//! This module contains implementations of the `Lift`, `TypeFoldable` and //! `TypeVisitable` traits for various types in the Rust compiler. Most are //! written by hand, though we've recently added some macros and proc-macros //! to help with the tedium. use crate::mir::interpret; use crate::ty::fold::{FallibleTypeFolder, TypeFoldable, TypeSuperFoldable}; use crate::ty::print::{with_no_trimmed_paths, FmtPrinter, Printer}; use crate::ty::visit::{TypeSuperVisitable, TypeVisitable, TypeVisitor}; use crate::ty::{self, AliasTy, InferConst, Lift, Term, TermKind, Ty, TyCtxt}; use rustc_hir::def::Namespace; use rustc_index::{Idx, IndexVec}; use rustc_target::abi::TyAndLayout; use rustc_type_ir::{ConstKind, DebugWithInfcx, InferCtxtLike, OptWithInfcx}; use std::fmt::{self, Debug}; use std::ops::ControlFlow; use std::rc::Rc; use std::sync::Arc; use super::{GenericArg, GenericArgKind, Region}; impl fmt::Debug for ty::TraitDef { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { ty::tls::with(|tcx| { with_no_trimmed_paths!({ f.write_str( &FmtPrinter::new(tcx, Namespace::TypeNS) .print_def_path(self.def_id, &[])? .into_buffer(), ) }) }) } } impl<'tcx> fmt::Debug for ty::AdtDef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { ty::tls::with(|tcx| { with_no_trimmed_paths!({ f.write_str( &FmtPrinter::new(tcx, Namespace::TypeNS) .print_def_path(self.did(), &[])? .into_buffer(), ) }) }) } } impl fmt::Debug for ty::UpvarId { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { let name = ty::tls::with(|tcx| tcx.hir().name(self.var_path.hir_id)); write!(f, "UpvarId({:?};`{}`;{:?})", self.var_path.hir_id, name, self.closure_expr_id) } } impl<'tcx> fmt::Debug for ty::ExistentialTraitRef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl<'tcx> fmt::Debug for ty::adjustment::Adjustment<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?} -> {}", self.kind, self.target) } } impl fmt::Debug for ty::BoundRegionKind { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ty::BrAnon(span) => write!(f, "BrAnon({span:?})"), ty::BrNamed(did, name) => { if did.is_crate_root() { write!(f, "BrNamed({name})") } else { write!(f, "BrNamed({did:?}, {name})") } } ty::BrEnv => write!(f, "BrEnv"), } } } impl fmt::Debug for ty::FreeRegion { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "ReFree({:?}, {:?})", self.scope, self.bound_region) } } impl<'tcx> fmt::Debug for ty::FnSig<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { OptWithInfcx::new_no_ctx(self).fmt(f) } } impl<'tcx> DebugWithInfcx> for ty::FnSig<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { let sig = this.data; let ty::FnSig { inputs_and_output: _, c_variadic, unsafety, abi } = sig; write!(f, "{}", unsafety.prefix_str())?; match abi { rustc_target::spec::abi::Abi::Rust => (), abi => write!(f, "extern \"{abi:?}\" ")?, }; write!(f, "fn(")?; let inputs = sig.inputs(); match inputs.len() { 0 if *c_variadic => write!(f, "...)")?, 0 => write!(f, ")")?, _ => { for ty in &sig.inputs()[0..(sig.inputs().len() - 1)] { write!(f, "{:?}, ", &this.wrap(ty))?; } write!(f, "{:?}", &this.wrap(sig.inputs().last().unwrap()))?; if *c_variadic { write!(f, "...")?; } write!(f, ")")?; } } match sig.output().kind() { ty::Tuple(list) if list.is_empty() => Ok(()), _ => write!(f, " -> {:?}", &this.wrap(sig.output())), } } } impl<'tcx> fmt::Debug for ty::ConstVid<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "?{}c", self.index) } } impl<'tcx> fmt::Debug for ty::TraitRef<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl<'tcx> ty::DebugWithInfcx> for Ty<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { this.data.fmt(f) } } impl<'tcx> fmt::Debug for Ty<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { with_no_trimmed_paths!(fmt::Display::fmt(self, f)) } } impl fmt::Debug for ty::ParamTy { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/#{}", self.name, self.index) } } impl fmt::Debug for ty::ParamConst { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{}/#{}", self.name, self.index) } } impl<'tcx> fmt::Debug for ty::TraitPredicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { // FIXME(effects) printing? write!(f, "TraitPredicate({:?}, polarity:{:?})", self.trait_ref, self.polarity) } } impl<'tcx> fmt::Debug for ty::ProjectionPredicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "ProjectionPredicate({:?}, {:?})", self.projection_ty, self.term) } } impl<'tcx> fmt::Debug for ty::Predicate<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", self.kind()) } } impl<'tcx> fmt::Debug for ty::Clause<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", self.kind()) } } impl<'tcx> fmt::Debug for ty::ClauseKind<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ty::ClauseKind::ConstArgHasType(ct, ty) => write!(f, "ConstArgHasType({ct:?}, {ty:?})"), ty::ClauseKind::Trait(ref a) => a.fmt(f), ty::ClauseKind::RegionOutlives(ref pair) => pair.fmt(f), ty::ClauseKind::TypeOutlives(ref pair) => pair.fmt(f), ty::ClauseKind::Projection(ref pair) => pair.fmt(f), ty::ClauseKind::WellFormed(ref data) => write!(f, "WellFormed({data:?})"), ty::ClauseKind::ConstEvaluatable(ct) => { write!(f, "ConstEvaluatable({ct:?})") } } } } impl<'tcx> fmt::Debug for ty::PredicateKind<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match *self { ty::PredicateKind::Clause(ref a) => a.fmt(f), ty::PredicateKind::Subtype(ref pair) => pair.fmt(f), ty::PredicateKind::Coerce(ref pair) => pair.fmt(f), ty::PredicateKind::ObjectSafe(trait_def_id) => { write!(f, "ObjectSafe({trait_def_id:?})") } ty::PredicateKind::ClosureKind(closure_def_id, closure_args, kind) => { write!(f, "ClosureKind({closure_def_id:?}, {closure_args:?}, {kind:?})") } ty::PredicateKind::ConstEquate(c1, c2) => write!(f, "ConstEquate({c1:?}, {c2:?})"), ty::PredicateKind::Ambiguous => write!(f, "Ambiguous"), ty::PredicateKind::AliasRelate(t1, t2, dir) => { write!(f, "AliasRelate({t1:?}, {dir:?}, {t2:?})") } } } } impl<'tcx> fmt::Debug for AliasTy<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { OptWithInfcx::new_no_ctx(self).fmt(f) } } impl<'tcx> DebugWithInfcx> for AliasTy<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { f.debug_struct("AliasTy") .field("args", &this.map(|data| data.args)) .field("def_id", &this.data.def_id) .finish() } } impl<'tcx> fmt::Debug for ty::InferConst<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self { InferConst::Var(var) => write!(f, "{var:?}"), InferConst::Fresh(var) => write!(f, "Fresh({var:?})"), } } } impl<'tcx> DebugWithInfcx> for ty::InferConst<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { use ty::InferConst::*; match this.infcx.and_then(|infcx| infcx.universe_of_ct(*this.data)) { None => write!(f, "{:?}", this.data), Some(universe) => match *this.data { Var(vid) => write!(f, "?{}_{}c", vid.index, universe.index()), Fresh(_) => { unreachable!() } }, } } } impl<'tcx> fmt::Debug for ty::consts::Expr<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { OptWithInfcx::new_no_ctx(self).fmt(f) } } impl<'tcx> DebugWithInfcx> for ty::consts::Expr<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { match this.data { ty::Expr::Binop(op, lhs, rhs) => { write!(f, "({op:?}: {:?}, {:?})", &this.wrap(lhs), &this.wrap(rhs)) } ty::Expr::UnOp(op, rhs) => write!(f, "({op:?}: {:?})", &this.wrap(rhs)), ty::Expr::FunctionCall(func, args) => { write!(f, "{:?}(", &this.wrap(func))?; for arg in args.as_slice().iter().rev().skip(1).rev() { write!(f, "{:?}, ", &this.wrap(arg))?; } if let Some(arg) = args.last() { write!(f, "{:?}", &this.wrap(arg))?; } write!(f, ")") } ty::Expr::Cast(cast_kind, lhs, rhs) => { write!(f, "({cast_kind:?}: {:?}, {:?})", &this.wrap(lhs), &this.wrap(rhs)) } } } } impl<'tcx> fmt::Debug for ty::UnevaluatedConst<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { OptWithInfcx::new_no_ctx(self).fmt(f) } } impl<'tcx> DebugWithInfcx> for ty::UnevaluatedConst<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { f.debug_struct("UnevaluatedConst") .field("def", &this.data.def) .field("args", &this.wrap(this.data.args)) .finish() } } impl<'tcx> fmt::Debug for ty::Const<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { OptWithInfcx::new_no_ctx(self).fmt(f) } } impl<'tcx> DebugWithInfcx> for ty::Const<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { // This reflects what `Const` looked liked before `Interned` was // introduced. We print it like this to avoid having to update expected // output in a lot of tests. write!( f, "Const {{ ty: {:?}, kind: {:?} }}", &this.map(|data| data.ty()), &this.map(|data| data.kind()) ) } } impl fmt::Debug for ty::BoundTy { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.kind { ty::BoundTyKind::Anon => write!(f, "{:?}", self.var), ty::BoundTyKind::Param(_, sym) => write!(f, "{sym:?}"), } } } impl fmt::Debug for ty::Placeholder { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { if self.universe == ty::UniverseIndex::ROOT { write!(f, "!{:?}", self.bound) } else { write!(f, "!{}_{:?}", self.universe.index(), self.bound) } } } impl<'tcx> fmt::Debug for GenericArg<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { match self.unpack() { GenericArgKind::Lifetime(lt) => lt.fmt(f), GenericArgKind::Type(ty) => ty.fmt(f), GenericArgKind::Const(ct) => ct.fmt(f), } } } impl<'tcx> DebugWithInfcx> for GenericArg<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { match this.data.unpack() { GenericArgKind::Lifetime(lt) => write!(f, "{:?}", &this.wrap(lt)), GenericArgKind::Const(ct) => write!(f, "{:?}", &this.wrap(ct)), GenericArgKind::Type(ty) => write!(f, "{:?}", &this.wrap(ty)), } } } impl<'tcx> fmt::Debug for Region<'tcx> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { write!(f, "{:?}", self.kind()) } } impl<'tcx> DebugWithInfcx> for Region<'tcx> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { write!(f, "{:?}", &this.map(|data| data.kind())) } } impl<'tcx> DebugWithInfcx> for ty::RegionVid { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { match this.infcx.and_then(|infcx| infcx.universe_of_lt(*this.data)) { Some(universe) => write!(f, "'?{}_{}", this.data.index(), universe.index()), None => write!(f, "{:?}", this.data), } } } impl<'tcx, T: DebugWithInfcx>> DebugWithInfcx> for ty::Binder<'tcx, T> { fn fmt>>( this: OptWithInfcx<'_, TyCtxt<'tcx>, InfCtx, &Self>, f: &mut core::fmt::Formatter<'_>, ) -> core::fmt::Result { f.debug_tuple("Binder") .field(&this.map(|data| data.as_ref().skip_binder())) .field(&this.data.bound_vars()) .finish() } } /////////////////////////////////////////////////////////////////////////// // Atomic structs // // For things that don't carry any arena-allocated data (and are // copy...), just add them to one of these lists as appropriate. // For things for which the type library provides traversal implementations // for all Interners, we only need to provide a Lift implementation: CloneLiftImpls! { (), bool, usize, u16, u32, u64, String, rustc_type_ir::DebruijnIndex, } // For things about which the type library does not know, or does not // provide any traversal implementations, we need to provide both a Lift // implementation and traversal implementations (the latter only for // TyCtxt<'_> interners). TrivialTypeTraversalAndLiftImpls! { ::rustc_target::abi::FieldIdx, ::rustc_target::abi::VariantIdx, crate::middle::region::Scope, crate::ty::FloatTy, ::rustc_ast::InlineAsmOptions, ::rustc_ast::InlineAsmTemplatePiece, ::rustc_ast::NodeId, ::rustc_span::symbol::Symbol, ::rustc_hir::def::Res, ::rustc_hir::def_id::DefId, ::rustc_hir::def_id::LocalDefId, ::rustc_hir::HirId, ::rustc_hir::MatchSource, ::rustc_hir::Mutability, ::rustc_hir::Unsafety, ::rustc_target::asm::InlineAsmRegOrRegClass, ::rustc_target::spec::abi::Abi, crate::mir::coverage::CounterId, crate::mir::coverage::ExpressionId, crate::mir::coverage::MappedExpressionIndex, crate::mir::Local, crate::mir::Promoted, crate::traits::Reveal, crate::ty::adjustment::AutoBorrowMutability, crate::ty::AdtKind, crate::ty::BoundConstness, // Including `BoundRegionKind` is a *bit* dubious, but direct // references to bound region appear in `ty::Error`, and aren't // really meant to be folded. In general, we can only fold a fully // general `Region`. crate::ty::BoundRegionKind, crate::ty::AssocItem, crate::ty::AssocKind, crate::ty::AliasKind, crate::ty::AliasRelationDirection, crate::ty::Placeholder, crate::ty::Placeholder, crate::ty::Placeholder, crate::ty::ClosureKind, crate::ty::FreeRegion, crate::ty::InferTy, crate::ty::IntVarValue, crate::ty::ParamConst, crate::ty::ParamTy, crate::ty::adjustment::PointerCoercion, crate::ty::RegionVid, crate::ty::UniverseIndex, crate::ty::Variance, ::rustc_span::Span, ::rustc_span::symbol::Ident, ::rustc_errors::ErrorGuaranteed, interpret::Scalar, rustc_target::abi::Size, ty::BoundVar, } TrivialTypeTraversalAndLiftImpls! { ty::ValTree<'tcx>, } /////////////////////////////////////////////////////////////////////////// // Lift implementations impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>> Lift<'tcx> for (A, B) { type Lifted = (A::Lifted, B::Lifted); fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some((tcx.lift(self.0)?, tcx.lift(self.1)?)) } } impl<'tcx, A: Lift<'tcx>, B: Lift<'tcx>, C: Lift<'tcx>> Lift<'tcx> for (A, B, C) { type Lifted = (A::Lifted, B::Lifted, C::Lifted); fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some((tcx.lift(self.0)?, tcx.lift(self.1)?, tcx.lift(self.2)?)) } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Option { type Lifted = Option; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(match self { Some(x) => Some(tcx.lift(x)?), None => None, }) } } impl<'tcx, T: Lift<'tcx>, E: Lift<'tcx>> Lift<'tcx> for Result { type Lifted = Result; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { match self { Ok(x) => tcx.lift(x).map(Ok), Err(e) => tcx.lift(e).map(Err), } } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Box { type Lifted = Box; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(Box::new(tcx.lift(*self)?)) } } impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Rc { type Lifted = Rc; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(Rc::new(tcx.lift(self.as_ref().clone())?)) } } impl<'tcx, T: Lift<'tcx> + Clone> Lift<'tcx> for Arc { type Lifted = Arc; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some(Arc::new(tcx.lift(self.as_ref().clone())?)) } } impl<'tcx, T: Lift<'tcx>> Lift<'tcx> for Vec { type Lifted = Vec; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { self.into_iter().map(|v| tcx.lift(v)).collect() } } impl<'tcx, I: Idx, T: Lift<'tcx>> Lift<'tcx> for IndexVec { type Lifted = IndexVec; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { self.into_iter().map(|e| tcx.lift(e)).collect() } } impl<'a, 'tcx> Lift<'tcx> for Term<'a> { type Lifted = ty::Term<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { Some( match self.unpack() { TermKind::Ty(ty) => TermKind::Ty(tcx.lift(ty)?), TermKind::Const(c) => TermKind::Const(tcx.lift(c)?), } .pack(), ) } } impl<'a, 'tcx> Lift<'tcx> for ty::ParamEnv<'a> { type Lifted = ty::ParamEnv<'tcx>; fn lift_to_tcx(self, tcx: TyCtxt<'tcx>) -> Option { tcx.lift(self.caller_bounds()) .map(|caller_bounds| ty::ParamEnv::new(caller_bounds, self.reveal())) } } /////////////////////////////////////////////////////////////////////////// // Traversal implementations. impl<'tcx> TypeVisitable> for ty::AdtDef<'tcx> { fn visit_with>>( &self, _visitor: &mut V, ) -> ControlFlow { ControlFlow::Continue(()) } } impl<'tcx, T: TypeFoldable>> TypeFoldable> for ty::Binder<'tcx, T> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { folder.try_fold_binder(self) } } impl<'tcx, T: TypeVisitable>> TypeVisitable> for ty::Binder<'tcx, T> { fn visit_with>>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_binder(self) } } impl<'tcx, T: TypeFoldable>> TypeSuperFoldable> for ty::Binder<'tcx, T> { fn try_super_fold_with>>( self, folder: &mut F, ) -> Result { self.try_map_bound(|ty| ty.try_fold_with(folder)) } } impl<'tcx, T: TypeVisitable>> TypeSuperVisitable> for ty::Binder<'tcx, T> { fn super_visit_with>>( &self, visitor: &mut V, ) -> ControlFlow { self.as_ref().skip_binder().visit_with(visitor) } } impl<'tcx> TypeFoldable> for &'tcx ty::List> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.mk_poly_existential_predicates(v)) } } impl<'tcx> TypeFoldable> for &'tcx ty::List> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.mk_const_list(v)) } } impl<'tcx> TypeFoldable> for Ty<'tcx> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { folder.try_fold_ty(self) } } impl<'tcx> TypeVisitable> for Ty<'tcx> { fn visit_with>>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_ty(*self) } } impl<'tcx> TypeSuperFoldable> for Ty<'tcx> { fn try_super_fold_with>>( self, folder: &mut F, ) -> Result { let kind = match *self.kind() { ty::RawPtr(tm) => ty::RawPtr(tm.try_fold_with(folder)?), ty::Array(typ, sz) => ty::Array(typ.try_fold_with(folder)?, sz.try_fold_with(folder)?), ty::Slice(typ) => ty::Slice(typ.try_fold_with(folder)?), ty::Adt(tid, args) => ty::Adt(tid, args.try_fold_with(folder)?), ty::Dynamic(trait_ty, region, representation) => ty::Dynamic( trait_ty.try_fold_with(folder)?, region.try_fold_with(folder)?, representation, ), ty::Tuple(ts) => ty::Tuple(ts.try_fold_with(folder)?), ty::FnDef(def_id, args) => ty::FnDef(def_id, args.try_fold_with(folder)?), ty::FnPtr(f) => ty::FnPtr(f.try_fold_with(folder)?), ty::Ref(r, ty, mutbl) => { ty::Ref(r.try_fold_with(folder)?, ty.try_fold_with(folder)?, mutbl) } ty::Generator(did, args, movability) => { ty::Generator(did, args.try_fold_with(folder)?, movability) } ty::GeneratorWitness(types) => ty::GeneratorWitness(types.try_fold_with(folder)?), ty::GeneratorWitnessMIR(did, args) => { ty::GeneratorWitnessMIR(did, args.try_fold_with(folder)?) } ty::Closure(did, args) => ty::Closure(did, args.try_fold_with(folder)?), ty::Alias(kind, data) => ty::Alias(kind, data.try_fold_with(folder)?), ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Error(_) | ty::Infer(_) | ty::Param(..) | ty::Bound(..) | ty::Placeholder(..) | ty::Never | ty::Foreign(..) => return Ok(self), }; Ok(if *self.kind() == kind { self } else { folder.interner().mk_ty_from_kind(kind) }) } } impl<'tcx> TypeSuperVisitable> for Ty<'tcx> { fn super_visit_with>>( &self, visitor: &mut V, ) -> ControlFlow { match self.kind() { ty::RawPtr(ref tm) => tm.visit_with(visitor), ty::Array(typ, sz) => { typ.visit_with(visitor)?; sz.visit_with(visitor) } ty::Slice(typ) => typ.visit_with(visitor), ty::Adt(_, args) => args.visit_with(visitor), ty::Dynamic(ref trait_ty, ref reg, _) => { trait_ty.visit_with(visitor)?; reg.visit_with(visitor) } ty::Tuple(ts) => ts.visit_with(visitor), ty::FnDef(_, args) => args.visit_with(visitor), ty::FnPtr(ref f) => f.visit_with(visitor), ty::Ref(r, ty, _) => { r.visit_with(visitor)?; ty.visit_with(visitor) } ty::Generator(_did, ref args, _) => args.visit_with(visitor), ty::GeneratorWitness(ref types) => types.visit_with(visitor), ty::GeneratorWitnessMIR(_did, ref args) => args.visit_with(visitor), ty::Closure(_did, ref args) => args.visit_with(visitor), ty::Alias(_, ref data) => data.visit_with(visitor), ty::Bool | ty::Char | ty::Str | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Error(_) | ty::Infer(_) | ty::Bound(..) | ty::Placeholder(..) | ty::Param(..) | ty::Never | ty::Foreign(..) => ControlFlow::Continue(()), } } } impl<'tcx> TypeFoldable> for ty::Region<'tcx> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { folder.try_fold_region(self) } } impl<'tcx> TypeVisitable> for ty::Region<'tcx> { fn visit_with>>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_region(*self) } } impl<'tcx> TypeFoldable> for ty::Predicate<'tcx> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { folder.try_fold_predicate(self) } } // FIXME(clause): This is wonky impl<'tcx> TypeFoldable> for ty::Clause<'tcx> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { Ok(folder.try_fold_predicate(self.as_predicate())?.expect_clause()) } } impl<'tcx> TypeVisitable> for ty::Predicate<'tcx> { fn visit_with>>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_predicate(*self) } } impl<'tcx> TypeVisitable> for ty::Clause<'tcx> { fn visit_with>>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_predicate(self.as_predicate()) } } impl<'tcx> TypeSuperFoldable> for ty::Predicate<'tcx> { fn try_super_fold_with>>( self, folder: &mut F, ) -> Result { let new = self.kind().try_fold_with(folder)?; Ok(folder.interner().reuse_or_mk_predicate(self, new)) } } impl<'tcx> TypeSuperVisitable> for ty::Predicate<'tcx> { fn super_visit_with>>( &self, visitor: &mut V, ) -> ControlFlow { self.kind().visit_with(visitor) } } impl<'tcx> TypeFoldable> for &'tcx ty::List> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { ty::util::fold_list(self, folder, |tcx, v| tcx.mk_clauses(v)) } } impl<'tcx> TypeFoldable> for ty::Const<'tcx> { fn try_fold_with>>( self, folder: &mut F, ) -> Result { folder.try_fold_const(self) } } impl<'tcx> TypeVisitable> for ty::Const<'tcx> { fn visit_with>>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_const(*self) } } impl<'tcx> TypeSuperFoldable> for ty::Const<'tcx> { fn try_super_fold_with>>( self, folder: &mut F, ) -> Result { let ty = self.ty().try_fold_with(folder)?; let kind = match self.kind() { ConstKind::Param(p) => ConstKind::Param(p.try_fold_with(folder)?), ConstKind::Infer(i) => ConstKind::Infer(i.try_fold_with(folder)?), ConstKind::Bound(d, b) => { ConstKind::Bound(d.try_fold_with(folder)?, b.try_fold_with(folder)?) } ConstKind::Placeholder(p) => ConstKind::Placeholder(p.try_fold_with(folder)?), ConstKind::Unevaluated(uv) => ConstKind::Unevaluated(uv.try_fold_with(folder)?), ConstKind::Value(v) => ConstKind::Value(v.try_fold_with(folder)?), ConstKind::Error(e) => ConstKind::Error(e.try_fold_with(folder)?), ConstKind::Expr(e) => ConstKind::Expr(e.try_fold_with(folder)?), }; if ty != self.ty() || kind != self.kind() { Ok(folder.interner().mk_ct_from_kind(kind, ty)) } else { Ok(self) } } } impl<'tcx> TypeSuperVisitable> for ty::Const<'tcx> { fn super_visit_with>>( &self, visitor: &mut V, ) -> ControlFlow { self.ty().visit_with(visitor)?; match self.kind() { ConstKind::Param(p) => p.visit_with(visitor), ConstKind::Infer(i) => i.visit_with(visitor), ConstKind::Bound(d, b) => { d.visit_with(visitor)?; b.visit_with(visitor) } ConstKind::Placeholder(p) => p.visit_with(visitor), ConstKind::Unevaluated(uv) => uv.visit_with(visitor), ConstKind::Value(v) => v.visit_with(visitor), ConstKind::Error(e) => e.visit_with(visitor), ConstKind::Expr(e) => e.visit_with(visitor), } } } impl<'tcx> TypeFoldable> for InferConst<'tcx> { fn try_fold_with>>( self, _folder: &mut F, ) -> Result { Ok(self) } } impl<'tcx> TypeVisitable> for InferConst<'tcx> { fn visit_with>>( &self, _visitor: &mut V, ) -> ControlFlow { ControlFlow::Continue(()) } } impl<'tcx> TypeSuperVisitable> for ty::UnevaluatedConst<'tcx> { fn super_visit_with>>( &self, visitor: &mut V, ) -> ControlFlow { self.args.visit_with(visitor) } } impl<'tcx> TypeVisitable> for TyAndLayout<'tcx, Ty<'tcx>> { fn visit_with>>(&self, visitor: &mut V) -> ControlFlow { visitor.visit_ty(self.ty) } }