//! This module contains implements of the `Lift` and `TypeFoldable` //! traits for various types in the Rust compiler. Most are written by //! hand, though we've recently added some macros and proc-macros to help with the tedium. use crate::mir::interpret; use crate::mir::{Field, ProjectionKind}; use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable}; use crate::ty::print::{with_no_trimmed_paths, FmtPrinter, Printer}; use crate::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor}; use crate::ty::{self, InferConst, Lift, Term, TermKind, Ty, TyCtxt}; use rustc_data_structures::functor::IdFunctor; use rustc_hir::def::Namespace; use rustc_index::vec::{Idx, IndexVec}; use std::fmt; use std::mem::ManuallyDrop; use std::ops::ControlFlow; use std::rc::Rc; use std::sync::Arc; impl fmt::Debug for ty::TraitDef { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { ty::tls::with(|tcx| { with_no_trimmed_paths!({ f.write_str( &FmtPrinter::new(tcx, Namespace::TypeNS) .print_def_path(self.def_id, &[])? .into_buffer(), ) }) }) } } impl<'tcx> fmt::Debug for ty::AdtDef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { ty::tls::with(|tcx| { with_no_trimmed_paths!({ f.write_str( &FmtPrinter::new(tcx, Namespace::TypeNS) .print_def_path(self.did(), &[])? .into_buffer(), ) }) }) } } impl fmt::Debug for ty::UpvarId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let name = ty::tls::with(|tcx| tcx.hir().name(self.var_path.hir_id)); write!(f, "UpvarId({:?};`{}`;{:?})", self.var_path.hir_id, name, self.closure_expr_id) } } impl<'tcx> fmt::Debug for ty::ExistentialTraitRef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl<'tcx> fmt::Debug for ty::adjustment::Adjustment<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?} -> {}", self.kind, self.target) } } impl fmt::Debug for ty::BoundRegionKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ty::BrAnon(n) => write!(f, "BrAnon({:?})", n), ty::BrNamed(did, name) => { if did.is_crate_root() { write!(f, "BrNamed({})", name) } else { write!(f, "BrNamed({:?}, {})", did, name) } } ty::BrEnv => write!(f, "BrEnv"), } } } impl fmt::Debug for ty::FreeRegion { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "ReFree({:?}, {:?})", self.scope, self.bound_region) } } impl<'tcx> fmt::Debug for ty::FnSig<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "({:?}; c_variadic: {})->{:?}", self.inputs(), self.c_variadic, self.output()) } } impl<'tcx> fmt::Debug for ty::ConstVid<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "_#{}c", self.index) } } impl fmt::Debug for ty::RegionVid { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "'_#{}r", self.index()) } } impl<'tcx> fmt::Debug for ty::TraitRef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl<'tcx> fmt::Debug for Ty<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl fmt::Debug for ty::ParamTy { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/#{}", self.name, self.index) } } impl fmt::Debug for ty::ParamConst { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/#{}", self.name, self.index) } } impl<'tcx> fmt::Debug for ty::TraitPredicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if let ty::BoundConstness::ConstIfConst = self.constness { write!(f, "~const ")?; } write!(f, "TraitPredicate({:?}, polarity:{:?})", self.trait_ref, self.polarity) } } impl<'tcx> fmt::Debug for ty::ProjectionPredicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "ProjectionPredicate({:?}, {:?})", self.projection_ty, self.term) } } impl<'tcx> fmt::Debug for ty::Predicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", self.kind()) } } impl<'tcx> fmt::Debug for ty::PredicateKind<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ty::PredicateKind::Trait(ref a) => a.fmt(f), ty::PredicateKind::Subtype(ref pair) => pair.fmt(f), ty::PredicateKind::Coerce(ref pair) => pair.fmt(f), ty::PredicateKind::RegionOutlives(ref pair) => pair.fmt(f), ty::PredicateKind::TypeOutlives(ref pair) => pair.fmt(f), ty::PredicateKind::Projection(ref pair) => pair.fmt(f), ty::PredicateKind::WellFormed(data) => write!(f, "WellFormed({:?})", data), ty::PredicateKind::ObjectSafe(trait_def_id) => { write!(f, "ObjectSafe({:?})", trait_def_id) } ty::PredicateKind::ClosureKind(closure_def_id, closure_substs, kind) => { write!(f, "ClosureKind({:?}, {:?}, {:?})", closure_def_id, closure_substs, kind) } ty::PredicateKind::ConstEvaluatable(uv) => { write!(f, "ConstEvaluatable({:?}, {:?})", uv.def, uv.substs) } ty::PredicateKind::ConstEquate(c1, c2) => write!(f, "ConstEquate({:?}, {:?})", c1, c2), ty::PredicateKind::TypeWellFormedFromEnv(ty) => { write!(f, "TypeWellFormedFromEnv({:?})", ty) } } } } /////////////////////////////////////////////////////////////////////////// // Atomic structs // // For things that don't carry any arena-allocated data (and are // copy...), just add them to this list. TrivialTypeTraversalAndLiftImpls! { (), bool, usize, ::rustc_target::abi::VariantIdx, u32, u64, String, crate::middle::region::Scope, crate::ty::FloatTy, ::rustc_ast::InlineAsmOptions, ::rustc_ast::InlineAsmTemplatePiece, ::rustc_ast::NodeId, ::rustc_span::symbol::Symbol, ::rustc_hir::def::Res, ::rustc_hir::def_id::DefId, ::rustc_hir::def_id::LocalDefId, ::rustc_hir::HirId, ::rustc_hir::MatchSource, ::rustc_hir::Mutability, ::rustc_hir::Unsafety, ::rustc_target::asm::InlineAsmRegOrRegClass, ::rustc_target::spec::abi::Abi, crate::mir::coverage::ExpressionOperandId, crate::mir::coverage::CounterValueReference, crate::mir::coverage::InjectedExpressionId, crate::mir::coverage::InjectedExpressionIndex, crate::mir::coverage::MappedExpressionIndex, crate::mir::Local, crate::mir::Promoted, crate::traits::Reveal, crate::ty::adjustment::AutoBorrowMutability, crate::ty::AdtKind, crate::ty::BoundConstness, // Including `BoundRegionKind` is a *bit* dubious, but direct // references to bound region appear in `ty::Error`, and aren't // really meant to be folded. In general, we can only fold a fully // general `Region`. crate::ty::BoundRegionKind, crate::ty::AssocItem, crate::ty::AssocKind, crate::ty::Placeholder, crate::ty::ClosureKind, crate::ty::FreeRegion, crate::ty::InferTy, crate::ty::IntVarValue, crate::ty::ParamConst, crate::ty::ParamTy, crate::ty::adjustment::PointerCast, crate::ty::RegionVid, crate::ty::UniverseIndex, crate::ty::Variance, ::rustc_span::Span, ::rustc_errors::ErrorGuaranteed, Field, interpret::Scalar, rustc_target::abi::Size, ty::DelaySpanBugEmitted, rustc_type_ir::DebruijnIndex, ty::BoundVar, ty::Placeholder, } TrivialTypeTraversalAndLiftImpls! { for<'tcx> { ty::ValTree<'tcx>, } } /////////////////////////////////////////////////////////////////////////// // Lift implementations impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>> Lift<'tcx> for (A, B) { type Lifted = (A::Lifted, B::Lifted); fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some((tcx.lift(self.0)?, tcx.lift(self.1)?)) } } impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>, C: Lift<'tcx>> Lift<'tcx> for (A, B, C) { type Lifted = (A::Lifted, B::Lifted, C::Lifted); fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some((tcx.lift(self.0)?, tcx.lift(self.1)?, tcx.lift(self.2)?)) } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Option { type Lifted = Option; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(match self { Some(x) => Some(tcx.lift(x)?), None => None, }) } } impl<'tcx, T: Lift<'tcx>, E: Lift<'tcx>> Lift<'tcx> for Result { type Lifted = Result; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { Ok(x) => tcx.lift(x).map(Ok), Err(e) => tcx.lift(e).map(Err), } } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Box { type Lifted = Box; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(Box::new(tcx.lift(*self)?)) } } impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Rc { type Lifted = Rc; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(Rc::new(tcx.lift(self.as_ref().clone())?)) } } impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Arc { type Lifted = Arc; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(Arc::new(tcx.lift(self.as_ref().clone())?)) } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Vec { type Lifted = Vec; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { self.into_iter().map(|v| tcx.lift(v)).collect() } } impl<'tcx, I: Idx, T: Lift<'tcx>> Lift<'tcx> for IndexVec { type Lifted = IndexVec; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { self.into_iter().map(|e| tcx.lift(e)).collect() } } impl<'a, 'tcx> Lift<'tcx> for Term<'a> { type Lifted = ty::Term<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some( match self.unpack() { TermKind::Ty(ty) => TermKind::Ty(tcx.lift(ty)?), TermKind::Const(c) => TermKind::Const(tcx.lift(c)?), } .pack(), ) } } impl<'a, 'tcx> Lift<'tcx> for ty::ParamEnv<'a> { type Lifted = ty::ParamEnv<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.caller_bounds()) .map(|caller_bounds| ty::ParamEnv::new(caller_bounds, self.reveal(), self.constness())) } } /////////////////////////////////////////////////////////////////////////// // TypeFoldable implementations. /// AdtDefs are basically the same as a DefId. impl<'tcx> TypeFoldable<'tcx> for ty::AdtDef<'tcx> { fn try_fold_with>(self, _folder: &mut F) -> Result { Ok(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::AdtDef<'tcx> { fn visit_with>(&self, _visitor: &mut V) -> ControlFlow { ControlFlow::CONTINUE } } impl<'tcx, T: TypeFoldable<'tcx>, U: TypeFoldable<'tcx>> TypeFoldable<'tcx> for (T, U) { fn try_fold_with>( self, folder: &mut F, ) -> Result<(T, U), F::Error> { Ok((self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?)) } } impl<'tcx, T: TypeVisitable<'tcx>, U: TypeVisitable<'tcx>> TypeVisitable<'tcx> for (T, U) { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.0.visit_with(visitor)?; self.1.visit_with(visitor) } } impl<'tcx, A: TypeFoldable<'tcx>, B: TypeFoldable<'tcx>, C: TypeFoldable<'tcx>> TypeFoldable<'tcx> for (A, B, C) { fn try_fold_with>( self, folder: &mut F, ) -> Result<(A, B, C), F::Error> { Ok(( self.0.try_fold_with(folder)?, self.1.try_fold_with(folder)?, self.2.try_fold_with(folder)?, )) } } impl<'tcx, A: TypeVisitable<'tcx>, B: TypeVisitable<'tcx>, C: TypeVisitable<'tcx>> TypeVisitable<'tcx> for (A, B, C) { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.0.visit_with(visitor)?; self.1.visit_with(visitor)?; self.2.visit_with(visitor) } } EnumTypeTraversalImpl! { impl<'tcx, T> TypeFoldable<'tcx> for Option { (Some)(a), (None), } where T: TypeFoldable<'tcx> } EnumTypeTraversalImpl! { impl<'tcx, T> TypeVisitable<'tcx> for Option { (Some)(a), (None), } where T: TypeVisitable<'tcx> } EnumTypeTraversalImpl! { impl<'tcx, T, E> TypeFoldable<'tcx> for Result { (Ok)(a), (Err)(a), } where T: TypeFoldable<'tcx>, E: TypeFoldable<'tcx>, } EnumTypeTraversalImpl! { impl<'tcx, T, E> TypeVisitable<'tcx> for Result { (Ok)(a), (Err)(a), } where T: TypeVisitable<'tcx>, E: TypeVisitable<'tcx>, } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Rc { fn try_fold_with>( mut self, folder: &mut F, ) -> Result { // We merely want to replace the contained `T`, if at all possible, // so that we don't needlessly allocate a new `Rc` or indeed clone // the contained type. unsafe { // First step is to ensure that we have a unique reference to // the contained type, which `Rc::make_mut` will accomplish (by // allocating a new `Rc` and cloning the `T` only if required). // This is done *before* casting to `Rc>` so that // panicking during `make_mut` does not leak the `T`. Rc::make_mut(&mut self); // Casting to `Rc>` is safe because `ManuallyDrop` // is `repr(transparent)`. let ptr = Rc::into_raw(self).cast::>(); let mut unique = Rc::from_raw(ptr); // Call to `Rc::make_mut` above guarantees that `unique` is the // sole reference to the contained value, so we can avoid doing // a checked `get_mut` here. let slot = Rc::get_mut_unchecked(&mut unique); // Semantically move the contained type out from `unique`, fold // it, then move the folded value back into `unique`. Should // folding fail, `ManuallyDrop` ensures that the "moved-out" // value is not re-dropped. let owned = ManuallyDrop::take(slot); let folded = owned.try_fold_with(folder)?; *slot = ManuallyDrop::new(folded); // Cast back to `Rc`. Ok(Rc::from_raw(Rc::into_raw(unique).cast())) } } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Rc { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { (**self).visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Arc { fn try_fold_with>( mut self, folder: &mut F, ) -> Result { // We merely want to replace the contained `T`, if at all possible, // so that we don't needlessly allocate a new `Arc` or indeed clone // the contained type. unsafe { // First step is to ensure that we have a unique reference to // the contained type, which `Arc::make_mut` will accomplish (by // allocating a new `Arc` and cloning the `T` only if required). // This is done *before* casting to `Arc>` so that // panicking during `make_mut` does not leak the `T`. Arc::make_mut(&mut self); // Casting to `Arc>` is safe because `ManuallyDrop` // is `repr(transparent)`. let ptr = Arc::into_raw(self).cast::>(); let mut unique = Arc::from_raw(ptr); // Call to `Arc::make_mut` above guarantees that `unique` is the // sole reference to the contained value, so we can avoid doing // a checked `get_mut` here. let slot = Arc::get_mut_unchecked(&mut unique); // Semantically move the contained type out from `unique`, fold // it, then move the folded value back into `unique`. Should // folding fail, `ManuallyDrop` ensures that the "moved-out" // value is not re-dropped. let owned = ManuallyDrop::take(slot); let folded = owned.try_fold_with(folder)?; *slot = ManuallyDrop::new(folded); // Cast back to `Arc`. Ok(Arc::from_raw(Arc::into_raw(unique).cast())) } } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Arc { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { (**self).visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Box { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|value| value.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Box { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { (**self).visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Vec { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|t| t.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Vec { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for &[T] { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for Box<[T]> { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|t| t.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for Box<[T]> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for ty::EarlyBinder { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_bound(|ty| ty.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for ty::EarlyBinder { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.as_ref().0.visit_with(visitor) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeFoldable<'tcx> for ty::Binder<'tcx, T> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_binder(self) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeVisitable<'tcx> for ty::Binder<'tcx, T> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_binder(self) } } impl<'tcx, T: TypeFoldable<'tcx>> TypeSuperFoldable<'tcx> for ty::Binder<'tcx, T> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { self.try_map_bound(|ty| ty.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>> TypeSuperVisitable<'tcx> for ty::Binder<'tcx, T> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.as_ref().skip_binder().visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List>> { fn try_fold_with>(self, folder: &mut F) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.intern_poly_existential_predicates(v)) } } impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List { fn try_fold_with>(self, folder: &mut F) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.intern_projs(v)) } } impl<'tcx> TypeFoldable<'tcx> for Ty<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_ty(self) } } impl<'tcx> TypeVisitable<'tcx> for Ty<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_ty(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for Ty<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { let kind = match *self.kind() { ty::RawPtr(tm) => ty::RawPtr(tm.try_fold_with(folder)?), ty::Array(typ, sz) => ty::Array(typ.try_fold_with(folder)?, sz.try_fold_with(folder)?), ty::Slice(typ) => ty::Slice(typ.try_fold_with(folder)?), ty::Adt(tid, substs) => ty::Adt(tid, substs.try_fold_with(folder)?), ty::Dynamic(trait_ty, region, representation) => ty::Dynamic( trait_ty.try_fold_with(folder)?, region.try_fold_with(folder)?, representation, ), ty::Tuple(ts) => ty::Tuple(ts.try_fold_with(folder)?), ty::FnDef(def_id, substs) => ty::FnDef(def_id, substs.try_fold_with(folder)?), ty::FnPtr(f) => ty::FnPtr(f.try_fold_with(folder)?), ty::Ref(r, ty, mutbl) => { ty::Ref(r.try_fold_with(folder)?, ty.try_fold_with(folder)?, mutbl) } ty::Generator(did, substs, movability) => { ty::Generator(did, substs.try_fold_with(folder)?, movability) } ty::GeneratorWitness(types) => ty::GeneratorWitness(types.try_fold_with(folder)?), ty::Closure(did, substs) => ty::Closure(did, substs.try_fold_with(folder)?), ty::Projection(data) => ty::Projection(data.try_fold_with(folder)?), ty::Opaque(did, substs) => ty::Opaque(did, substs.try_fold_with(folder)?), ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Error(_) | ty::Infer(_) | ty::Param(..) | ty::Bound(..) | ty::Placeholder(..) | ty::Never | ty::Foreign(..) => return Ok(self), }; Ok(if *self.kind() == kind { self } else { folder.tcx().mk_ty(kind) }) } } impl<'tcx> TypeSuperVisitable<'tcx> for Ty<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { match self.kind() { ty::RawPtr(ref tm) => tm.visit_with(visitor), ty::Array(typ, sz) => { typ.visit_with(visitor)?; sz.visit_with(visitor) } ty::Slice(typ) => typ.visit_with(visitor), ty::Adt(_, substs) => substs.visit_with(visitor), ty::Dynamic(ref trait_ty, ref reg, _) => { trait_ty.visit_with(visitor)?; reg.visit_with(visitor) } ty::Tuple(ts) => ts.visit_with(visitor), ty::FnDef(_, substs) => substs.visit_with(visitor), ty::FnPtr(ref f) => f.visit_with(visitor), ty::Ref(r, ty, _) => { r.visit_with(visitor)?; ty.visit_with(visitor) } ty::Generator(_did, ref substs, _) => substs.visit_with(visitor), ty::GeneratorWitness(ref types) => types.visit_with(visitor), ty::Closure(_did, ref substs) => substs.visit_with(visitor), ty::Projection(ref data) => data.visit_with(visitor), ty::Opaque(_, ref substs) => substs.visit_with(visitor), ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Error(_) | ty::Infer(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Param(..) | ty::Never | ty::Foreign(..) => ControlFlow::CONTINUE, } } } impl<'tcx> TypeFoldable<'tcx> for ty::Region<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_region(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Region<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_region(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Region<'tcx> { fn try_super_fold_with>( self, _folder: &mut F, ) -> Result { Ok(self) } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Region<'tcx> { fn super_visit_with>(&self, _visitor: &mut V) -> ControlFlow { ControlFlow::CONTINUE } } impl<'tcx> TypeFoldable<'tcx> for ty::Predicate<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_predicate(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Predicate<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_predicate(*self) } #[inline] fn has_vars_bound_at_or_above(&self, binder: ty::DebruijnIndex) -> bool { self.outer_exclusive_binder() > binder } #[inline] fn has_type_flags(&self, flags: ty::TypeFlags) -> bool { self.flags().intersects(flags) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Predicate<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { let new = self.kind().try_fold_with(folder)?; Ok(folder.tcx().reuse_or_mk_predicate(self, new)) } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Predicate<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.kind().visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for &'tcx ty::List> { fn try_fold_with>(self, folder: &mut F) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.intern_predicates(v)) } } impl<'tcx, T: TypeFoldable<'tcx>, I: Idx> TypeFoldable<'tcx> for IndexVec { fn try_fold_with>(self, folder: &mut F) -> Result { self.try_map_id(|x| x.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable<'tcx>, I: Idx> TypeVisitable<'tcx> for IndexVec { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.iter().try_for_each(|t| t.visit_with(visitor)) } } impl<'tcx> TypeFoldable<'tcx> for ty::Const<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_const(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Const<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_const(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Const<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { let ty = self.ty().try_fold_with(folder)?; let kind = self.kind().try_fold_with(folder)?; if ty != self.ty() || kind != self.kind() { Ok(folder.tcx().mk_const(ty::ConstS { ty, kind })) } else { Ok(self) } } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Const<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.ty().visit_with(visitor)?; self.kind().visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for InferConst<'tcx> { fn try_fold_with>(self, _folder: &mut F) -> Result { Ok(self) } } impl<'tcx> TypeVisitable<'tcx> for InferConst<'tcx> { fn visit_with>(&self, _visitor: &mut V) -> ControlFlow { ControlFlow::CONTINUE } } impl<'tcx> TypeFoldable<'tcx> for ty::Unevaluated<'tcx> { fn try_fold_with>(self, folder: &mut F) -> Result { folder.try_fold_unevaluated(self) } } impl<'tcx> TypeVisitable<'tcx> for ty::Unevaluated<'tcx> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_unevaluated(*self) } } impl<'tcx> TypeSuperFoldable<'tcx> for ty::Unevaluated<'tcx> { fn try_super_fold_with>( self, folder: &mut F, ) -> Result { Ok(ty::Unevaluated { def: self.def, substs: self.substs.try_fold_with(folder)?, promoted: self.promoted, }) } } impl<'tcx> TypeSuperVisitable<'tcx> for ty::Unevaluated<'tcx> { fn super_visit_with>(&self, visitor: &mut V) -> ControlFlow { self.substs.visit_with(visitor) } } impl<'tcx> TypeFoldable<'tcx> for ty::Unevaluated<'tcx, ()> { fn try_fold_with>(self, folder: &mut F) -> Result { Ok(self.expand().try_fold_with(folder)?.shrink()) } } impl<'tcx> TypeVisitable<'tcx> for ty::Unevaluated<'tcx, ()> { fn visit_with>(&self, visitor: &mut V) -> ControlFlow { self.expand().visit_with(visitor) } }