//! Propagates constants for early reporting of statically known //! assertion failures use crate::const_prop::CanConstProp; use crate::const_prop::ConstPropMachine; use crate::const_prop::ConstPropMode; use crate::MirLint; use rustc_const_eval::const_eval::ConstEvalErr; use rustc_const_eval::interpret::Immediate; use rustc_const_eval::interpret::{ self, InterpCx, InterpResult, LocalState, LocalValue, MemoryKind, OpTy, Scalar, StackPopCleanup, }; use rustc_hir::def::DefKind; use rustc_hir::HirId; use rustc_index::bit_set::BitSet; use rustc_index::vec::IndexVec; use rustc_middle::mir::visit::Visitor; use rustc_middle::mir::{ AssertKind, BinOp, Body, Constant, ConstantKind, Local, LocalDecl, Location, Operand, Place, Rvalue, SourceInfo, SourceScope, SourceScopeData, Statement, StatementKind, Terminator, TerminatorKind, UnOp, RETURN_PLACE, }; use rustc_middle::ty::layout::{LayoutError, LayoutOf, LayoutOfHelpers, TyAndLayout}; use rustc_middle::ty::subst::{InternalSubsts, Subst}; use rustc_middle::ty::{self, ConstInt, Instance, ParamEnv, ScalarInt, Ty, TyCtxt, TypeVisitable}; use rustc_session::lint; use rustc_span::Span; use rustc_target::abi::{HasDataLayout, Size, TargetDataLayout}; use rustc_trait_selection::traits; use std::cell::Cell; /// The maximum number of bytes that we'll allocate space for a local or the return value. /// Needed for #66397, because otherwise we eval into large places and that can cause OOM or just /// Severely regress performance. const MAX_ALLOC_LIMIT: u64 = 1024; pub struct ConstProp; impl<'tcx> MirLint<'tcx> for ConstProp { fn run_lint(&self, tcx: TyCtxt<'tcx>, body: &Body<'tcx>) { // will be evaluated by miri and produce its errors there if body.source.promoted.is_some() { return; } let def_id = body.source.def_id().expect_local(); let is_fn_like = tcx.def_kind(def_id).is_fn_like(); let is_assoc_const = tcx.def_kind(def_id) == DefKind::AssocConst; // Only run const prop on functions, methods, closures and associated constants if !is_fn_like && !is_assoc_const { // skip anon_const/statics/consts because they'll be evaluated by miri anyway trace!("ConstProp skipped for {:?}", def_id); return; } let is_generator = tcx.type_of(def_id.to_def_id()).is_generator(); // FIXME(welseywiser) const prop doesn't work on generators because of query cycles // computing their layout. if is_generator { trace!("ConstProp skipped for generator {:?}", def_id); return; } // Check if it's even possible to satisfy the 'where' clauses // for this item. // This branch will never be taken for any normal function. // However, it's possible to `#!feature(trivial_bounds)]` to write // a function with impossible to satisfy clauses, e.g.: // `fn foo() where String: Copy {}` // // We don't usually need to worry about this kind of case, // since we would get a compilation error if the user tried // to call it. However, since we can do const propagation // even without any calls to the function, we need to make // sure that it even makes sense to try to evaluate the body. // If there are unsatisfiable where clauses, then all bets are // off, and we just give up. // // We manually filter the predicates, skipping anything that's not // "global". We are in a potentially generic context // (e.g. we are evaluating a function without substituting generic // parameters, so this filtering serves two purposes: // // 1. We skip evaluating any predicates that we would // never be able prove are unsatisfiable (e.g. `` // 2. We avoid trying to normalize predicates involving generic // parameters (e.g. `::MyItem`). This can confuse // the normalization code (leading to cycle errors), since // it's usually never invoked in this way. let predicates = tcx .predicates_of(def_id.to_def_id()) .predicates .iter() .filter_map(|(p, _)| if p.is_global() { Some(*p) } else { None }); if traits::impossible_predicates( tcx, traits::elaborate_predicates(tcx, predicates).map(|o| o.predicate).collect(), ) { trace!("ConstProp skipped for {:?}: found unsatisfiable predicates", def_id); return; } trace!("ConstProp starting for {:?}", def_id); let dummy_body = &Body::new( body.source, (*body.basic_blocks).clone(), body.source_scopes.clone(), body.local_decls.clone(), Default::default(), body.arg_count, Default::default(), body.span, body.generator_kind(), body.tainted_by_errors, ); // FIXME(oli-obk, eddyb) Optimize locals (or even local paths) to hold // constants, instead of just checking for const-folding succeeding. // That would require a uniform one-def no-mutation analysis // and RPO (or recursing when needing the value of a local). let mut optimization_finder = ConstPropagator::new(body, dummy_body, tcx); optimization_finder.visit_body(body); trace!("ConstProp done for {:?}", def_id); } } /// Finds optimization opportunities on the MIR. struct ConstPropagator<'mir, 'tcx> { ecx: InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, tcx: TyCtxt<'tcx>, param_env: ParamEnv<'tcx>, source_scopes: &'mir IndexVec>, local_decls: &'mir IndexVec>, // Because we have `MutVisitor` we can't obtain the `SourceInfo` from a `Location`. So we store // the last known `SourceInfo` here and just keep revisiting it. source_info: Option, } impl<'tcx> LayoutOfHelpers<'tcx> for ConstPropagator<'_, 'tcx> { type LayoutOfResult = Result, LayoutError<'tcx>>; #[inline] fn handle_layout_err(&self, err: LayoutError<'tcx>, _: Span, _: Ty<'tcx>) -> LayoutError<'tcx> { err } } impl HasDataLayout for ConstPropagator<'_, '_> { #[inline] fn data_layout(&self) -> &TargetDataLayout { &self.tcx.data_layout } } impl<'tcx> ty::layout::HasTyCtxt<'tcx> for ConstPropagator<'_, 'tcx> { #[inline] fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } } impl<'tcx> ty::layout::HasParamEnv<'tcx> for ConstPropagator<'_, 'tcx> { #[inline] fn param_env(&self) -> ty::ParamEnv<'tcx> { self.param_env } } impl<'mir, 'tcx> ConstPropagator<'mir, 'tcx> { fn new( body: &Body<'tcx>, dummy_body: &'mir Body<'tcx>, tcx: TyCtxt<'tcx>, ) -> ConstPropagator<'mir, 'tcx> { let def_id = body.source.def_id(); let substs = &InternalSubsts::identity_for_item(tcx, def_id); let param_env = tcx.param_env_reveal_all_normalized(def_id); let can_const_prop = CanConstProp::check(tcx, param_env, body); let mut only_propagate_inside_block_locals = BitSet::new_empty(can_const_prop.len()); for (l, mode) in can_const_prop.iter_enumerated() { if *mode == ConstPropMode::OnlyInsideOwnBlock { only_propagate_inside_block_locals.insert(l); } } let mut ecx = InterpCx::new( tcx, tcx.def_span(def_id), param_env, ConstPropMachine::new(only_propagate_inside_block_locals, can_const_prop), ); let ret_layout = ecx .layout_of(body.bound_return_ty().subst(tcx, substs)) .ok() // Don't bother allocating memory for large values. // I don't know how return types can seem to be unsized but this happens in the // `type/type-unsatisfiable.rs` test. .filter(|ret_layout| { !ret_layout.is_unsized() && ret_layout.size < Size::from_bytes(MAX_ALLOC_LIMIT) }) .unwrap_or_else(|| ecx.layout_of(tcx.types.unit).unwrap()); let ret = ecx .allocate(ret_layout, MemoryKind::Stack) .expect("couldn't perform small allocation") .into(); ecx.push_stack_frame( Instance::new(def_id, substs), dummy_body, &ret, StackPopCleanup::Root { cleanup: false }, ) .expect("failed to push initial stack frame"); ConstPropagator { ecx, tcx, param_env, source_scopes: &dummy_body.source_scopes, local_decls: &dummy_body.local_decls, source_info: None, } } fn get_const(&self, place: Place<'tcx>) -> Option> { let op = match self.ecx.eval_place_to_op(place, None) { Ok(op) => { if matches!(*op, interpret::Operand::Immediate(Immediate::Uninit)) { // Make sure nobody accidentally uses this value. return None; } op } Err(e) => { trace!("get_const failed: {}", e); return None; } }; // Try to read the local as an immediate so that if it is representable as a scalar, we can // handle it as such, but otherwise, just return the value as is. Some(match self.ecx.read_immediate_raw(&op) { Ok(Ok(imm)) => imm.into(), _ => op, }) } /// Remove `local` from the pool of `Locals`. Allows writing to them, /// but not reading from them anymore. fn remove_const(ecx: &mut InterpCx<'mir, 'tcx, ConstPropMachine<'mir, 'tcx>>, local: Local) { ecx.frame_mut().locals[local] = LocalState { value: LocalValue::Live(interpret::Operand::Immediate(interpret::Immediate::Uninit)), layout: Cell::new(None), }; } fn lint_root(&self, source_info: SourceInfo) -> Option { source_info.scope.lint_root(self.source_scopes) } fn use_ecx(&mut self, source_info: SourceInfo, f: F) -> Option where F: FnOnce(&mut Self) -> InterpResult<'tcx, T>, { // Overwrite the PC -- whatever the interpreter does to it does not make any sense anyway. self.ecx.frame_mut().loc = Err(source_info.span); match f(self) { Ok(val) => Some(val), Err(error) => { trace!("InterpCx operation failed: {:?}", error); // Some errors shouldn't come up because creating them causes // an allocation, which we should avoid. When that happens, // dedicated error variants should be introduced instead. assert!( !error.kind().formatted_string(), "const-prop encountered formatting error: {}", error ); None } } } /// Returns the value, if any, of evaluating `c`. fn eval_constant(&mut self, c: &Constant<'tcx>, source_info: SourceInfo) -> Option> { // FIXME we need to revisit this for #67176 if c.needs_subst() { return None; } match self.ecx.mir_const_to_op(&c.literal, None) { Ok(op) => Some(op), Err(error) => { let tcx = self.ecx.tcx.at(c.span); let err = ConstEvalErr::new(&self.ecx, error, Some(c.span)); if let Some(lint_root) = self.lint_root(source_info) { let lint_only = match c.literal { ConstantKind::Ty(ct) => ct.needs_subst(), ConstantKind::Unevaluated( ty::Unevaluated { def: _, substs: _, promoted: Some(_) }, _, ) => { // Promoteds must lint and not error as the user didn't ask for them true } ConstantKind::Unevaluated(..) | ConstantKind::Val(..) => c.needs_subst(), }; if lint_only { // Out of backwards compatibility we cannot report hard errors in unused // generic functions using associated constants of the generic parameters. err.report_as_lint(tcx, "erroneous constant used", lint_root, Some(c.span)); } else { err.report_as_error(tcx, "erroneous constant used"); } } else { err.report_as_error(tcx, "erroneous constant used"); } None } } } /// Returns the value, if any, of evaluating `place`. fn eval_place(&mut self, place: Place<'tcx>, source_info: SourceInfo) -> Option> { trace!("eval_place(place={:?})", place); self.use_ecx(source_info, |this| this.ecx.eval_place_to_op(place, None)) } /// Returns the value, if any, of evaluating `op`. Calls upon `eval_constant` /// or `eval_place`, depending on the variant of `Operand` used. fn eval_operand(&mut self, op: &Operand<'tcx>, source_info: SourceInfo) -> Option> { match *op { Operand::Constant(ref c) => self.eval_constant(c, source_info), Operand::Move(place) | Operand::Copy(place) => self.eval_place(place, source_info), } } fn report_assert_as_lint( &self, lint: &'static lint::Lint, source_info: SourceInfo, message: &'static str, panic: AssertKind, ) { if let Some(lint_root) = self.lint_root(source_info) { self.tcx.struct_span_lint_hir(lint, lint_root, source_info.span, |lint| { let mut err = lint.build(message); err.span_label(source_info.span, format!("{:?}", panic)); err.emit(); }); } } fn check_unary_op( &mut self, op: UnOp, arg: &Operand<'tcx>, source_info: SourceInfo, ) -> Option<()> { if let (val, true) = self.use_ecx(source_info, |this| { let val = this.ecx.read_immediate(&this.ecx.eval_operand(arg, None)?)?; let (_res, overflow, _ty) = this.ecx.overflowing_unary_op(op, &val)?; Ok((val, overflow)) })? { // `AssertKind` only has an `OverflowNeg` variant, so make sure that is // appropriate to use. assert_eq!(op, UnOp::Neg, "Neg is the only UnOp that can overflow"); self.report_assert_as_lint( lint::builtin::ARITHMETIC_OVERFLOW, source_info, "this arithmetic operation will overflow", AssertKind::OverflowNeg(val.to_const_int()), ); return None; } Some(()) } fn check_binary_op( &mut self, op: BinOp, left: &Operand<'tcx>, right: &Operand<'tcx>, source_info: SourceInfo, ) -> Option<()> { let r = self.use_ecx(source_info, |this| { this.ecx.read_immediate(&this.ecx.eval_operand(right, None)?) }); let l = self.use_ecx(source_info, |this| { this.ecx.read_immediate(&this.ecx.eval_operand(left, None)?) }); // Check for exceeding shifts *even if* we cannot evaluate the LHS. if op == BinOp::Shr || op == BinOp::Shl { let r = r.clone()?; // We need the type of the LHS. We cannot use `place_layout` as that is the type // of the result, which for checked binops is not the same! let left_ty = left.ty(self.local_decls, self.tcx); let left_size = self.ecx.layout_of(left_ty).ok()?.size; let right_size = r.layout.size; let r_bits = r.to_scalar().to_bits(right_size).ok(); if r_bits.map_or(false, |b| b >= left_size.bits() as u128) { debug!("check_binary_op: reporting assert for {:?}", source_info); self.report_assert_as_lint( lint::builtin::ARITHMETIC_OVERFLOW, source_info, "this arithmetic operation will overflow", AssertKind::Overflow( op, match l { Some(l) => l.to_const_int(), // Invent a dummy value, the diagnostic ignores it anyway None => ConstInt::new( ScalarInt::try_from_uint(1_u8, left_size).unwrap(), left_ty.is_signed(), left_ty.is_ptr_sized_integral(), ), }, r.to_const_int(), ), ); return None; } } if let (Some(l), Some(r)) = (l, r) { // The remaining operators are handled through `overflowing_binary_op`. if self.use_ecx(source_info, |this| { let (_res, overflow, _ty) = this.ecx.overflowing_binary_op(op, &l, &r)?; Ok(overflow) })? { self.report_assert_as_lint( lint::builtin::ARITHMETIC_OVERFLOW, source_info, "this arithmetic operation will overflow", AssertKind::Overflow(op, l.to_const_int(), r.to_const_int()), ); return None; } } Some(()) } fn const_prop( &mut self, rvalue: &Rvalue<'tcx>, source_info: SourceInfo, place: Place<'tcx>, ) -> Option<()> { // Perform any special handling for specific Rvalue types. // Generally, checks here fall into one of two categories: // 1. Additional checking to provide useful lints to the user // - In this case, we will do some validation and then fall through to the // end of the function which evals the assignment. // 2. Working around bugs in other parts of the compiler // - In this case, we'll return `None` from this function to stop evaluation. match rvalue { // Additional checking: give lints to the user if an overflow would occur. // We do this here and not in the `Assert` terminator as that terminator is // only sometimes emitted (overflow checks can be disabled), but we want to always // lint. Rvalue::UnaryOp(op, arg) => { trace!("checking UnaryOp(op = {:?}, arg = {:?})", op, arg); self.check_unary_op(*op, arg, source_info)?; } Rvalue::BinaryOp(op, box (left, right)) => { trace!("checking BinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right); self.check_binary_op(*op, left, right, source_info)?; } Rvalue::CheckedBinaryOp(op, box (left, right)) => { trace!( "checking CheckedBinaryOp(op = {:?}, left = {:?}, right = {:?})", op, left, right ); self.check_binary_op(*op, left, right, source_info)?; } // Do not try creating references (#67862) Rvalue::AddressOf(_, place) | Rvalue::Ref(_, _, place) => { trace!("skipping AddressOf | Ref for {:?}", place); // This may be creating mutable references or immutable references to cells. // If that happens, the pointed to value could be mutated via that reference. // Since we aren't tracking references, the const propagator loses track of what // value the local has right now. // Thus, all locals that have their reference taken // must not take part in propagation. Self::remove_const(&mut self.ecx, place.local); return None; } Rvalue::ThreadLocalRef(def_id) => { trace!("skipping ThreadLocalRef({:?})", def_id); return None; } // There's no other checking to do at this time. Rvalue::Aggregate(..) | Rvalue::Use(..) | Rvalue::CopyForDeref(..) | Rvalue::Repeat(..) | Rvalue::Len(..) | Rvalue::Cast(..) | Rvalue::ShallowInitBox(..) | Rvalue::Discriminant(..) | Rvalue::NullaryOp(..) => {} } // FIXME we need to revisit this for #67176 if rvalue.needs_subst() { return None; } if !rvalue .ty(&self.ecx.frame().body.local_decls, *self.ecx.tcx) .is_sized(self.ecx.tcx, self.param_env) { // the interpreter doesn't support unsized locals (only unsized arguments), // but rustc does (in a kinda broken way), so we have to skip them here return None; } self.use_ecx(source_info, |this| this.ecx.eval_rvalue_into_place(rvalue, place)) } } impl<'tcx> Visitor<'tcx> for ConstPropagator<'_, 'tcx> { fn visit_body(&mut self, body: &Body<'tcx>) { for (bb, data) in body.basic_blocks.iter_enumerated() { self.visit_basic_block_data(bb, data); } } fn visit_operand(&mut self, operand: &Operand<'tcx>, location: Location) { self.super_operand(operand, location); } fn visit_constant(&mut self, constant: &Constant<'tcx>, location: Location) { trace!("visit_constant: {:?}", constant); self.super_constant(constant, location); self.eval_constant(constant, self.source_info.unwrap()); } fn visit_statement(&mut self, statement: &Statement<'tcx>, location: Location) { trace!("visit_statement: {:?}", statement); let source_info = statement.source_info; self.source_info = Some(source_info); if let StatementKind::Assign(box (place, ref rval)) = statement.kind { let can_const_prop = self.ecx.machine.can_const_prop[place.local]; if let Some(()) = self.const_prop(rval, source_info, place) { match can_const_prop { ConstPropMode::OnlyInsideOwnBlock => { trace!( "found local restricted to its block. \ Will remove it from const-prop after block is finished. Local: {:?}", place.local ); } ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => { trace!("can't propagate into {:?}", place); if place.local != RETURN_PLACE { Self::remove_const(&mut self.ecx, place.local); } } ConstPropMode::FullConstProp => {} } } else { // Const prop failed, so erase the destination, ensuring that whatever happens // from here on, does not know about the previous value. // This is important in case we have // ```rust // let mut x = 42; // x = SOME_MUTABLE_STATIC; // // x must now be uninit // ``` // FIXME: we overzealously erase the entire local, because that's easier to // implement. trace!( "propagation into {:?} failed. Nuking the entire site from orbit, it's the only way to be sure", place, ); Self::remove_const(&mut self.ecx, place.local); } } else { match statement.kind { StatementKind::SetDiscriminant { ref place, .. } => { match self.ecx.machine.can_const_prop[place.local] { ConstPropMode::FullConstProp | ConstPropMode::OnlyInsideOwnBlock => { if self .use_ecx(source_info, |this| this.ecx.statement(statement)) .is_some() { trace!("propped discriminant into {:?}", place); } else { Self::remove_const(&mut self.ecx, place.local); } } ConstPropMode::OnlyPropagateInto | ConstPropMode::NoPropagation => { Self::remove_const(&mut self.ecx, place.local); } } } StatementKind::StorageLive(local) | StatementKind::StorageDead(local) => { let frame = self.ecx.frame_mut(); frame.locals[local].value = if let StatementKind::StorageLive(_) = statement.kind { LocalValue::Live(interpret::Operand::Immediate( interpret::Immediate::Uninit, )) } else { LocalValue::Dead }; } _ => {} } } self.super_statement(statement, location); } fn visit_terminator(&mut self, terminator: &Terminator<'tcx>, location: Location) { let source_info = terminator.source_info; self.source_info = Some(source_info); self.super_terminator(terminator, location); match &terminator.kind { TerminatorKind::Assert { expected, ref msg, ref cond, .. } => { if let Some(ref value) = self.eval_operand(&cond, source_info) { trace!("assertion on {:?} should be {:?}", value, expected); let expected = Scalar::from_bool(*expected); let Ok(value_const) = self.ecx.read_scalar(&value) else { // FIXME should be used use_ecx rather than a local match... but we have // quite a few of these read_scalar/read_immediate that need fixing. return }; if expected != value_const { enum DbgVal { Val(T), Underscore, } impl std::fmt::Debug for DbgVal { fn fmt(&self, fmt: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { match self { Self::Val(val) => val.fmt(fmt), Self::Underscore => fmt.write_str("_"), } } } let mut eval_to_int = |op| { // This can be `None` if the lhs wasn't const propagated and we just // triggered the assert on the value of the rhs. self.eval_operand(op, source_info) .and_then(|op| self.ecx.read_immediate(&op).ok()) .map_or(DbgVal::Underscore, |op| DbgVal::Val(op.to_const_int())) }; let msg = match msg { AssertKind::DivisionByZero(op) => { Some(AssertKind::DivisionByZero(eval_to_int(op))) } AssertKind::RemainderByZero(op) => { Some(AssertKind::RemainderByZero(eval_to_int(op))) } AssertKind::Overflow(bin_op @ (BinOp::Div | BinOp::Rem), op1, op2) => { // Division overflow is *UB* in the MIR, and different than the // other overflow checks. Some(AssertKind::Overflow( *bin_op, eval_to_int(op1), eval_to_int(op2), )) } AssertKind::BoundsCheck { ref len, ref index } => { let len = eval_to_int(len); let index = eval_to_int(index); Some(AssertKind::BoundsCheck { len, index }) } // Remaining overflow errors are already covered by checks on the binary operators. AssertKind::Overflow(..) | AssertKind::OverflowNeg(_) => None, // Need proper const propagator for these. _ => None, }; // Poison all places this operand references so that further code // doesn't use the invalid value match cond { Operand::Move(ref place) | Operand::Copy(ref place) => { Self::remove_const(&mut self.ecx, place.local); } Operand::Constant(_) => {} } if let Some(msg) = msg { self.report_assert_as_lint( lint::builtin::UNCONDITIONAL_PANIC, source_info, "this operation will panic at runtime", msg, ); } } } } // None of these have Operands to const-propagate. TerminatorKind::Goto { .. } | TerminatorKind::Resume | TerminatorKind::Abort | TerminatorKind::Return | TerminatorKind::Unreachable | TerminatorKind::Drop { .. } | TerminatorKind::DropAndReplace { .. } | TerminatorKind::Yield { .. } | TerminatorKind::GeneratorDrop | TerminatorKind::FalseEdge { .. } | TerminatorKind::FalseUnwind { .. } | TerminatorKind::SwitchInt { .. } | TerminatorKind::Call { .. } | TerminatorKind::InlineAsm { .. } => {} } // We remove all Locals which are restricted in propagation to their containing blocks and // which were modified in the current block. // Take it out of the ecx so we can get a mutable reference to the ecx for `remove_const`. let mut locals = std::mem::take(&mut self.ecx.machine.written_only_inside_own_block_locals); for &local in locals.iter() { Self::remove_const(&mut self.ecx, local); } locals.clear(); // Put it back so we reuse the heap of the storage self.ecx.machine.written_only_inside_own_block_locals = locals; if cfg!(debug_assertions) { // Ensure we are correctly erasing locals with the non-debug-assert logic. for local in self.ecx.machine.only_propagate_inside_block_locals.iter() { assert!( self.get_const(local.into()).is_none() || self .layout_of(self.local_decls[local].ty) .map_or(true, |layout| layout.is_zst()) ) } } } }