//! See docs in build/expr/mod.rs use crate::build::expr::category::Category; use crate::build::ForGuard::{OutsideGuard, RefWithinGuard}; use crate::build::{BlockAnd, BlockAndExtension, Builder, Capture, CaptureMap}; use rustc_hir::def_id::LocalDefId; use rustc_middle::hir::place::Projection as HirProjection; use rustc_middle::hir::place::ProjectionKind as HirProjectionKind; use rustc_middle::middle::region; use rustc_middle::mir::AssertKind::BoundsCheck; use rustc_middle::mir::*; use rustc_middle::thir::*; use rustc_middle::ty::AdtDef; use rustc_middle::ty::{self, CanonicalUserTypeAnnotation, Ty, TyCtxt, Variance}; use rustc_span::Span; use rustc_target::abi::VariantIdx; use rustc_index::vec::Idx; use std::assert_matches::assert_matches; use std::iter; /// The "outermost" place that holds this value. #[derive(Copy, Clone, Debug, PartialEq)] pub(crate) enum PlaceBase { /// Denotes the start of a `Place`. Local(Local), /// When building place for an expression within a closure, the place might start off a /// captured path. When `capture_disjoint_fields` is enabled, we might not know the capture /// index (within the desugared closure) of the captured path until most of the projections /// are applied. We use `PlaceBase::Upvar` to keep track of the root variable off of which the /// captured path starts, the closure the capture belongs to and the trait the closure /// implements. /// /// Once we have figured out the capture index, we can convert the place builder to start from /// `PlaceBase::Local`. /// /// Consider the following example /// ```rust /// let t = (((10, 10), 10), 10); /// /// let c = || { /// println!("{}", t.0.0.0); /// }; /// ``` /// Here the THIR expression for `t.0.0.0` will be something like /// /// ```ignore (illustrative) /// * Field(0) /// * Field(0) /// * Field(0) /// * UpvarRef(t) /// ``` /// /// When `capture_disjoint_fields` is enabled, `t.0.0.0` is captured and we won't be able to /// figure out that it is captured until all the `Field` projections are applied. Upvar { /// HirId of the upvar var_hir_id: LocalVarId, /// DefId of the closure closure_def_id: LocalDefId, }, } /// `PlaceBuilder` is used to create places during MIR construction. It allows you to "build up" a /// place by pushing more and more projections onto the end, and then convert the final set into a /// place using the `to_place` method. /// /// This is used internally when building a place for an expression like `a.b.c`. The fields `b` /// and `c` can be progressively pushed onto the place builder that is created when converting `a`. #[derive(Clone, Debug, PartialEq)] pub(in crate::build) struct PlaceBuilder<'tcx> { base: PlaceBase, projection: Vec>, } /// Given a list of MIR projections, convert them to list of HIR ProjectionKind. /// The projections are truncated to represent a path that might be captured by a /// closure/generator. This implies the vector returned from this function doesn't contain /// ProjectionElems `Downcast`, `ConstantIndex`, `Index`, or `Subslice` because those will never be /// part of a path that is captured by a closure. We stop applying projections once we see the first /// projection that isn't captured by a closure. fn convert_to_hir_projections_and_truncate_for_capture( mir_projections: &[PlaceElem<'_>], ) -> Vec { let mut hir_projections = Vec::new(); let mut variant = None; for mir_projection in mir_projections { let hir_projection = match mir_projection { ProjectionElem::Deref => HirProjectionKind::Deref, ProjectionElem::Field(field, _) => { let variant = variant.unwrap_or(VariantIdx::new(0)); HirProjectionKind::Field(field.index() as u32, variant) } ProjectionElem::Downcast(.., idx) => { // We don't expect to see multi-variant enums here, as earlier // phases will have truncated them already. However, there can // still be downcasts, thanks to single-variant enums. // We keep track of VariantIdx so we can use this information // if the next ProjectionElem is a Field. variant = Some(*idx); continue; } // These do not affect anything, they just make sure we know the right type. ProjectionElem::OpaqueCast(_) => continue, ProjectionElem::Index(..) | ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. } => { // We don't capture array-access projections. // We can stop here as arrays are captured completely. break; } }; variant = None; hir_projections.push(hir_projection); } hir_projections } /// Return true if the `proj_possible_ancestor` represents an ancestor path /// to `proj_capture` or `proj_possible_ancestor` is same as `proj_capture`, /// assuming they both start off of the same root variable. /// /// **Note:** It's the caller's responsibility to ensure that both lists of projections /// start off of the same root variable. /// /// Eg: 1. `foo.x` which is represented using `projections=[Field(x)]` is an ancestor of /// `foo.x.y` which is represented using `projections=[Field(x), Field(y)]`. /// Note both `foo.x` and `foo.x.y` start off of the same root variable `foo`. /// 2. Since we only look at the projections here function will return `bar.x` as an a valid /// ancestor of `foo.x.y`. It's the caller's responsibility to ensure that both projections /// list are being applied to the same root variable. fn is_ancestor_or_same_capture( proj_possible_ancestor: &[HirProjectionKind], proj_capture: &[HirProjectionKind], ) -> bool { // We want to make sure `is_ancestor_or_same_capture("x.0.0", "x.0")` to return false. // Therefore we can't just check if all projections are same in the zipped iterator below. if proj_possible_ancestor.len() > proj_capture.len() { return false; } iter::zip(proj_possible_ancestor, proj_capture).all(|(a, b)| a == b) } /// Given a closure, returns the index of a capture within the desugared closure struct and the /// `ty::CapturedPlace` which is the ancestor of the Place represented using the `var_hir_id` /// and `projection`. /// /// Note there will be at most one ancestor for any given Place. /// /// Returns None, when the ancestor is not found. fn find_capture_matching_projections<'a, 'tcx>( upvars: &'a CaptureMap<'tcx>, var_hir_id: LocalVarId, projections: &[PlaceElem<'tcx>], ) -> Option<(usize, &'a Capture<'tcx>)> { let hir_projections = convert_to_hir_projections_and_truncate_for_capture(projections); upvars.get_by_key_enumerated(var_hir_id.0).find(|(_, capture)| { let possible_ancestor_proj_kinds: Vec<_> = capture.captured_place.place.projections.iter().map(|proj| proj.kind).collect(); is_ancestor_or_same_capture(&possible_ancestor_proj_kinds, &hir_projections) }) } /// Takes an upvar place and tries to resolve it into a `PlaceBuilder` /// with `PlaceBase::Local` #[instrument(level = "trace", skip(cx), ret)] fn to_upvars_resolved_place_builder<'tcx>( cx: &Builder<'_, 'tcx>, var_hir_id: LocalVarId, closure_def_id: LocalDefId, projection: &[PlaceElem<'tcx>], ) -> Option> { let Some((capture_index, capture)) = find_capture_matching_projections( &cx.upvars, var_hir_id, &projection, ) else { let closure_span = cx.tcx.def_span(closure_def_id); if !enable_precise_capture(cx.tcx, closure_span) { bug!( "No associated capture found for {:?}[{:#?}] even though \ capture_disjoint_fields isn't enabled", var_hir_id, projection ) } else { debug!( "No associated capture found for {:?}[{:#?}]", var_hir_id, projection, ); } return None; }; // Access the capture by accessing the field within the Closure struct. let capture_info = &cx.upvars[capture_index]; let mut upvar_resolved_place_builder = PlaceBuilder::from(capture_info.use_place); // We used some of the projections to build the capture itself, // now we apply the remaining to the upvar resolved place. trace!(?capture.captured_place, ?projection); let remaining_projections = strip_prefix( capture.captured_place.place.base_ty, projection, &capture.captured_place.place.projections, ); upvar_resolved_place_builder.projection.extend(remaining_projections); Some(upvar_resolved_place_builder) } /// Returns projections remaining after stripping an initial prefix of HIR /// projections. /// /// Supports only HIR projection kinds that represent a path that might be /// captured by a closure or a generator, i.e., an `Index` or a `Subslice` /// projection kinds are unsupported. fn strip_prefix<'a, 'tcx>( mut base_ty: Ty<'tcx>, projections: &'a [PlaceElem<'tcx>], prefix_projections: &[HirProjection<'tcx>], ) -> impl Iterator> + 'a { let mut iter = projections .iter() .copied() // Filter out opaque casts, they are unnecessary in the prefix. .filter(|elem| !matches!(elem, ProjectionElem::OpaqueCast(..))); for projection in prefix_projections { match projection.kind { HirProjectionKind::Deref => { assert_matches!(iter.next(), Some(ProjectionElem::Deref)); } HirProjectionKind::Field(..) => { if base_ty.is_enum() { assert_matches!(iter.next(), Some(ProjectionElem::Downcast(..))); } assert_matches!(iter.next(), Some(ProjectionElem::Field(..))); } HirProjectionKind::Index | HirProjectionKind::Subslice => { bug!("unexpected projection kind: {:?}", projection); } } base_ty = projection.ty; } iter } impl<'tcx> PlaceBuilder<'tcx> { pub(in crate::build) fn to_place(&self, cx: &Builder<'_, 'tcx>) -> Place<'tcx> { self.try_to_place(cx).unwrap() } /// Creates a `Place` or returns `None` if an upvar cannot be resolved pub(in crate::build) fn try_to_place(&self, cx: &Builder<'_, 'tcx>) -> Option> { let resolved = self.resolve_upvar(cx); let builder = resolved.as_ref().unwrap_or(self); let PlaceBase::Local(local) = builder.base else { return None }; let projection = cx.tcx.intern_place_elems(&builder.projection); Some(Place { local, projection }) } /// Attempts to resolve the `PlaceBuilder`. /// Returns `None` if this is not an upvar. /// /// Upvars resolve may fail for a `PlaceBuilder` when attempting to /// resolve a disjoint field whose root variable is not captured /// (destructured assignments) or when attempting to resolve a root /// variable (discriminant matching with only wildcard arm) that is /// not captured. This can happen because the final mir that will be /// generated doesn't require a read for this place. Failures will only /// happen inside closures. pub(in crate::build) fn resolve_upvar( &self, cx: &Builder<'_, 'tcx>, ) -> Option> { let PlaceBase::Upvar { var_hir_id, closure_def_id } = self.base else { return None; }; to_upvars_resolved_place_builder(cx, var_hir_id, closure_def_id, &self.projection) } pub(crate) fn base(&self) -> PlaceBase { self.base } pub(crate) fn projection(&self) -> &[PlaceElem<'tcx>] { &self.projection } pub(crate) fn field(self, f: Field, ty: Ty<'tcx>) -> Self { self.project(PlaceElem::Field(f, ty)) } pub(crate) fn deref(self) -> Self { self.project(PlaceElem::Deref) } pub(crate) fn downcast(self, adt_def: AdtDef<'tcx>, variant_index: VariantIdx) -> Self { self.project(PlaceElem::Downcast(Some(adt_def.variant(variant_index).name), variant_index)) } fn index(self, index: Local) -> Self { self.project(PlaceElem::Index(index)) } pub(crate) fn project(mut self, elem: PlaceElem<'tcx>) -> Self { self.projection.push(elem); self } /// Same as `.clone().project(..)` but more efficient pub(crate) fn clone_project(&self, elem: PlaceElem<'tcx>) -> Self { Self { base: self.base, projection: Vec::from_iter(self.projection.iter().copied().chain([elem])), } } } impl<'tcx> From for PlaceBuilder<'tcx> { fn from(local: Local) -> Self { Self { base: PlaceBase::Local(local), projection: Vec::new() } } } impl<'tcx> From for PlaceBuilder<'tcx> { fn from(base: PlaceBase) -> Self { Self { base, projection: Vec::new() } } } impl<'tcx> From> for PlaceBuilder<'tcx> { fn from(p: Place<'tcx>) -> Self { Self { base: PlaceBase::Local(p.local), projection: p.projection.to_vec() } } } impl<'a, 'tcx> Builder<'a, 'tcx> { /// Compile `expr`, yielding a place that we can move from etc. /// /// WARNING: Any user code might: /// * Invalidate any slice bounds checks performed. /// * Change the address that this `Place` refers to. /// * Modify the memory that this place refers to. /// * Invalidate the memory that this place refers to, this will be caught /// by borrow checking. /// /// Extra care is needed if any user code is allowed to run between calling /// this method and using it, as is the case for `match` and index /// expressions. pub(crate) fn as_place( &mut self, mut block: BasicBlock, expr: &Expr<'tcx>, ) -> BlockAnd> { let place_builder = unpack!(block = self.as_place_builder(block, expr)); block.and(place_builder.to_place(self)) } /// This is used when constructing a compound `Place`, so that we can avoid creating /// intermediate `Place` values until we know the full set of projections. pub(crate) fn as_place_builder( &mut self, block: BasicBlock, expr: &Expr<'tcx>, ) -> BlockAnd> { self.expr_as_place(block, expr, Mutability::Mut, None) } /// Compile `expr`, yielding a place that we can move from etc. /// Mutability note: The caller of this method promises only to read from the resulting /// place. The place itself may or may not be mutable: /// * If this expr is a place expr like a.b, then we will return that place. /// * Otherwise, a temporary is created: in that event, it will be an immutable temporary. pub(crate) fn as_read_only_place( &mut self, mut block: BasicBlock, expr: &Expr<'tcx>, ) -> BlockAnd> { let place_builder = unpack!(block = self.as_read_only_place_builder(block, expr)); block.and(place_builder.to_place(self)) } /// This is used when constructing a compound `Place`, so that we can avoid creating /// intermediate `Place` values until we know the full set of projections. /// Mutability note: The caller of this method promises only to read from the resulting /// place. The place itself may or may not be mutable: /// * If this expr is a place expr like a.b, then we will return that place. /// * Otherwise, a temporary is created: in that event, it will be an immutable temporary. fn as_read_only_place_builder( &mut self, block: BasicBlock, expr: &Expr<'tcx>, ) -> BlockAnd> { self.expr_as_place(block, expr, Mutability::Not, None) } fn expr_as_place( &mut self, mut block: BasicBlock, expr: &Expr<'tcx>, mutability: Mutability, fake_borrow_temps: Option<&mut Vec>, ) -> BlockAnd> { debug!("expr_as_place(block={:?}, expr={:?}, mutability={:?})", block, expr, mutability); let this = self; let expr_span = expr.span; let source_info = this.source_info(expr_span); match expr.kind { ExprKind::Scope { region_scope, lint_level, value } => { this.in_scope((region_scope, source_info), lint_level, |this| { this.expr_as_place(block, &this.thir[value], mutability, fake_borrow_temps) }) } ExprKind::Field { lhs, variant_index, name } => { let lhs = &this.thir[lhs]; let mut place_builder = unpack!(block = this.expr_as_place(block, lhs, mutability, fake_borrow_temps,)); if let ty::Adt(adt_def, _) = lhs.ty.kind() { if adt_def.is_enum() { place_builder = place_builder.downcast(*adt_def, variant_index); } } block.and(place_builder.field(name, expr.ty)) } ExprKind::Deref { arg } => { let place_builder = unpack!( block = this.expr_as_place(block, &this.thir[arg], mutability, fake_borrow_temps,) ); block.and(place_builder.deref()) } ExprKind::Index { lhs, index } => this.lower_index_expression( block, &this.thir[lhs], &this.thir[index], mutability, fake_borrow_temps, expr.temp_lifetime, expr_span, source_info, ), ExprKind::UpvarRef { closure_def_id, var_hir_id } => { this.lower_captured_upvar(block, closure_def_id.expect_local(), var_hir_id) } ExprKind::VarRef { id } => { let place_builder = if this.is_bound_var_in_guard(id) { let index = this.var_local_id(id, RefWithinGuard); PlaceBuilder::from(index).deref() } else { let index = this.var_local_id(id, OutsideGuard); PlaceBuilder::from(index) }; block.and(place_builder) } ExprKind::PlaceTypeAscription { source, ref user_ty } => { let place_builder = unpack!( block = this.expr_as_place( block, &this.thir[source], mutability, fake_borrow_temps, ) ); if let Some(user_ty) = user_ty { let annotation_index = this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation { span: source_info.span, user_ty: user_ty.clone(), inferred_ty: expr.ty, }); let place = place_builder.to_place(this); this.cfg.push( block, Statement { source_info, kind: StatementKind::AscribeUserType( Box::new(( place, UserTypeProjection { base: annotation_index, projs: vec![] }, )), Variance::Invariant, ), }, ); } block.and(place_builder) } ExprKind::ValueTypeAscription { source, ref user_ty } => { let source = &this.thir[source]; let temp = unpack!(block = this.as_temp(block, source.temp_lifetime, source, mutability)); if let Some(user_ty) = user_ty { let annotation_index = this.canonical_user_type_annotations.push(CanonicalUserTypeAnnotation { span: source_info.span, user_ty: user_ty.clone(), inferred_ty: expr.ty, }); this.cfg.push( block, Statement { source_info, kind: StatementKind::AscribeUserType( Box::new(( Place::from(temp), UserTypeProjection { base: annotation_index, projs: vec![] }, )), Variance::Invariant, ), }, ); } block.and(PlaceBuilder::from(temp)) } ExprKind::Array { .. } | ExprKind::Tuple { .. } | ExprKind::Adt { .. } | ExprKind::Closure { .. } | ExprKind::Unary { .. } | ExprKind::Binary { .. } | ExprKind::LogicalOp { .. } | ExprKind::Box { .. } | ExprKind::Cast { .. } | ExprKind::Use { .. } | ExprKind::NeverToAny { .. } | ExprKind::Pointer { .. } | ExprKind::Repeat { .. } | ExprKind::Borrow { .. } | ExprKind::AddressOf { .. } | ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Loop { .. } | ExprKind::Block { .. } | ExprKind::Let { .. } | ExprKind::Assign { .. } | ExprKind::AssignOp { .. } | ExprKind::Break { .. } | ExprKind::Continue { .. } | ExprKind::Return { .. } | ExprKind::Literal { .. } | ExprKind::NamedConst { .. } | ExprKind::NonHirLiteral { .. } | ExprKind::ZstLiteral { .. } | ExprKind::ConstParam { .. } | ExprKind::ConstBlock { .. } | ExprKind::StaticRef { .. } | ExprKind::InlineAsm { .. } | ExprKind::Yield { .. } | ExprKind::ThreadLocalRef(_) | ExprKind::Call { .. } => { // these are not places, so we need to make a temporary. debug_assert!(!matches!(Category::of(&expr.kind), Some(Category::Place))); let temp = unpack!(block = this.as_temp(block, expr.temp_lifetime, expr, mutability)); block.and(PlaceBuilder::from(temp)) } } } /// Lower a captured upvar. Note we might not know the actual capture index, /// so we create a place starting from `PlaceBase::Upvar`, which will be resolved /// once all projections that allow us to identify a capture have been applied. fn lower_captured_upvar( &mut self, block: BasicBlock, closure_def_id: LocalDefId, var_hir_id: LocalVarId, ) -> BlockAnd> { block.and(PlaceBuilder::from(PlaceBase::Upvar { var_hir_id, closure_def_id })) } /// Lower an index expression /// /// This has two complications; /// /// * We need to do a bounds check. /// * We need to ensure that the bounds check can't be invalidated using an /// expression like `x[1][{x = y; 2}]`. We use fake borrows here to ensure /// that this is the case. fn lower_index_expression( &mut self, mut block: BasicBlock, base: &Expr<'tcx>, index: &Expr<'tcx>, mutability: Mutability, fake_borrow_temps: Option<&mut Vec>, temp_lifetime: Option, expr_span: Span, source_info: SourceInfo, ) -> BlockAnd> { let base_fake_borrow_temps = &mut Vec::new(); let is_outermost_index = fake_borrow_temps.is_none(); let fake_borrow_temps = fake_borrow_temps.unwrap_or(base_fake_borrow_temps); let base_place = unpack!(block = self.expr_as_place(block, base, mutability, Some(fake_borrow_temps),)); // Making this a *fresh* temporary means we do not have to worry about // the index changing later: Nothing will ever change this temporary. // The "retagging" transformation (for Stacked Borrows) relies on this. let idx = unpack!(block = self.as_temp(block, temp_lifetime, index, Mutability::Not,)); block = self.bounds_check(block, &base_place, idx, expr_span, source_info); if is_outermost_index { self.read_fake_borrows(block, fake_borrow_temps, source_info) } else { self.add_fake_borrows_of_base( base_place.to_place(self), block, fake_borrow_temps, expr_span, source_info, ); } block.and(base_place.index(idx)) } fn bounds_check( &mut self, block: BasicBlock, slice: &PlaceBuilder<'tcx>, index: Local, expr_span: Span, source_info: SourceInfo, ) -> BasicBlock { let usize_ty = self.tcx.types.usize; let bool_ty = self.tcx.types.bool; // bounds check: let len = self.temp(usize_ty, expr_span); let lt = self.temp(bool_ty, expr_span); // len = len(slice) self.cfg.push_assign(block, source_info, len, Rvalue::Len(slice.to_place(self))); // lt = idx < len self.cfg.push_assign( block, source_info, lt, Rvalue::BinaryOp( BinOp::Lt, Box::new((Operand::Copy(Place::from(index)), Operand::Copy(len))), ), ); let msg = BoundsCheck { len: Operand::Move(len), index: Operand::Copy(Place::from(index)) }; // assert!(lt, "...") self.assert(block, Operand::Move(lt), true, msg, expr_span) } fn add_fake_borrows_of_base( &mut self, base_place: Place<'tcx>, block: BasicBlock, fake_borrow_temps: &mut Vec, expr_span: Span, source_info: SourceInfo, ) { let tcx = self.tcx; let place_ty = base_place.ty(&self.local_decls, tcx); if let ty::Slice(_) = place_ty.ty.kind() { // We need to create fake borrows to ensure that the bounds // check that we just did stays valid. Since we can't assign to // unsized values, we only need to ensure that none of the // pointers in the base place are modified. for (idx, elem) in base_place.projection.iter().enumerate().rev() { match elem { ProjectionElem::Deref => { let fake_borrow_deref_ty = Place::ty_from( base_place.local, &base_place.projection[..idx], &self.local_decls, tcx, ) .ty; let fake_borrow_ty = tcx.mk_imm_ref(tcx.lifetimes.re_erased, fake_borrow_deref_ty); let fake_borrow_temp = self.local_decls.push(LocalDecl::new(fake_borrow_ty, expr_span)); let projection = tcx.intern_place_elems(&base_place.projection[..idx]); self.cfg.push_assign( block, source_info, fake_borrow_temp.into(), Rvalue::Ref( tcx.lifetimes.re_erased, BorrowKind::Shallow, Place { local: base_place.local, projection }, ), ); fake_borrow_temps.push(fake_borrow_temp); } ProjectionElem::Index(_) => { let index_ty = Place::ty_from( base_place.local, &base_place.projection[..idx], &self.local_decls, tcx, ); match index_ty.ty.kind() { // The previous index expression has already // done any index expressions needed here. ty::Slice(_) => break, ty::Array(..) => (), _ => bug!("unexpected index base"), } } ProjectionElem::Field(..) | ProjectionElem::Downcast(..) | ProjectionElem::OpaqueCast(..) | ProjectionElem::ConstantIndex { .. } | ProjectionElem::Subslice { .. } => (), } } } } fn read_fake_borrows( &mut self, bb: BasicBlock, fake_borrow_temps: &mut Vec, source_info: SourceInfo, ) { // All indexes have been evaluated now, read all of the // fake borrows so that they are live across those index // expressions. for temp in fake_borrow_temps { self.cfg.push_fake_read(bb, source_info, FakeReadCause::ForIndex, Place::from(*temp)); } } } /// Precise capture is enabled if the feature gate `capture_disjoint_fields` is enabled or if /// user is using Rust Edition 2021 or higher. fn enable_precise_capture(tcx: TyCtxt<'_>, closure_span: Span) -> bool { tcx.features().capture_disjoint_fields || closure_span.rust_2021() }