//! See the docs for [`RenameReturnPlace`]. use rustc_hir::Mutability; use rustc_index::bit_set::HybridBitSet; use rustc_middle::mir::visit::{MutVisitor, NonUseContext, PlaceContext, Visitor}; use rustc_middle::mir::{self, BasicBlock, Local, Location}; use rustc_middle::ty::TyCtxt; use crate::MirPass; /// This pass looks for MIR that always copies the same local into the return place and eliminates /// the copy by renaming all uses of that local to `_0`. /// /// This allows LLVM to perform an optimization similar to the named return value optimization /// (NRVO) that is guaranteed in C++. This avoids a stack allocation and `memcpy` for the /// relatively common pattern of allocating a buffer on the stack, mutating it, and returning it by /// value like so: /// /// ```rust /// fn foo(init: fn(&mut [u8; 1024])) -> [u8; 1024] { /// let mut buf = [0; 1024]; /// init(&mut buf); /// buf /// } /// ``` /// /// For now, this pass is very simple and only capable of eliminating a single copy. A more general /// version of copy propagation, such as the one based on non-overlapping live ranges in [#47954] and /// [#71003], could yield even more benefits. /// /// [#47954]: https://github.com/rust-lang/rust/pull/47954 /// [#71003]: https://github.com/rust-lang/rust/pull/71003 pub struct RenameReturnPlace; impl<'tcx> MirPass<'tcx> for RenameReturnPlace { fn is_enabled(&self, sess: &rustc_session::Session) -> bool { sess.mir_opt_level() > 0 } fn run_pass(&self, tcx: TyCtxt<'tcx>, body: &mut mir::Body<'tcx>) { let def_id = body.source.def_id(); let Some(returned_local) = local_eligible_for_nrvo(body) else { debug!("`{:?}` was ineligible for NRVO", def_id); return; }; if !tcx.consider_optimizing(|| format!("RenameReturnPlace {:?}", def_id)) { return; } debug!( "`{:?}` was eligible for NRVO, making {:?} the return place", def_id, returned_local ); RenameToReturnPlace { tcx, to_rename: returned_local }.visit_body(body); // Clean up the `NOP`s we inserted for statements made useless by our renaming. for block_data in body.basic_blocks_mut() { block_data.statements.retain(|stmt| stmt.kind != mir::StatementKind::Nop); } // Overwrite the debuginfo of `_0` with that of the renamed local. let (renamed_decl, ret_decl) = body.local_decls.pick2_mut(returned_local, mir::RETURN_PLACE); // Sometimes, the return place is assigned a local of a different but coercible type, for // example `&mut T` instead of `&T`. Overwriting the `LocalInfo` for the return place means // its type may no longer match the return type of its function. This doesn't cause a // problem in codegen because these two types are layout-compatible, but may be unexpected. debug!("_0: {:?} = {:?}: {:?}", ret_decl.ty, returned_local, renamed_decl.ty); ret_decl.clone_from(renamed_decl); // The return place is always mutable. ret_decl.mutability = Mutability::Mut; } } /// MIR that is eligible for the NRVO must fulfill two conditions: /// 1. The return place must not be read prior to the `Return` terminator. /// 2. A simple assignment of a whole local to the return place (e.g., `_0 = _1`) must be the /// only definition of the return place reaching the `Return` terminator. /// /// If the MIR fulfills both these conditions, this function returns the `Local` that is assigned /// to the return place along all possible paths through the control-flow graph. fn local_eligible_for_nrvo(body: &mut mir::Body<'_>) -> Option { if IsReturnPlaceRead::run(body) { return None; } let mut copied_to_return_place = None; for block in body.basic_blocks().indices() { // Look for blocks with a `Return` terminator. if !matches!(body[block].terminator().kind, mir::TerminatorKind::Return) { continue; } // Look for an assignment of a single local to the return place prior to the `Return`. let returned_local = find_local_assigned_to_return_place(block, body)?; match body.local_kind(returned_local) { // FIXME: Can we do this for arguments as well? mir::LocalKind::Arg => return None, mir::LocalKind::ReturnPointer => bug!("Return place was assigned to itself?"), mir::LocalKind::Var | mir::LocalKind::Temp => {} } // If multiple different locals are copied to the return place. We can't pick a // single one to rename. if copied_to_return_place.map_or(false, |old| old != returned_local) { return None; } copied_to_return_place = Some(returned_local); } copied_to_return_place } fn find_local_assigned_to_return_place( start: BasicBlock, body: &mut mir::Body<'_>, ) -> Option { let mut block = start; let mut seen = HybridBitSet::new_empty(body.basic_blocks().len()); // Iterate as long as `block` has exactly one predecessor that we have not yet visited. while seen.insert(block) { trace!("Looking for assignments to `_0` in {:?}", block); let local = body[block].statements.iter().rev().find_map(as_local_assigned_to_return_place); if local.is_some() { return local; } match body.basic_blocks.predecessors()[block].as_slice() { &[pred] => block = pred, _ => return None, } } None } // If this statement is an assignment of an unprojected local to the return place, // return that local. fn as_local_assigned_to_return_place(stmt: &mir::Statement<'_>) -> Option { if let mir::StatementKind::Assign(box (lhs, rhs)) = &stmt.kind { if lhs.as_local() == Some(mir::RETURN_PLACE) { if let mir::Rvalue::Use(mir::Operand::Copy(rhs) | mir::Operand::Move(rhs)) = rhs { return rhs.as_local(); } } } None } struct RenameToReturnPlace<'tcx> { to_rename: Local, tcx: TyCtxt<'tcx>, } /// Replaces all uses of `self.to_rename` with `_0`. impl<'tcx> MutVisitor<'tcx> for RenameToReturnPlace<'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_statement(&mut self, stmt: &mut mir::Statement<'tcx>, loc: Location) { // Remove assignments of the local being replaced to the return place, since it is now the // return place: // _0 = _1 if as_local_assigned_to_return_place(stmt) == Some(self.to_rename) { stmt.kind = mir::StatementKind::Nop; return; } // Remove storage annotations for the local being replaced: // StorageLive(_1) if let mir::StatementKind::StorageLive(local) | mir::StatementKind::StorageDead(local) = stmt.kind { if local == self.to_rename { stmt.kind = mir::StatementKind::Nop; return; } } self.super_statement(stmt, loc) } fn visit_terminator(&mut self, terminator: &mut mir::Terminator<'tcx>, loc: Location) { // Ignore the implicit "use" of the return place in a `Return` statement. if let mir::TerminatorKind::Return = terminator.kind { return; } self.super_terminator(terminator, loc); } fn visit_local(&mut self, l: &mut Local, ctxt: PlaceContext, _: Location) { if *l == mir::RETURN_PLACE { assert_eq!(ctxt, PlaceContext::NonUse(NonUseContext::VarDebugInfo)); } else if *l == self.to_rename { *l = mir::RETURN_PLACE; } } } struct IsReturnPlaceRead(bool); impl IsReturnPlaceRead { fn run(body: &mir::Body<'_>) -> bool { let mut vis = IsReturnPlaceRead(false); vis.visit_body(body); vis.0 } } impl<'tcx> Visitor<'tcx> for IsReturnPlaceRead { fn visit_local(&mut self, l: Local, ctxt: PlaceContext, _: Location) { if l == mir::RETURN_PLACE && ctxt.is_use() && !ctxt.is_place_assignment() { self.0 = true; } } fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, loc: Location) { // Ignore the implicit "use" of the return place in a `Return` statement. if let mir::TerminatorKind::Return = terminator.kind { return; } self.super_terminator(terminator, loc); } }