use crate::MirPass; use rustc_hir::lang_items::LangItem; use rustc_index::IndexVec; use rustc_middle::mir::*; use rustc_middle::mir::{ interpret::Scalar, visit::{MutatingUseContext, NonMutatingUseContext, PlaceContext, Visitor}, }; use rustc_middle::ty::{self, ParamEnv, Ty, TyCtxt, TypeAndMut}; use rustc_session::Session; pub struct CheckAlignment; impl<'tcx> MirPass<'tcx> for CheckAlignment { fn is_enabled(&self, sess: &Session) -> bool { // FIXME(#112480) MSVC and rustc disagree on minimum stack alignment on x86 Windows if sess.target.llvm_target == "i686-pc-windows-msvc" { return false; } sess.opts.debug_assertions } fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut Body<'tcx>) { // This pass emits new panics. If for whatever reason we do not have a panic // implementation, running this pass may cause otherwise-valid code to not compile. if tcx.lang_items().get(LangItem::PanicImpl).is_none() { return; } let basic_blocks = body.basic_blocks.as_mut(); let local_decls = &mut body.local_decls; let param_env = tcx.param_env_reveal_all_normalized(body.source.def_id()); // This pass inserts new blocks. Each insertion changes the Location for all // statements/blocks after. Iterating or visiting the MIR in order would require updating // our current location after every insertion. By iterating backwards, we dodge this issue: // The only Locations that an insertion changes have already been handled. for block in (0..basic_blocks.len()).rev() { let block = block.into(); for statement_index in (0..basic_blocks[block].statements.len()).rev() { let location = Location { block, statement_index }; let statement = &basic_blocks[block].statements[statement_index]; let source_info = statement.source_info; let mut finder = PointerFinder { tcx, local_decls, param_env, pointers: Vec::new() }; finder.visit_statement(statement, location); for (local, ty) in finder.pointers { debug!("Inserting alignment check for {:?}", ty); let new_block = split_block(basic_blocks, location); insert_alignment_check( tcx, local_decls, &mut basic_blocks[block], local, ty, source_info, new_block, ); } } } } } struct PointerFinder<'tcx, 'a> { tcx: TyCtxt<'tcx>, local_decls: &'a mut LocalDecls<'tcx>, param_env: ParamEnv<'tcx>, pointers: Vec<(Place<'tcx>, Ty<'tcx>)>, } impl<'tcx, 'a> Visitor<'tcx> for PointerFinder<'tcx, 'a> { fn visit_place(&mut self, place: &Place<'tcx>, context: PlaceContext, location: Location) { // We want to only check reads and writes to Places, so we specifically exclude // Borrows and AddressOf. match context { PlaceContext::MutatingUse( MutatingUseContext::Store | MutatingUseContext::AsmOutput | MutatingUseContext::Call | MutatingUseContext::Yield | MutatingUseContext::Drop, ) => {} PlaceContext::NonMutatingUse( NonMutatingUseContext::Copy | NonMutatingUseContext::Move, ) => {} _ => { return; } } if !place.is_indirect() { return; } // Since Deref projections must come first and only once, the pointer for an indirect place // is the Local that the Place is based on. let pointer = Place::from(place.local); let pointer_ty = self.local_decls[place.local].ty; // We only want to check places based on unsafe pointers if !pointer_ty.is_unsafe_ptr() { trace!("Indirect, but not based on an unsafe ptr, not checking {:?}", place); return; } let pointee_ty = pointer_ty.builtin_deref(true).expect("no builtin_deref for an unsafe pointer").ty; // Ideally we'd support this in the future, but for now we are limited to sized types. if !pointee_ty.is_sized(self.tcx, self.param_env) { debug!("Unsafe pointer, but pointee is not known to be sized: {:?}", pointer_ty); return; } // Try to detect types we are sure have an alignment of 1 and skip the check // We don't need to look for str and slices, we already rejected unsized types above let element_ty = match pointee_ty.kind() { ty::Array(ty, _) => *ty, _ => pointee_ty, }; if [self.tcx.types.bool, self.tcx.types.i8, self.tcx.types.u8].contains(&element_ty) { debug!("Trivially aligned place type: {:?}", pointee_ty); return; } // Ensure that this place is based on an aligned pointer. self.pointers.push((pointer, pointee_ty)); self.super_place(place, context, location); } } fn split_block( basic_blocks: &mut IndexVec>, location: Location, ) -> BasicBlock { let block_data = &mut basic_blocks[location.block]; // Drain every statement after this one and move the current terminator to a new basic block let new_block = BasicBlockData { statements: block_data.statements.split_off(location.statement_index), terminator: block_data.terminator.take(), is_cleanup: block_data.is_cleanup, }; basic_blocks.push(new_block) } fn insert_alignment_check<'tcx>( tcx: TyCtxt<'tcx>, local_decls: &mut IndexVec>, block_data: &mut BasicBlockData<'tcx>, pointer: Place<'tcx>, pointee_ty: Ty<'tcx>, source_info: SourceInfo, new_block: BasicBlock, ) { // Cast the pointer to a *const () let const_raw_ptr = Ty::new_ptr(tcx, TypeAndMut { ty: tcx.types.unit, mutbl: Mutability::Not }); let rvalue = Rvalue::Cast(CastKind::PtrToPtr, Operand::Copy(pointer), const_raw_ptr); let thin_ptr = local_decls.push(LocalDecl::with_source_info(const_raw_ptr, source_info)).into(); block_data .statements .push(Statement { source_info, kind: StatementKind::Assign(Box::new((thin_ptr, rvalue))) }); // Transmute the pointer to a usize (equivalent to `ptr.addr()`) let rvalue = Rvalue::Cast(CastKind::Transmute, Operand::Copy(thin_ptr), tcx.types.usize); let addr = local_decls.push(LocalDecl::with_source_info(tcx.types.usize, source_info)).into(); block_data .statements .push(Statement { source_info, kind: StatementKind::Assign(Box::new((addr, rvalue))) }); // Get the alignment of the pointee let alignment = local_decls.push(LocalDecl::with_source_info(tcx.types.usize, source_info)).into(); let rvalue = Rvalue::NullaryOp(NullOp::AlignOf, pointee_ty); block_data.statements.push(Statement { source_info, kind: StatementKind::Assign(Box::new((alignment, rvalue))), }); // Subtract 1 from the alignment to get the alignment mask let alignment_mask = local_decls.push(LocalDecl::with_source_info(tcx.types.usize, source_info)).into(); let one = Operand::Constant(Box::new(ConstOperand { span: source_info.span, user_ty: None, const_: Const::Val(ConstValue::Scalar(Scalar::from_target_usize(1, &tcx)), tcx.types.usize), })); block_data.statements.push(Statement { source_info, kind: StatementKind::Assign(Box::new(( alignment_mask, Rvalue::BinaryOp(BinOp::Sub, Box::new((Operand::Copy(alignment), one))), ))), }); // BitAnd the alignment mask with the pointer let alignment_bits = local_decls.push(LocalDecl::with_source_info(tcx.types.usize, source_info)).into(); block_data.statements.push(Statement { source_info, kind: StatementKind::Assign(Box::new(( alignment_bits, Rvalue::BinaryOp( BinOp::BitAnd, Box::new((Operand::Copy(addr), Operand::Copy(alignment_mask))), ), ))), }); // Check if the alignment bits are all zero let is_ok = local_decls.push(LocalDecl::with_source_info(tcx.types.bool, source_info)).into(); let zero = Operand::Constant(Box::new(ConstOperand { span: source_info.span, user_ty: None, const_: Const::Val(ConstValue::Scalar(Scalar::from_target_usize(0, &tcx)), tcx.types.usize), })); block_data.statements.push(Statement { source_info, kind: StatementKind::Assign(Box::new(( is_ok, Rvalue::BinaryOp(BinOp::Eq, Box::new((Operand::Copy(alignment_bits), zero.clone()))), ))), }); // Set this block's terminator to our assert, continuing to new_block if we pass block_data.terminator = Some(Terminator { source_info, kind: TerminatorKind::Assert { cond: Operand::Copy(is_ok), expected: true, target: new_block, msg: Box::new(AssertKind::MisalignedPointerDereference { required: Operand::Copy(alignment), found: Operand::Copy(addr), }), // This calls panic_misaligned_pointer_dereference, which is #[rustc_nounwind]. // We never want to insert an unwind into unsafe code, because unwinding could // make a failing UB check turn into much worse UB when we start unwinding. unwind: UnwindAction::Unreachable, }, }); }