use rustc_hir as hir; use rustc_hir::lang_items::LangItem; use rustc_index::Idx; use rustc_middle::mir::patch::MirPatch; use rustc_middle::mir::*; use rustc_middle::traits::Reveal; use rustc_middle::ty::util::IntTypeExt; use rustc_middle::ty::GenericArgsRef; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_target::abi::{FieldIdx, VariantIdx, FIRST_VARIANT}; use std::{fmt, iter}; /// The value of an inserted drop flag. #[derive(Debug, PartialEq, Eq, Copy, Clone)] pub enum DropFlagState { /// The tracked value is initialized and needs to be dropped when leaving its scope. Present, /// The tracked value is uninitialized or was moved out of and does not need to be dropped when /// leaving its scope. Absent, } impl DropFlagState { pub fn value(self) -> bool { match self { DropFlagState::Present => true, DropFlagState::Absent => false, } } } /// Describes how/if a value should be dropped. #[derive(Debug)] pub enum DropStyle { /// The value is already dead at the drop location, no drop will be executed. Dead, /// The value is known to always be initialized at the drop location, drop will always be /// executed. Static, /// Whether the value needs to be dropped depends on its drop flag. Conditional, /// An "open" drop is one where only the fields of a value are dropped. /// /// For example, this happens when moving out of a struct field: The rest of the struct will be /// dropped in such an "open" drop. It is also used to generate drop glue for the individual /// components of a value, for example for dropping array elements. Open, } /// Which drop flags to affect/check with an operation. #[derive(Debug)] pub enum DropFlagMode { /// Only affect the top-level drop flag, not that of any contained fields. Shallow, /// Affect all nested drop flags in addition to the top-level one. Deep, } /// Describes if unwinding is necessary and where to unwind to if a panic occurs. #[derive(Copy, Clone, Debug)] pub enum Unwind { /// Unwind to this block. To(BasicBlock), /// Already in an unwind path, any panic will cause an abort. InCleanup, } impl Unwind { fn is_cleanup(self) -> bool { match self { Unwind::To(..) => false, Unwind::InCleanup => true, } } fn into_action(self) -> UnwindAction { match self { Unwind::To(bb) => UnwindAction::Cleanup(bb), Unwind::InCleanup => UnwindAction::Terminate(UnwindTerminateReason::InCleanup), } } fn map(self, f: F) -> Self where F: FnOnce(BasicBlock) -> BasicBlock, { match self { Unwind::To(bb) => Unwind::To(f(bb)), Unwind::InCleanup => Unwind::InCleanup, } } } pub trait DropElaborator<'a, 'tcx>: fmt::Debug { /// The type representing paths that can be moved out of. /// /// Users can move out of individual fields of a struct, such as `a.b.c`. This type is used to /// represent such move paths. Sometimes tracking individual move paths is not necessary, in /// which case this may be set to (for example) `()`. type Path: Copy + fmt::Debug; // Accessors fn patch(&mut self) -> &mut MirPatch<'tcx>; fn body(&self) -> &'a Body<'tcx>; fn tcx(&self) -> TyCtxt<'tcx>; fn param_env(&self) -> ty::ParamEnv<'tcx>; // Drop logic /// Returns how `path` should be dropped, given `mode`. fn drop_style(&self, path: Self::Path, mode: DropFlagMode) -> DropStyle; /// Returns the drop flag of `path` as a MIR `Operand` (or `None` if `path` has no drop flag). fn get_drop_flag(&mut self, path: Self::Path) -> Option>; /// Modifies the MIR patch so that the drop flag of `path` (if any) is cleared at `location`. /// /// If `mode` is deep, drop flags of all child paths should also be cleared by inserting /// additional statements. fn clear_drop_flag(&mut self, location: Location, path: Self::Path, mode: DropFlagMode); // Subpaths /// Returns the subpath of a field of `path` (or `None` if there is no dedicated subpath). /// /// If this returns `None`, `field` will not get a dedicated drop flag. fn field_subpath(&self, path: Self::Path, field: FieldIdx) -> Option; /// Returns the subpath of a dereference of `path` (or `None` if there is no dedicated subpath). /// /// If this returns `None`, `*path` will not get a dedicated drop flag. /// /// This is only relevant for `Box`, where the contained `T` can be moved out of the box. fn deref_subpath(&self, path: Self::Path) -> Option; /// Returns the subpath of downcasting `path` to one of its variants. /// /// If this returns `None`, the downcast of `path` will not get a dedicated drop flag. fn downcast_subpath(&self, path: Self::Path, variant: VariantIdx) -> Option; /// Returns the subpath of indexing a fixed-size array `path`. /// /// If this returns `None`, elements of `path` will not get a dedicated drop flag. /// /// This is only relevant for array patterns, which can move out of individual array elements. fn array_subpath(&self, path: Self::Path, index: u64, size: u64) -> Option; } #[derive(Debug)] struct DropCtxt<'l, 'b, 'tcx, D> where D: DropElaborator<'b, 'tcx>, { elaborator: &'l mut D, source_info: SourceInfo, place: Place<'tcx>, path: D::Path, succ: BasicBlock, unwind: Unwind, } /// "Elaborates" a drop of `place`/`path` and patches `bb`'s terminator to execute it. /// /// The passed `elaborator` is used to determine what should happen at the drop terminator. It /// decides whether the drop can be statically determined or whether it needs a dynamic drop flag, /// and whether the drop is "open", ie. should be expanded to drop all subfields of the dropped /// value. /// /// When this returns, the MIR patch in the `elaborator` contains the necessary changes. pub fn elaborate_drop<'b, 'tcx, D>( elaborator: &mut D, source_info: SourceInfo, place: Place<'tcx>, path: D::Path, succ: BasicBlock, unwind: Unwind, bb: BasicBlock, ) where D: DropElaborator<'b, 'tcx>, 'tcx: 'b, { DropCtxt { elaborator, source_info, place, path, succ, unwind }.elaborate_drop(bb) } impl<'l, 'b, 'tcx, D> DropCtxt<'l, 'b, 'tcx, D> where D: DropElaborator<'b, 'tcx>, 'tcx: 'b, { #[instrument(level = "trace", skip(self), ret)] fn place_ty(&self, place: Place<'tcx>) -> Ty<'tcx> { place.ty(self.elaborator.body(), self.tcx()).ty } fn tcx(&self) -> TyCtxt<'tcx> { self.elaborator.tcx() } /// This elaborates a single drop instruction, located at `bb`, and /// patches over it. /// /// The elaborated drop checks the drop flags to only drop what /// is initialized. /// /// In addition, the relevant drop flags also need to be cleared /// to avoid double-drops. However, in the middle of a complex /// drop, one must avoid clearing some of the flags before they /// are read, as that would cause a memory leak. /// /// In particular, when dropping an ADT, multiple fields may be /// joined together under the `rest` subpath. They are all controlled /// by the primary drop flag, but only the last rest-field dropped /// should clear it (and it must also not clear anything else). // // FIXME: I think we should just control the flags externally, // and then we do not need this machinery. #[instrument(level = "debug")] pub fn elaborate_drop(&mut self, bb: BasicBlock) { match self.elaborator.drop_style(self.path, DropFlagMode::Deep) { DropStyle::Dead => { self.elaborator .patch() .patch_terminator(bb, TerminatorKind::Goto { target: self.succ }); } DropStyle::Static => { self.elaborator.patch().patch_terminator( bb, TerminatorKind::Drop { place: self.place, target: self.succ, unwind: self.unwind.into_action(), replace: false, }, ); } DropStyle::Conditional => { let drop_bb = self.complete_drop(self.succ, self.unwind); self.elaborator .patch() .patch_terminator(bb, TerminatorKind::Goto { target: drop_bb }); } DropStyle::Open => { let drop_bb = self.open_drop(); self.elaborator .patch() .patch_terminator(bb, TerminatorKind::Goto { target: drop_bb }); } } } /// Returns the place and move path for each field of `variant`, /// (the move path is `None` if the field is a rest field). fn move_paths_for_fields( &self, base_place: Place<'tcx>, variant_path: D::Path, variant: &'tcx ty::VariantDef, args: GenericArgsRef<'tcx>, ) -> Vec<(Place<'tcx>, Option)> { variant .fields .iter() .enumerate() .map(|(i, f)| { let field = FieldIdx::new(i); let subpath = self.elaborator.field_subpath(variant_path, field); let tcx = self.tcx(); assert_eq!(self.elaborator.param_env().reveal(), Reveal::All); let field_ty = tcx.normalize_erasing_regions(self.elaborator.param_env(), f.ty(tcx, args)); (tcx.mk_place_field(base_place, field, field_ty), subpath) }) .collect() } fn drop_subpath( &mut self, place: Place<'tcx>, path: Option, succ: BasicBlock, unwind: Unwind, ) -> BasicBlock { if let Some(path) = path { debug!("drop_subpath: for std field {:?}", place); DropCtxt { elaborator: self.elaborator, source_info: self.source_info, path, place, succ, unwind, } .elaborated_drop_block() } else { debug!("drop_subpath: for rest field {:?}", place); DropCtxt { elaborator: self.elaborator, source_info: self.source_info, place, succ, unwind, // Using `self.path` here to condition the drop on // our own drop flag. path: self.path, } .complete_drop(succ, unwind) } } /// Creates one-half of the drop ladder for a list of fields, and return /// the list of steps in it in reverse order, with the first step /// dropping 0 fields and so on. /// /// `unwind_ladder` is such a list of steps in reverse order, /// which is called if the matching step of the drop glue panics. fn drop_halfladder( &mut self, unwind_ladder: &[Unwind], mut succ: BasicBlock, fields: &[(Place<'tcx>, Option)], ) -> Vec { iter::once(succ) .chain(fields.iter().rev().zip(unwind_ladder).map(|(&(place, path), &unwind_succ)| { succ = self.drop_subpath(place, path, succ, unwind_succ); succ })) .collect() } fn drop_ladder_bottom(&mut self) -> (BasicBlock, Unwind) { // Clear the "master" drop flag at the end. This is needed // because the "master" drop protects the ADT's discriminant, // which is invalidated after the ADT is dropped. (self.drop_flag_reset_block(DropFlagMode::Shallow, self.succ, self.unwind), self.unwind) } /// Creates a full drop ladder, consisting of 2 connected half-drop-ladders /// /// For example, with 3 fields, the drop ladder is /// /// .d0: /// ELAB(drop location.0 [target=.d1, unwind=.c1]) /// .d1: /// ELAB(drop location.1 [target=.d2, unwind=.c2]) /// .d2: /// ELAB(drop location.2 [target=`self.succ`, unwind=`self.unwind`]) /// .c1: /// ELAB(drop location.1 [target=.c2]) /// .c2: /// ELAB(drop location.2 [target=`self.unwind`]) /// /// NOTE: this does not clear the master drop flag, so you need /// to point succ/unwind on a `drop_ladder_bottom`. fn drop_ladder( &mut self, fields: Vec<(Place<'tcx>, Option)>, succ: BasicBlock, unwind: Unwind, ) -> (BasicBlock, Unwind) { debug!("drop_ladder({:?}, {:?})", self, fields); let mut fields = fields; fields.retain(|&(place, _)| { self.place_ty(place).needs_drop(self.tcx(), self.elaborator.param_env()) }); debug!("drop_ladder - fields needing drop: {:?}", fields); let unwind_ladder = vec![Unwind::InCleanup; fields.len() + 1]; let unwind_ladder: Vec<_> = if let Unwind::To(target) = unwind { let halfladder = self.drop_halfladder(&unwind_ladder, target, &fields); halfladder.into_iter().map(Unwind::To).collect() } else { unwind_ladder }; let normal_ladder = self.drop_halfladder(&unwind_ladder, succ, &fields); (*normal_ladder.last().unwrap(), *unwind_ladder.last().unwrap()) } fn open_drop_for_tuple(&mut self, tys: &[Ty<'tcx>]) -> BasicBlock { debug!("open_drop_for_tuple({:?}, {:?})", self, tys); let fields = tys .iter() .enumerate() .map(|(i, &ty)| { ( self.tcx().mk_place_field(self.place, FieldIdx::new(i), ty), self.elaborator.field_subpath(self.path, FieldIdx::new(i)), ) }) .collect(); let (succ, unwind) = self.drop_ladder_bottom(); self.drop_ladder(fields, succ, unwind).0 } /// Drops the T contained in a `Box` if it has not been moved out of #[instrument(level = "debug", ret)] fn open_drop_for_box_contents( &mut self, adt: ty::AdtDef<'tcx>, args: GenericArgsRef<'tcx>, succ: BasicBlock, unwind: Unwind, ) -> BasicBlock { // drop glue is sent straight to codegen // box cannot be directly dereferenced let unique_ty = adt.non_enum_variant().fields[FieldIdx::new(0)].ty(self.tcx(), args); let unique_variant = unique_ty.ty_adt_def().unwrap().non_enum_variant(); let nonnull_ty = unique_variant.fields[FieldIdx::from_u32(0)].ty(self.tcx(), args); let ptr_ty = Ty::new_imm_ptr(self.tcx(), args[0].expect_ty()); let unique_place = self.tcx().mk_place_field(self.place, FieldIdx::new(0), unique_ty); let nonnull_place = self.tcx().mk_place_field(unique_place, FieldIdx::new(0), nonnull_ty); let ptr_place = self.tcx().mk_place_field(nonnull_place, FieldIdx::new(0), ptr_ty); let interior = self.tcx().mk_place_deref(ptr_place); let interior_path = self.elaborator.deref_subpath(self.path); self.drop_subpath(interior, interior_path, succ, unwind) } #[instrument(level = "debug", ret)] fn open_drop_for_adt( &mut self, adt: ty::AdtDef<'tcx>, args: GenericArgsRef<'tcx>, ) -> BasicBlock { if adt.variants().is_empty() { return self.elaborator.patch().new_block(BasicBlockData { statements: vec![], terminator: Some(Terminator { source_info: self.source_info, kind: TerminatorKind::Unreachable, }), is_cleanup: self.unwind.is_cleanup(), }); } let skip_contents = adt.is_union() || Some(adt.did()) == self.tcx().lang_items().manually_drop(); let contents_drop = if skip_contents { (self.succ, self.unwind) } else { self.open_drop_for_adt_contents(adt, args) }; if adt.is_box() { // we need to drop the inside of the box before running the destructor let succ = self.destructor_call_block(contents_drop); let unwind = contents_drop .1 .map(|unwind| self.destructor_call_block((unwind, Unwind::InCleanup))); self.open_drop_for_box_contents(adt, args, succ, unwind) } else if adt.has_dtor(self.tcx()) { self.destructor_call_block(contents_drop) } else { contents_drop.0 } } fn open_drop_for_adt_contents( &mut self, adt: ty::AdtDef<'tcx>, args: GenericArgsRef<'tcx>, ) -> (BasicBlock, Unwind) { let (succ, unwind) = self.drop_ladder_bottom(); if !adt.is_enum() { let fields = self.move_paths_for_fields(self.place, self.path, adt.variant(FIRST_VARIANT), args); self.drop_ladder(fields, succ, unwind) } else { self.open_drop_for_multivariant(adt, args, succ, unwind) } } fn open_drop_for_multivariant( &mut self, adt: ty::AdtDef<'tcx>, args: GenericArgsRef<'tcx>, succ: BasicBlock, unwind: Unwind, ) -> (BasicBlock, Unwind) { let mut values = Vec::with_capacity(adt.variants().len()); let mut normal_blocks = Vec::with_capacity(adt.variants().len()); let mut unwind_blocks = if unwind.is_cleanup() { None } else { Some(Vec::with_capacity(adt.variants().len())) }; let mut have_otherwise_with_drop_glue = false; let mut have_otherwise = false; let tcx = self.tcx(); for (variant_index, discr) in adt.discriminants(tcx) { let variant = &adt.variant(variant_index); let subpath = self.elaborator.downcast_subpath(self.path, variant_index); if let Some(variant_path) = subpath { let base_place = tcx.mk_place_elem( self.place, ProjectionElem::Downcast(Some(variant.name), variant_index), ); let fields = self.move_paths_for_fields(base_place, variant_path, variant, args); values.push(discr.val); if let Unwind::To(unwind) = unwind { // We can't use the half-ladder from the original // drop ladder, because this breaks the // "funclet can't have 2 successor funclets" // requirement from MSVC: // // switch unwind-switch // / \ / \ // v1.0 v2.0 v2.0-unwind v1.0-unwind // | | / | // v1.1-unwind v2.1-unwind | // ^ | // \-------------------------------/ // // Create a duplicate half-ladder to avoid that. We // could technically only do this on MSVC, but I // I want to minimize the divergence between MSVC // and non-MSVC. let unwind_blocks = unwind_blocks.as_mut().unwrap(); let unwind_ladder = vec![Unwind::InCleanup; fields.len() + 1]; let halfladder = self.drop_halfladder(&unwind_ladder, unwind, &fields); unwind_blocks.push(halfladder.last().cloned().unwrap()); } let (normal, _) = self.drop_ladder(fields, succ, unwind); normal_blocks.push(normal); } else { have_otherwise = true; let param_env = self.elaborator.param_env(); let have_field_with_drop_glue = variant .fields .iter() .any(|field| field.ty(tcx, args).needs_drop(tcx, param_env)); if have_field_with_drop_glue { have_otherwise_with_drop_glue = true; } } } if !have_otherwise { values.pop(); } else if !have_otherwise_with_drop_glue { normal_blocks.push(self.goto_block(succ, unwind)); if let Unwind::To(unwind) = unwind { unwind_blocks.as_mut().unwrap().push(self.goto_block(unwind, Unwind::InCleanup)); } } else { normal_blocks.push(self.drop_block(succ, unwind)); if let Unwind::To(unwind) = unwind { unwind_blocks.as_mut().unwrap().push(self.drop_block(unwind, Unwind::InCleanup)); } } ( self.adt_switch_block(adt, normal_blocks, &values, succ, unwind), unwind.map(|unwind| { self.adt_switch_block( adt, unwind_blocks.unwrap(), &values, unwind, Unwind::InCleanup, ) }), ) } fn adt_switch_block( &mut self, adt: ty::AdtDef<'tcx>, blocks: Vec, values: &[u128], succ: BasicBlock, unwind: Unwind, ) -> BasicBlock { // If there are multiple variants, then if something // is present within the enum the discriminant, tracked // by the rest path, must be initialized. // // Additionally, we do not want to switch on the // discriminant after it is free-ed, because that // way lies only trouble. let discr_ty = adt.repr().discr_type().to_ty(self.tcx()); let discr = Place::from(self.new_temp(discr_ty)); let discr_rv = Rvalue::Discriminant(self.place); let switch_block = BasicBlockData { statements: vec![self.assign(discr, discr_rv)], terminator: Some(Terminator { source_info: self.source_info, kind: TerminatorKind::SwitchInt { discr: Operand::Move(discr), targets: SwitchTargets::new( values.iter().copied().zip(blocks.iter().copied()), *blocks.last().unwrap(), ), }, }), is_cleanup: unwind.is_cleanup(), }; let switch_block = self.elaborator.patch().new_block(switch_block); self.drop_flag_test_block(switch_block, succ, unwind) } fn destructor_call_block(&mut self, (succ, unwind): (BasicBlock, Unwind)) -> BasicBlock { debug!("destructor_call_block({:?}, {:?})", self, succ); let tcx = self.tcx(); let drop_trait = tcx.require_lang_item(LangItem::Drop, None); let drop_fn = tcx.associated_item_def_ids(drop_trait)[0]; let ty = self.place_ty(self.place); let ref_ty = Ty::new_ref( tcx, tcx.lifetimes.re_erased, ty::TypeAndMut { ty, mutbl: hir::Mutability::Mut }, ); let ref_place = self.new_temp(ref_ty); let unit_temp = Place::from(self.new_temp(Ty::new_unit(tcx))); let result = BasicBlockData { statements: vec![self.assign( Place::from(ref_place), Rvalue::Ref( tcx.lifetimes.re_erased, BorrowKind::Mut { kind: MutBorrowKind::Default }, self.place, ), )], terminator: Some(Terminator { kind: TerminatorKind::Call { func: Operand::function_handle( tcx, drop_fn, [ty.into()], self.source_info.span, ), args: vec![Operand::Move(Place::from(ref_place))], destination: unit_temp, target: Some(succ), unwind: unwind.into_action(), call_source: CallSource::Misc, fn_span: self.source_info.span, }, source_info: self.source_info, }), is_cleanup: unwind.is_cleanup(), }; let destructor_block = self.elaborator.patch().new_block(result); let block_start = Location { block: destructor_block, statement_index: 0 }; self.elaborator.clear_drop_flag(block_start, self.path, DropFlagMode::Shallow); self.drop_flag_test_block(destructor_block, succ, unwind) } /// Create a loop that drops an array: /// /// ```text /// loop-block: /// can_go = cur == len /// if can_go then succ else drop-block /// drop-block: /// ptr = &raw mut P[cur] /// cur = cur + 1 /// drop(ptr) /// ``` fn drop_loop( &mut self, succ: BasicBlock, cur: Local, len: Local, ety: Ty<'tcx>, unwind: Unwind, ) -> BasicBlock { let copy = |place: Place<'tcx>| Operand::Copy(place); let move_ = |place: Place<'tcx>| Operand::Move(place); let tcx = self.tcx(); let ptr_ty = Ty::new_ptr(tcx, ty::TypeAndMut { ty: ety, mutbl: hir::Mutability::Mut }); let ptr = Place::from(self.new_temp(ptr_ty)); let can_go = Place::from(self.new_temp(tcx.types.bool)); let one = self.constant_usize(1); let drop_block = BasicBlockData { statements: vec![ self.assign( ptr, Rvalue::AddressOf(Mutability::Mut, tcx.mk_place_index(self.place, cur)), ), self.assign( cur.into(), Rvalue::BinaryOp(BinOp::Add, Box::new((move_(cur.into()), one))), ), ], is_cleanup: unwind.is_cleanup(), terminator: Some(Terminator { source_info: self.source_info, // this gets overwritten by drop elaboration. kind: TerminatorKind::Unreachable, }), }; let drop_block = self.elaborator.patch().new_block(drop_block); let loop_block = BasicBlockData { statements: vec![self.assign( can_go, Rvalue::BinaryOp(BinOp::Eq, Box::new((copy(Place::from(cur)), copy(len.into())))), )], is_cleanup: unwind.is_cleanup(), terminator: Some(Terminator { source_info: self.source_info, kind: TerminatorKind::if_(move_(can_go), succ, drop_block), }), }; let loop_block = self.elaborator.patch().new_block(loop_block); self.elaborator.patch().patch_terminator( drop_block, TerminatorKind::Drop { place: tcx.mk_place_deref(ptr), target: loop_block, unwind: unwind.into_action(), replace: false, }, ); loop_block } fn open_drop_for_array(&mut self, ety: Ty<'tcx>, opt_size: Option) -> BasicBlock { debug!("open_drop_for_array({:?}, {:?})", ety, opt_size); let tcx = self.tcx(); if let Some(size) = opt_size { enum ProjectionKind { Drop(std::ops::Range), Keep(u64, Path), } // Previously, we'd make a projection for every element in the array and create a drop // ladder if any `array_subpath` was `Some`, i.e. moving out with an array pattern. // This caused huge memory usage when generating the drops for large arrays, so we instead // record the *subslices* which are dropped and the *indexes* which are kept let mut drop_ranges = vec![]; let mut dropping = true; let mut start = 0; for i in 0..size { let path = self.elaborator.array_subpath(self.path, i, size); if dropping && path.is_some() { drop_ranges.push(ProjectionKind::Drop(start..i)); dropping = false; } else if !dropping && path.is_none() { dropping = true; start = i; } if let Some(path) = path { drop_ranges.push(ProjectionKind::Keep(i, path)); } } if !drop_ranges.is_empty() { if dropping { drop_ranges.push(ProjectionKind::Drop(start..size)); } let fields = drop_ranges .iter() .rev() .map(|p| { let (project, path) = match p { ProjectionKind::Drop(r) => ( ProjectionElem::Subslice { from: r.start, to: r.end, from_end: false, }, None, ), &ProjectionKind::Keep(offset, path) => ( ProjectionElem::ConstantIndex { offset, min_length: size, from_end: false, }, Some(path), ), }; (tcx.mk_place_elem(self.place, project), path) }) .collect::>(); let (succ, unwind) = self.drop_ladder_bottom(); return self.drop_ladder(fields, succ, unwind).0; } } self.drop_loop_pair(ety) } /// Creates a pair of drop-loops of `place`, which drops its contents, even /// in the case of 1 panic. fn drop_loop_pair(&mut self, ety: Ty<'tcx>) -> BasicBlock { debug!("drop_loop_pair({:?})", ety); let tcx = self.tcx(); let len = self.new_temp(tcx.types.usize); let cur = self.new_temp(tcx.types.usize); let unwind = self.unwind.map(|unwind| self.drop_loop(unwind, cur, len, ety, Unwind::InCleanup)); let loop_block = self.drop_loop(self.succ, cur, len, ety, unwind); let zero = self.constant_usize(0); let block = BasicBlockData { statements: vec![ self.assign(len.into(), Rvalue::Len(self.place)), self.assign(cur.into(), Rvalue::Use(zero)), ], is_cleanup: unwind.is_cleanup(), terminator: Some(Terminator { source_info: self.source_info, kind: TerminatorKind::Goto { target: loop_block }, }), }; let drop_block = self.elaborator.patch().new_block(block); // FIXME(#34708): handle partially-dropped array/slice elements. let reset_block = self.drop_flag_reset_block(DropFlagMode::Deep, drop_block, unwind); self.drop_flag_test_block(reset_block, self.succ, unwind) } /// The slow-path - create an "open", elaborated drop for a type /// which is moved-out-of only partially, and patch `bb` to a jump /// to it. This must not be called on ADTs with a destructor, /// as these can't be moved-out-of, except for `Box`, which is /// special-cased. /// /// This creates a "drop ladder" that drops the needed fields of the /// ADT, both in the success case or if one of the destructors fail. fn open_drop(&mut self) -> BasicBlock { let ty = self.place_ty(self.place); match ty.kind() { ty::Closure(_, args) => self.open_drop_for_tuple(args.as_closure().upvar_tys()), // Note that `elaborate_drops` only drops the upvars of a coroutine, // and this is ok because `open_drop` here can only be reached // within that own coroutine's resume function. // This should only happen for the self argument on the resume function. // It effectively only contains upvars until the coroutine transformation runs. // See librustc_body/transform/coroutine.rs for more details. ty::Coroutine(_, args, _) => self.open_drop_for_tuple(args.as_coroutine().upvar_tys()), ty::Tuple(fields) => self.open_drop_for_tuple(fields), ty::Adt(def, args) => self.open_drop_for_adt(*def, args), ty::Dynamic(..) => self.complete_drop(self.succ, self.unwind), ty::Array(ety, size) => { let size = size.try_eval_target_usize(self.tcx(), self.elaborator.param_env()); self.open_drop_for_array(*ety, size) } ty::Slice(ety) => self.drop_loop_pair(*ety), _ => span_bug!(self.source_info.span, "open drop from non-ADT `{:?}`", ty), } } fn complete_drop(&mut self, succ: BasicBlock, unwind: Unwind) -> BasicBlock { debug!("complete_drop(succ={:?}, unwind={:?})", succ, unwind); let drop_block = self.drop_block(succ, unwind); self.drop_flag_test_block(drop_block, succ, unwind) } /// Creates a block that resets the drop flag. If `mode` is deep, all children drop flags will /// also be cleared. fn drop_flag_reset_block( &mut self, mode: DropFlagMode, succ: BasicBlock, unwind: Unwind, ) -> BasicBlock { debug!("drop_flag_reset_block({:?},{:?})", self, mode); if unwind.is_cleanup() { // The drop flag isn't read again on the unwind path, so don't // bother setting it. return succ; } let block = self.new_block(unwind, TerminatorKind::Goto { target: succ }); let block_start = Location { block, statement_index: 0 }; self.elaborator.clear_drop_flag(block_start, self.path, mode); block } fn elaborated_drop_block(&mut self) -> BasicBlock { debug!("elaborated_drop_block({:?})", self); let blk = self.drop_block(self.succ, self.unwind); self.elaborate_drop(blk); blk } fn drop_block(&mut self, target: BasicBlock, unwind: Unwind) -> BasicBlock { let block = TerminatorKind::Drop { place: self.place, target, unwind: unwind.into_action(), replace: false, }; self.new_block(unwind, block) } fn goto_block(&mut self, target: BasicBlock, unwind: Unwind) -> BasicBlock { let block = TerminatorKind::Goto { target }; self.new_block(unwind, block) } /// Returns the block to jump to in order to test the drop flag and execute the drop. /// /// Depending on the required `DropStyle`, this might be a generated block with an `if` /// terminator (for dynamic/open drops), or it might be `on_set` or `on_unset` itself, in case /// the drop can be statically determined. fn drop_flag_test_block( &mut self, on_set: BasicBlock, on_unset: BasicBlock, unwind: Unwind, ) -> BasicBlock { let style = self.elaborator.drop_style(self.path, DropFlagMode::Shallow); debug!( "drop_flag_test_block({:?},{:?},{:?},{:?}) - {:?}", self, on_set, on_unset, unwind, style ); match style { DropStyle::Dead => on_unset, DropStyle::Static => on_set, DropStyle::Conditional | DropStyle::Open => { let flag = self.elaborator.get_drop_flag(self.path).unwrap(); let term = TerminatorKind::if_(flag, on_set, on_unset); self.new_block(unwind, term) } } } fn new_block(&mut self, unwind: Unwind, k: TerminatorKind<'tcx>) -> BasicBlock { self.elaborator.patch().new_block(BasicBlockData { statements: vec![], terminator: Some(Terminator { source_info: self.source_info, kind: k }), is_cleanup: unwind.is_cleanup(), }) } fn new_temp(&mut self, ty: Ty<'tcx>) -> Local { self.elaborator.patch().new_temp(ty, self.source_info.span) } fn constant_usize(&self, val: u16) -> Operand<'tcx> { Operand::Constant(Box::new(ConstOperand { span: self.source_info.span, user_ty: None, const_: Const::from_usize(self.tcx(), val.into()), })) } fn assign(&self, lhs: Place<'tcx>, rhs: Rvalue<'tcx>) -> Statement<'tcx> { Statement { source_info: self.source_info, kind: StatementKind::Assign(Box::new((lhs, rhs))), } } }