConstKind::Placeholder(..) | ty::ConstKind::Error(_) => self, }) } } impl<'tcx> TypeVisitable<'tcx> for ty::ConstKind<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { match *self { ty::ConstKind::Infer(ic) => ic.visit_with(visitor), ty::ConstKind::Param(p) => p.visit_with(visitor), ty::ConstKind::Unevaluated(uv) => uv.visit_with(visitor), ty::ConstKind::Value(_) | ty::ConstKind::Bound(..) | ty::ConstKind::Placeholder(_) | ty::ConstKind::Error(_) => ControlFlow::CONTINUE, } } } impl<'tcx> TypeFoldable<'tcx> for InferConst<'tcx> { fn try_fold_with>(self, _folder: &mut F) -> Result { Ok(self) } } impl<'tcx> TypeVisitable<'tcx> for InferConst<'tcx> { fn visit_with>(&self, _visitor: &mut V) -> ControlFlow { ControlFlow::CONTINUE } } impl<'tcx> TypeFoldable<'tcx> for ty::Unevaluated<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_unevaluated(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Unevaluated<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_unevaluated(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Unevaluated<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { Ok(ty::Unevaluated { def: self.def, substs: self.substs.try_fold_with(folder)?, promoted: self.promoted, }) } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Unevaluated<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.substs.visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for ty::Unevaluated<'tcx, ()> { fn try_fold_with>(self, folder: &mut F) -> Result { Ok(self.expand().try_fold_with(folder)?.shrink()) } } impl<'tcx> TypeVisitable<'tcx> for ty::Unevaluated<'tcx, ()> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.expand().visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for hir::Constness { fn try_fold_with>(self, _: &mut F) -> Result { Ok(self) } } impl<'tcx> TypeVisitable<'tcx> for hir::Constness { fn visit_with>(&self, _: &mut V) -> ControlFlow { ControlFlow::CONTINUE } }