//! Mono Item Collection //! ==================== //! //! This module is responsible for discovering all items that will contribute //! to code generation of the crate. The important part here is that it not only //! needs to find syntax-level items (functions, structs, etc) but also all //! their monomorphized instantiations. Every non-generic, non-const function //! maps to one LLVM artifact. Every generic function can produce //! from zero to N artifacts, depending on the sets of type arguments it //! is instantiated with. //! This also applies to generic items from other crates: A generic definition //! in crate X might produce monomorphizations that are compiled into crate Y. //! We also have to collect these here. //! //! The following kinds of "mono items" are handled here: //! //! - Functions //! - Methods //! - Closures //! - Statics //! - Drop glue //! //! The following things also result in LLVM artifacts, but are not collected //! here, since we instantiate them locally on demand when needed in a given //! codegen unit: //! //! - Constants //! - VTables //! - Object Shims //! //! //! General Algorithm //! ----------------- //! Let's define some terms first: //! //! - A "mono item" is something that results in a function or global in //! the LLVM IR of a codegen unit. Mono items do not stand on their //! own, they can reference other mono items. For example, if function //! `foo()` calls function `bar()` then the mono item for `foo()` //! references the mono item for function `bar()`. In general, the //! definition for mono item A referencing a mono item B is that //! the LLVM artifact produced for A references the LLVM artifact produced //! for B. //! //! - Mono items and the references between them form a directed graph, //! where the mono items are the nodes and references form the edges. //! Let's call this graph the "mono item graph". //! //! - The mono item graph for a program contains all mono items //! that are needed in order to produce the complete LLVM IR of the program. //! //! The purpose of the algorithm implemented in this module is to build the //! mono item graph for the current crate. It runs in two phases: //! //! 1. Discover the roots of the graph by traversing the HIR of the crate. //! 2. Starting from the roots, find neighboring nodes by inspecting the MIR //! representation of the item corresponding to a given node, until no more //! new nodes are found. //! //! ### Discovering roots //! //! The roots of the mono item graph correspond to the public non-generic //! syntactic items in the source code. We find them by walking the HIR of the //! crate, and whenever we hit upon a public function, method, or static item, //! we create a mono item consisting of the items DefId and, since we only //! consider non-generic items, an empty type-substitution set. (In eager //! collection mode, during incremental compilation, all non-generic functions //! are considered as roots, as well as when the `-Clink-dead-code` option is //! specified. Functions marked `#[no_mangle]` and functions called by inlinable //! functions also always act as roots.) //! //! ### Finding neighbor nodes //! Given a mono item node, we can discover neighbors by inspecting its //! MIR. We walk the MIR and any time we hit upon something that signifies a //! reference to another mono item, we have found a neighbor. Since the //! mono item we are currently at is always monomorphic, we also know the //! concrete type arguments of its neighbors, and so all neighbors again will be //! monomorphic. The specific forms a reference to a neighboring node can take //! in MIR are quite diverse. Here is an overview: //! //! #### Calling Functions/Methods //! The most obvious form of one mono item referencing another is a //! function or method call (represented by a CALL terminator in MIR). But //! calls are not the only thing that might introduce a reference between two //! function mono items, and as we will see below, they are just a //! specialization of the form described next, and consequently will not get any //! special treatment in the algorithm. //! //! #### Taking a reference to a function or method //! A function does not need to actually be called in order to be a neighbor of //! another function. It suffices to just take a reference in order to introduce //! an edge. Consider the following example: //! //! ``` //! # use core::fmt::Display; //! fn print_val(x: T) { //! println!("{}", x); //! } //! //! fn call_fn(f: &dyn Fn(i32), x: i32) { //! f(x); //! } //! //! fn main() { //! let print_i32 = print_val::; //! call_fn(&print_i32, 0); //! } //! ``` //! The MIR of none of these functions will contain an explicit call to //! `print_val::`. Nonetheless, in order to mono this program, we need //! an instance of this function. Thus, whenever we encounter a function or //! method in operand position, we treat it as a neighbor of the current //! mono item. Calls are just a special case of that. //! //! #### Drop glue //! Drop glue mono items are introduced by MIR drop-statements. The //! generated mono item will again have drop-glue item neighbors if the //! type to be dropped contains nested values that also need to be dropped. It //! might also have a function item neighbor for the explicit `Drop::drop` //! implementation of its type. //! //! #### Unsizing Casts //! A subtle way of introducing neighbor edges is by casting to a trait object. //! Since the resulting fat-pointer contains a reference to a vtable, we need to //! instantiate all object-safe methods of the trait, as we need to store //! pointers to these functions even if they never get called anywhere. This can //! be seen as a special case of taking a function reference. //! //! #### Boxes //! Since `Box` expression have special compiler support, no explicit calls to //! `exchange_malloc()` and `box_free()` may show up in MIR, even if the //! compiler will generate them. We have to observe `Rvalue::Box` expressions //! and Box-typed drop-statements for that purpose. //! //! //! Interaction with Cross-Crate Inlining //! ------------------------------------- //! The binary of a crate will not only contain machine code for the items //! defined in the source code of that crate. It will also contain monomorphic //! instantiations of any extern generic functions and of functions marked with //! `#[inline]`. //! The collection algorithm handles this more or less mono. If it is //! about to create a mono item for something with an external `DefId`, //! it will take a look if the MIR for that item is available, and if so just //! proceed normally. If the MIR is not available, it assumes that the item is //! just linked to and no node is created; which is exactly what we want, since //! no machine code should be generated in the current crate for such an item. //! //! Eager and Lazy Collection Mode //! ------------------------------ //! Mono item collection can be performed in one of two modes: //! //! - Lazy mode means that items will only be instantiated when actually //! referenced. The goal is to produce the least amount of machine code //! possible. //! //! - Eager mode is meant to be used in conjunction with incremental compilation //! where a stable set of mono items is more important than a minimal //! one. Thus, eager mode will instantiate drop-glue for every drop-able type //! in the crate, even if no drop call for that type exists (yet). It will //! also instantiate default implementations of trait methods, something that //! otherwise is only done on demand. //! //! //! Open Issues //! ----------- //! Some things are not yet fully implemented in the current version of this //! module. //! //! ### Const Fns //! Ideally, no mono item should be generated for const fns unless there //! is a call to them that cannot be evaluated at compile time. At the moment //! this is not implemented however: a mono item will be produced //! regardless of whether it is actually needed or not. use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::sync::{par_for_each_in, MTLock, MTRef}; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_hir::def_id::{DefId, DefIdMap, LocalDefId}; use rustc_hir::lang_items::LangItem; use rustc_index::bit_set::GrowableBitSet; use rustc_middle::mir::interpret::{AllocId, ConstValue}; use rustc_middle::mir::interpret::{ErrorHandled, GlobalAlloc, Scalar}; use rustc_middle::mir::mono::{InstantiationMode, MonoItem}; use rustc_middle::mir::visit::Visitor as MirVisitor; use rustc_middle::mir::{self, Local, Location}; use rustc_middle::ty::adjustment::{CustomCoerceUnsized, PointerCast}; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::query::TyCtxtAt; use rustc_middle::ty::subst::{GenericArgKind, InternalSubsts}; use rustc_middle::ty::{ self, GenericParamDefKind, Instance, Ty, TyCtxt, TypeFoldable, TypeVisitable, VtblEntry, }; use rustc_middle::{middle::codegen_fn_attrs::CodegenFnAttrFlags, mir::visit::TyContext}; use rustc_session::config::EntryFnType; use rustc_session::lint::builtin::LARGE_ASSIGNMENTS; use rustc_session::Limit; use rustc_span::source_map::{dummy_spanned, respan, Span, Spanned, DUMMY_SP}; use rustc_target::abi::Size; use std::ops::Range; use std::path::PathBuf; use crate::errors::{LargeAssignmentsLint, RecursionLimit, TypeLengthLimit}; #[derive(PartialEq)] pub enum MonoItemCollectionMode { Eager, Lazy, } /// Maps every mono item to all mono items it references in its /// body. pub struct InliningMap<'tcx> { // Maps a source mono item to the range of mono items // accessed by it. // The range selects elements within the `targets` vecs. index: FxHashMap, Range>, targets: Vec>, // Contains one bit per mono item in the `targets` field. That bit // is true if that mono item needs to be inlined into every CGU. inlines: GrowableBitSet, } /// Struct to store mono items in each collecting and if they should /// be inlined. We call `instantiation_mode` to get their inlining /// status when inserting new elements, which avoids calling it in /// `inlining_map.lock_mut()`. See the `collect_items_rec` implementation /// below. struct MonoItems<'tcx> { // If this is false, we do not need to compute whether items // will need to be inlined. compute_inlining: bool, // The TyCtxt used to determine whether the a item should // be inlined. tcx: TyCtxt<'tcx>, // The collected mono items. The bool field in each element // indicates whether this element should be inlined. items: Vec<(Spanned>, bool /*inlined*/)>, } impl<'tcx> MonoItems<'tcx> { #[inline] fn push(&mut self, item: Spanned>) { self.extend([item]); } #[inline] fn extend>>>(&mut self, iter: T) { self.items.extend(iter.into_iter().map(|mono_item| { let inlined = if !self.compute_inlining { false } else { mono_item.node.instantiation_mode(self.tcx) == InstantiationMode::LocalCopy }; (mono_item, inlined) })) } } impl<'tcx> InliningMap<'tcx> { fn new() -> InliningMap<'tcx> { InliningMap { index: FxHashMap::default(), targets: Vec::new(), inlines: GrowableBitSet::with_capacity(1024), } } fn record_accesses<'a>( &mut self, source: MonoItem<'tcx>, new_targets: &'a [(Spanned>, bool)], ) where 'tcx: 'a, { let start_index = self.targets.len(); let new_items_count = new_targets.len(); let new_items_count_total = new_items_count + self.targets.len(); self.targets.reserve(new_items_count); self.inlines.ensure(new_items_count_total); for (i, (Spanned { node: mono_item, .. }, inlined)) in new_targets.into_iter().enumerate() { self.targets.push(*mono_item); if *inlined { self.inlines.insert(i + start_index); } } let end_index = self.targets.len(); assert!(self.index.insert(source, start_index..end_index).is_none()); } /// Internally iterate over all items referenced by `source` which will be /// made available for inlining. pub fn with_inlining_candidates(&self, source: MonoItem<'tcx>, mut f: F) where F: FnMut(MonoItem<'tcx>), { if let Some(range) = self.index.get(&source) { for (i, candidate) in self.targets[range.clone()].iter().enumerate() { if self.inlines.contains(range.start + i) { f(*candidate); } } } } /// Internally iterate over all items and the things each accesses. pub fn iter_accesses(&self, mut f: F) where F: FnMut(MonoItem<'tcx>, &[MonoItem<'tcx>]), { for (&accessor, range) in &self.index { f(accessor, &self.targets[range.clone()]) } } } #[instrument(skip(tcx, mode), level = "debug")] pub fn collect_crate_mono_items( tcx: TyCtxt<'_>, mode: MonoItemCollectionMode, ) -> (FxHashSet>, InliningMap<'_>) { let _prof_timer = tcx.prof.generic_activity("monomorphization_collector"); let roots = tcx.sess.time("monomorphization_collector_root_collections", || collect_roots(tcx, mode)); debug!("building mono item graph, beginning at roots"); let mut visited = MTLock::new(FxHashSet::default()); let mut inlining_map = MTLock::new(InliningMap::new()); let recursion_limit = tcx.recursion_limit(); { let visited: MTRef<'_, _> = &mut visited; let inlining_map: MTRef<'_, _> = &mut inlining_map; tcx.sess.time("monomorphization_collector_graph_walk", || { par_for_each_in(roots, |root| { let mut recursion_depths = DefIdMap::default(); collect_items_rec( tcx, dummy_spanned(root), visited, &mut recursion_depths, recursion_limit, inlining_map, ); }); }); } (visited.into_inner(), inlining_map.into_inner()) } // Find all non-generic items by walking the HIR. These items serve as roots to // start monomorphizing from. #[instrument(skip(tcx, mode), level = "debug")] fn collect_roots(tcx: TyCtxt<'_>, mode: MonoItemCollectionMode) -> Vec> { debug!("collecting roots"); let mut roots = MonoItems { compute_inlining: false, tcx, items: Vec::new() }; { let entry_fn = tcx.entry_fn(()); debug!("collect_roots: entry_fn = {:?}", entry_fn); let mut collector = RootCollector { tcx, mode, entry_fn, output: &mut roots }; let crate_items = tcx.hir_crate_items(()); for id in crate_items.items() { collector.process_item(id); } for id in crate_items.impl_items() { collector.process_impl_item(id); } collector.push_extra_entry_roots(); } // We can only codegen items that are instantiable - items all of // whose predicates hold. Luckily, items that aren't instantiable // can't actually be used, so we can just skip codegenning them. roots .items .into_iter() .filter_map(|(Spanned { node: mono_item, .. }, _)| { mono_item.is_instantiable(tcx).then_some(mono_item) }) .collect() } /// Collect all monomorphized items reachable from `starting_point`, and emit a note diagnostic if a /// post-monorphization error is encountered during a collection step. #[instrument(skip(tcx, visited, recursion_depths, recursion_limit, inlining_map), level = "debug")] fn collect_items_rec<'tcx>( tcx: TyCtxt<'tcx>, starting_point: Spanned>, visited: MTRef<'_, MTLock>>>, recursion_depths: &mut DefIdMap, recursion_limit: Limit, inlining_map: MTRef<'_, MTLock>>, ) { if !visited.lock_mut().insert(starting_point.node) { // We've been here already, no need to search again. return; } let mut neighbors = MonoItems { compute_inlining: true, tcx, items: Vec::new() }; let recursion_depth_reset; // // Post-monomorphization errors MVP // // We can encounter errors while monomorphizing an item, but we don't have a good way of // showing a complete stack of spans ultimately leading to collecting the erroneous one yet. // (It's also currently unclear exactly which diagnostics and information would be interesting // to report in such cases) // // This leads to suboptimal error reporting: a post-monomorphization error (PME) will be // shown with just a spanned piece of code causing the error, without information on where // it was called from. This is especially obscure if the erroneous mono item is in a // dependency. See for example issue #85155, where, before minimization, a PME happened two // crates downstream from libcore's stdarch, without a way to know which dependency was the // cause. // // If such an error occurs in the current crate, its span will be enough to locate the // source. If the cause is in another crate, the goal here is to quickly locate which mono // item in the current crate is ultimately responsible for causing the error. // // To give at least _some_ context to the user: while collecting mono items, we check the // error count. If it has changed, a PME occurred, and we trigger some diagnostics about the // current step of mono items collection. // // FIXME: don't rely on global state, instead bubble up errors. Note: this is very hard to do. let error_count = tcx.sess.diagnostic().err_count(); match starting_point.node { MonoItem::Static(def_id) => { let instance = Instance::mono(tcx, def_id); // Sanity check whether this ended up being collected accidentally debug_assert!(should_codegen_locally(tcx, &instance)); let ty = instance.ty(tcx, ty::ParamEnv::reveal_all()); visit_drop_use(tcx, ty, true, starting_point.span, &mut neighbors); recursion_depth_reset = None; if let Ok(alloc) = tcx.eval_static_initializer(def_id) { for &id in alloc.inner().provenance().ptrs().values() { collect_miri(tcx, id, &mut neighbors); } } } MonoItem::Fn(instance) => { // Sanity check whether this ended up being collected accidentally debug_assert!(should_codegen_locally(tcx, &instance)); // Keep track of the monomorphization recursion depth recursion_depth_reset = Some(check_recursion_limit( tcx, instance, starting_point.span, recursion_depths, recursion_limit, )); check_type_length_limit(tcx, instance); rustc_data_structures::stack::ensure_sufficient_stack(|| { collect_neighbours(tcx, instance, &mut neighbors); }); } MonoItem::GlobalAsm(item_id) => { recursion_depth_reset = None; let item = tcx.hir().item(item_id); if let hir::ItemKind::GlobalAsm(asm) = item.kind { for (op, op_sp) in asm.operands { match op { hir::InlineAsmOperand::Const { .. } => { // Only constants which resolve to a plain integer // are supported. Therefore the value should not // depend on any other items. } hir::InlineAsmOperand::SymFn { anon_const } => { let fn_ty = tcx.typeck_body(anon_const.body).node_type(anon_const.hir_id); visit_fn_use(tcx, fn_ty, false, *op_sp, &mut neighbors); } hir::InlineAsmOperand::SymStatic { path: _, def_id } => { let instance = Instance::mono(tcx, *def_id); if should_codegen_locally(tcx, &instance) { trace!("collecting static {:?}", def_id); neighbors.push(dummy_spanned(MonoItem::Static(*def_id))); } } hir::InlineAsmOperand::In { .. } | hir::InlineAsmOperand::Out { .. } | hir::InlineAsmOperand::InOut { .. } | hir::InlineAsmOperand::SplitInOut { .. } => { span_bug!(*op_sp, "invalid operand type for global_asm!") } } } } else { span_bug!(item.span, "Mismatch between hir::Item type and MonoItem type") } } } // Check for PMEs and emit a diagnostic if one happened. To try to show relevant edges of the // mono item graph. if tcx.sess.diagnostic().err_count() > error_count && starting_point.node.is_generic_fn() && starting_point.node.is_user_defined() { let formatted_item = with_no_trimmed_paths!(starting_point.node.to_string()); tcx.sess.span_note_without_error( starting_point.span, &format!("the above error was encountered while instantiating `{formatted_item}`"), ); } inlining_map.lock_mut().record_accesses(starting_point.node, &neighbors.items); for (neighbour, _) in neighbors.items { collect_items_rec(tcx, neighbour, visited, recursion_depths, recursion_limit, inlining_map); } if let Some((def_id, depth)) = recursion_depth_reset { recursion_depths.insert(def_id, depth); } } /// Format instance name that is already known to be too long for rustc. /// Show only the first 2 types if it is longer than 32 characters to avoid blasting /// the user's terminal with thousands of lines of type-name. /// /// If the type name is longer than before+after, it will be written to a file. fn shrunk_instance_name<'tcx>( tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>, ) -> (String, Option) { let s = instance.to_string(); // Only use the shrunk version if it's really shorter. // This also avoids the case where before and after slices overlap. if s.chars().nth(33).is_some() { let shrunk = format!("{}", ty::ShortInstance(instance, 4)); if shrunk == s { return (s, None); } let path = tcx.output_filenames(()).temp_path_ext("long-type.txt", None); let written_to_path = std::fs::write(&path, s).ok().map(|_| path); (shrunk, written_to_path) } else { (s, None) } } fn check_recursion_limit<'tcx>( tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, span: Span, recursion_depths: &mut DefIdMap, recursion_limit: Limit, ) -> (DefId, usize) { let def_id = instance.def_id(); let recursion_depth = recursion_depths.get(&def_id).cloned().unwrap_or(0); debug!(" => recursion depth={}", recursion_depth); let adjusted_recursion_depth = if Some(def_id) == tcx.lang_items().drop_in_place_fn() { // HACK: drop_in_place creates tight monomorphization loops. Give // it more margin. recursion_depth / 4 } else { recursion_depth }; // Code that needs to instantiate the same function recursively // more than the recursion limit is assumed to be causing an // infinite expansion. if !recursion_limit.value_within_limit(adjusted_recursion_depth) { let def_span = tcx.def_span(def_id); let def_path_str = tcx.def_path_str(def_id); let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance); let mut path = PathBuf::new(); let was_written = if let Some(written_to_path) = written_to_path { path = written_to_path; Some(()) } else { None }; tcx.sess.emit_fatal(RecursionLimit { span, shrunk, def_span, def_path_str, was_written, path, }); } recursion_depths.insert(def_id, recursion_depth + 1); (def_id, recursion_depth) } fn check_type_length_limit<'tcx>(tcx: TyCtxt<'tcx>, instance: Instance<'tcx>) { let type_length = instance .substs .iter() .flat_map(|arg| arg.walk()) .filter(|arg| match arg.unpack() { GenericArgKind::Type(_) | GenericArgKind::Const(_) => true, GenericArgKind::Lifetime(_) => false, }) .count(); debug!(" => type length={}", type_length); // Rust code can easily create exponentially-long types using only a // polynomial recursion depth. Even with the default recursion // depth, you can easily get cases that take >2^60 steps to run, // which means that rustc basically hangs. // // Bail out in these cases to avoid that bad user experience. if !tcx.type_length_limit().value_within_limit(type_length) { let (shrunk, written_to_path) = shrunk_instance_name(tcx, &instance); let span = tcx.def_span(instance.def_id()); let mut path = PathBuf::new(); let was_written = if written_to_path.is_some() { path = written_to_path.unwrap(); Some(()) } else { None }; tcx.sess.emit_fatal(TypeLengthLimit { span, shrunk, was_written, path, type_length }); } } struct MirNeighborCollector<'a, 'tcx> { tcx: TyCtxt<'tcx>, body: &'a mir::Body<'tcx>, output: &'a mut MonoItems<'tcx>, instance: Instance<'tcx>, } impl<'a, 'tcx> MirNeighborCollector<'a, 'tcx> { pub fn monomorphize(&self, value: T) -> T where T: TypeFoldable<'tcx>, { debug!("monomorphize: self.instance={:?}", self.instance); self.instance.subst_mir_and_normalize_erasing_regions( self.tcx, ty::ParamEnv::reveal_all(), value, ) } } impl<'a, 'tcx> MirVisitor<'tcx> for MirNeighborCollector<'a, 'tcx> { fn visit_rvalue(&mut self, rvalue: &mir::Rvalue<'tcx>, location: Location) { debug!("visiting rvalue {:?}", *rvalue); let span = self.body.source_info(location).span; match *rvalue { // When doing an cast from a regular pointer to a fat pointer, we // have to instantiate all methods of the trait being cast to, so we // can build the appropriate vtable. mir::Rvalue::Cast( mir::CastKind::Pointer(PointerCast::Unsize), ref operand, target_ty, ) | mir::Rvalue::Cast(mir::CastKind::DynStar, ref operand, target_ty) => { let target_ty = self.monomorphize(target_ty); let source_ty = operand.ty(self.body, self.tcx); let source_ty = self.monomorphize(source_ty); let (source_ty, target_ty) = find_vtable_types_for_unsizing(self.tcx.at(span), source_ty, target_ty); // This could also be a different Unsize instruction, like // from a fixed sized array to a slice. But we are only // interested in things that produce a vtable. if (target_ty.is_trait() && !source_ty.is_trait()) || (target_ty.is_dyn_star() && !source_ty.is_dyn_star()) { create_mono_items_for_vtable_methods( self.tcx, target_ty, source_ty, span, self.output, ); } } mir::Rvalue::Cast( mir::CastKind::Pointer(PointerCast::ReifyFnPointer), ref operand, _, ) => { let fn_ty = operand.ty(self.body, self.tcx); let fn_ty = self.monomorphize(fn_ty); visit_fn_use(self.tcx, fn_ty, false, span, &mut self.output); } mir::Rvalue::Cast( mir::CastKind::Pointer(PointerCast::ClosureFnPointer(_)), ref operand, _, ) => { let source_ty = operand.ty(self.body, self.tcx); let source_ty = self.monomorphize(source_ty); match *source_ty.kind() { ty::Closure(def_id, substs) => { let instance = Instance::resolve_closure( self.tcx, def_id, substs, ty::ClosureKind::FnOnce, ) .expect("failed to normalize and resolve closure during codegen"); if should_codegen_locally(self.tcx, &instance) { self.output.push(create_fn_mono_item(self.tcx, instance, span)); } } _ => bug!(), } } mir::Rvalue::ThreadLocalRef(def_id) => { assert!(self.tcx.is_thread_local_static(def_id)); let instance = Instance::mono(self.tcx, def_id); if should_codegen_locally(self.tcx, &instance) { trace!("collecting thread-local static {:?}", def_id); self.output.push(respan(span, MonoItem::Static(def_id))); } } _ => { /* not interesting */ } } self.super_rvalue(rvalue, location); } /// This does not walk the constant, as it has been handled entirely here and trying /// to walk it would attempt to evaluate the `ty::Const` inside, which doesn't necessarily /// work, as some constants cannot be represented in the type system. #[instrument(skip(self), level = "debug")] fn visit_constant(&mut self, constant: &mir::Constant<'tcx>, location: Location) { let literal = self.monomorphize(constant.literal); let val = match literal { mir::ConstantKind::Val(val, _) => val, mir::ConstantKind::Ty(ct) => match ct.kind() { ty::ConstKind::Value(val) => self.tcx.valtree_to_const_val((ct.ty(), val)), ty::ConstKind::Unevaluated(ct) => { debug!(?ct); let param_env = ty::ParamEnv::reveal_all(); match self.tcx.const_eval_resolve(param_env, ct.expand(), None) { // The `monomorphize` call should have evaluated that constant already. Ok(val) => val, Err(ErrorHandled::Reported(_)) => return, Err(ErrorHandled::TooGeneric) => span_bug!( self.body.source_info(location).span, "collection encountered polymorphic constant: {:?}", literal ), } } _ => return, }, mir::ConstantKind::Unevaluated(uv, _) => { let param_env = ty::ParamEnv::reveal_all(); match self.tcx.const_eval_resolve(param_env, uv, None) { // The `monomorphize` call should have evaluated that constant already. Ok(val) => val, Err(ErrorHandled::Reported(_)) => return, Err(ErrorHandled::TooGeneric) => span_bug!( self.body.source_info(location).span, "collection encountered polymorphic constant: {:?}", literal ), } } }; collect_const_value(self.tcx, val, self.output); MirVisitor::visit_ty(self, literal.ty(), TyContext::Location(location)); } fn visit_terminator(&mut self, terminator: &mir::Terminator<'tcx>, location: Location) { debug!("visiting terminator {:?} @ {:?}", terminator, location); let source = self.body.source_info(location).span; let tcx = self.tcx; match terminator.kind { mir::TerminatorKind::Call { ref func, .. } => { let callee_ty = func.ty(self.body, tcx); let callee_ty = self.monomorphize(callee_ty); visit_fn_use(self.tcx, callee_ty, true, source, &mut self.output) } mir::TerminatorKind::Drop { ref place, .. } | mir::TerminatorKind::DropAndReplace { ref place, .. } => { let ty = place.ty(self.body, self.tcx).ty; let ty = self.monomorphize(ty); visit_drop_use(self.tcx, ty, true, source, self.output); } mir::TerminatorKind::InlineAsm { ref operands, .. } => { for op in operands { match *op { mir::InlineAsmOperand::SymFn { ref value } => { let fn_ty = self.monomorphize(value.literal.ty()); visit_fn_use(self.tcx, fn_ty, false, source, &mut self.output); } mir::InlineAsmOperand::SymStatic { def_id } => { let instance = Instance::mono(self.tcx, def_id); if should_codegen_locally(self.tcx, &instance) { trace!("collecting asm sym static {:?}", def_id); self.output.push(respan(source, MonoItem::Static(def_id))); } } _ => {} } } } mir::TerminatorKind::Assert { ref msg, .. } => { let lang_item = match msg { mir::AssertKind::BoundsCheck { .. } => LangItem::PanicBoundsCheck, _ => LangItem::Panic, }; let instance = Instance::mono(tcx, tcx.require_lang_item(lang_item, Some(source))); if should_codegen_locally(tcx, &instance) { self.output.push(create_fn_mono_item(tcx, instance, source)); } } mir::TerminatorKind::Abort { .. } => { let instance = Instance::mono( tcx, tcx.require_lang_item(LangItem::PanicCannotUnwind, Some(source)), ); if should_codegen_locally(tcx, &instance) { self.output.push(create_fn_mono_item(tcx, instance, source)); } } mir::TerminatorKind::Goto { .. } | mir::TerminatorKind::SwitchInt { .. } | mir::TerminatorKind::Resume | mir::TerminatorKind::Return | mir::TerminatorKind::Unreachable => {} mir::TerminatorKind::GeneratorDrop | mir::TerminatorKind::Yield { .. } | mir::TerminatorKind::FalseEdge { .. } | mir::TerminatorKind::FalseUnwind { .. } => bug!(), } self.super_terminator(terminator, location); } fn visit_operand(&mut self, operand: &mir::Operand<'tcx>, location: Location) { self.super_operand(operand, location); let limit = self.tcx.move_size_limit().0; if limit == 0 { return; } let limit = Size::from_bytes(limit); let ty = operand.ty(self.body, self.tcx); let ty = self.monomorphize(ty); let layout = self.tcx.layout_of(ty::ParamEnv::reveal_all().and(ty)); if let Ok(layout) = layout { if layout.size > limit { debug!(?layout); let source_info = self.body.source_info(location); debug!(?source_info); let lint_root = source_info.scope.lint_root(&self.body.source_scopes); debug!(?lint_root); let Some(lint_root) = lint_root else { // This happens when the issue is in a function from a foreign crate that // we monomorphized in the current crate. We can't get a `HirId` for things // in other crates. // FIXME: Find out where to report the lint on. Maybe simply crate-level lint root // but correct span? This would make the lint at least accept crate-level lint attributes. return; }; self.tcx.emit_spanned_lint( LARGE_ASSIGNMENTS, lint_root, source_info.span, LargeAssignmentsLint { span: source_info.span, size: layout.size.bytes(), limit: limit.bytes(), }, ) } } } fn visit_local( &mut self, _place_local: Local, _context: mir::visit::PlaceContext, _location: Location, ) { } } fn visit_drop_use<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, is_direct_call: bool, source: Span, output: &mut MonoItems<'tcx>, ) { let instance = Instance::resolve_drop_in_place(tcx, ty); visit_instance_use(tcx, instance, is_direct_call, source, output); } fn visit_fn_use<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, is_direct_call: bool, source: Span, output: &mut MonoItems<'tcx>, ) { if let ty::FnDef(def_id, substs) = *ty.kind() { let instance = if is_direct_call { ty::Instance::expect_resolve(tcx, ty::ParamEnv::reveal_all(), def_id, substs) } else { match ty::Instance::resolve_for_fn_ptr(tcx, ty::ParamEnv::reveal_all(), def_id, substs) { Some(instance) => instance, _ => bug!("failed to resolve instance for {ty}"), } }; visit_instance_use(tcx, instance, is_direct_call, source, output); } } fn visit_instance_use<'tcx>( tcx: TyCtxt<'tcx>, instance: ty::Instance<'tcx>, is_direct_call: bool, source: Span, output: &mut MonoItems<'tcx>, ) { debug!("visit_item_use({:?}, is_direct_call={:?})", instance, is_direct_call); if !should_codegen_locally(tcx, &instance) { return; } match instance.def { ty::InstanceDef::Virtual(..) | ty::InstanceDef::Intrinsic(_) => { if !is_direct_call { bug!("{:?} being reified", instance); } } ty::InstanceDef::DropGlue(_, None) => { // Don't need to emit noop drop glue if we are calling directly. if !is_direct_call { output.push(create_fn_mono_item(tcx, instance, source)); } } ty::InstanceDef::DropGlue(_, Some(_)) | ty::InstanceDef::VTableShim(..) | ty::InstanceDef::ReifyShim(..) | ty::InstanceDef::ClosureOnceShim { .. } | ty::InstanceDef::Item(..) | ty::InstanceDef::FnPtrShim(..) | ty::InstanceDef::CloneShim(..) => { output.push(create_fn_mono_item(tcx, instance, source)); } } } /// Returns `true` if we should codegen an instance in the local crate, or returns `false` if we /// can just link to the upstream crate and therefore don't need a mono item. fn should_codegen_locally<'tcx>(tcx: TyCtxt<'tcx>, instance: &Instance<'tcx>) -> bool { let Some(def_id) = instance.def.def_id_if_not_guaranteed_local_codegen() else { return true; }; if tcx.is_foreign_item(def_id) { // Foreign items are always linked against, there's no way of instantiating them. return false; } if def_id.is_local() { // Local items cannot be referred to locally without monomorphizing them locally. return true; } if tcx.is_reachable_non_generic(def_id) || instance.polymorphize(tcx).upstream_monomorphization(tcx).is_some() { // We can link to the item in question, no instance needed in this crate. return false; } if let DefKind::Static(_) = tcx.def_kind(def_id) { // We cannot monomorphize statics from upstream crates. return false; } if !tcx.is_mir_available(def_id) { bug!("no MIR available for {:?}", def_id); } true } /// For a given pair of source and target type that occur in an unsizing coercion, /// this function finds the pair of types that determines the vtable linking /// them. /// /// For example, the source type might be `&SomeStruct` and the target type /// might be `&dyn SomeTrait` in a cast like: /// /// ```rust,ignore (not real code) /// let src: &SomeStruct = ...; /// let target = src as &dyn SomeTrait; /// ``` /// /// Then the output of this function would be (SomeStruct, SomeTrait) since for /// constructing the `target` fat-pointer we need the vtable for that pair. /// /// Things can get more complicated though because there's also the case where /// the unsized type occurs as a field: /// /// ```rust /// struct ComplexStruct { /// a: u32, /// b: f64, /// c: T /// } /// ``` /// /// In this case, if `T` is sized, `&ComplexStruct` is a thin pointer. If `T` /// is unsized, `&SomeStruct` is a fat pointer, and the vtable it points to is /// for the pair of `T` (which is a trait) and the concrete type that `T` was /// originally coerced from: /// /// ```rust,ignore (not real code) /// let src: &ComplexStruct = ...; /// let target = src as &ComplexStruct; /// ``` /// /// Again, we want this `find_vtable_types_for_unsizing()` to provide the pair /// `(SomeStruct, SomeTrait)`. /// /// Finally, there is also the case of custom unsizing coercions, e.g., for /// smart pointers such as `Rc` and `Arc`. fn find_vtable_types_for_unsizing<'tcx>( tcx: TyCtxtAt<'tcx>, source_ty: Ty<'tcx>, target_ty: Ty<'tcx>, ) -> (Ty<'tcx>, Ty<'tcx>) { let ptr_vtable = |inner_source: Ty<'tcx>, inner_target: Ty<'tcx>| { let param_env = ty::ParamEnv::reveal_all(); let type_has_metadata = |ty: Ty<'tcx>| -> bool { if ty.is_sized(tcx.tcx, param_env) { return false; } let tail = tcx.struct_tail_erasing_lifetimes(ty, param_env); match tail.kind() { ty::Foreign(..) => false, ty::Str | ty::Slice(..) | ty::Dynamic(..) => true, _ => bug!("unexpected unsized tail: {:?}", tail), } }; if type_has_metadata(inner_source) { (inner_source, inner_target) } else { tcx.struct_lockstep_tails_erasing_lifetimes(inner_source, inner_target, param_env) } }; match (&source_ty.kind(), &target_ty.kind()) { (&ty::Ref(_, a, _), &ty::Ref(_, b, _) | &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) | (&ty::RawPtr(ty::TypeAndMut { ty: a, .. }), &ty::RawPtr(ty::TypeAndMut { ty: b, .. })) => { ptr_vtable(*a, *b) } (&ty::Adt(def_a, _), &ty::Adt(def_b, _)) if def_a.is_box() && def_b.is_box() => { ptr_vtable(source_ty.boxed_ty(), target_ty.boxed_ty()) } // T as dyn* Trait (_, &ty::Dynamic(_, _, ty::DynStar)) => ptr_vtable(source_ty, target_ty), (&ty::Adt(source_adt_def, source_substs), &ty::Adt(target_adt_def, target_substs)) => { assert_eq!(source_adt_def, target_adt_def); let CustomCoerceUnsized::Struct(coerce_index) = crate::custom_coerce_unsize_info(tcx, source_ty, target_ty); let source_fields = &source_adt_def.non_enum_variant().fields; let target_fields = &target_adt_def.non_enum_variant().fields; assert!( coerce_index < source_fields.len() && source_fields.len() == target_fields.len() ); find_vtable_types_for_unsizing( tcx, source_fields[coerce_index].ty(*tcx, source_substs), target_fields[coerce_index].ty(*tcx, target_substs), ) } _ => bug!( "find_vtable_types_for_unsizing: invalid coercion {:?} -> {:?}", source_ty, target_ty ), } } #[instrument(skip(tcx), level = "debug", ret)] fn create_fn_mono_item<'tcx>( tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, source: Span, ) -> Spanned> { let def_id = instance.def_id(); if tcx.sess.opts.unstable_opts.profile_closures && def_id.is_local() && tcx.is_closure(def_id) { crate::util::dump_closure_profile(tcx, instance); } respan(source, MonoItem::Fn(instance.polymorphize(tcx))) } /// Creates a `MonoItem` for each method that is referenced by the vtable for /// the given trait/impl pair. fn create_mono_items_for_vtable_methods<'tcx>( tcx: TyCtxt<'tcx>, trait_ty: Ty<'tcx>, impl_ty: Ty<'tcx>, source: Span, output: &mut MonoItems<'tcx>, ) { assert!(!trait_ty.has_escaping_bound_vars() && !impl_ty.has_escaping_bound_vars()); if let ty::Dynamic(ref trait_ty, ..) = trait_ty.kind() { if let Some(principal) = trait_ty.principal() { let poly_trait_ref = principal.with_self_ty(tcx, impl_ty); assert!(!poly_trait_ref.has_escaping_bound_vars()); // Walk all methods of the trait, including those of its supertraits let entries = tcx.vtable_entries(poly_trait_ref); let methods = entries .iter() .filter_map(|entry| match entry { VtblEntry::MetadataDropInPlace | VtblEntry::MetadataSize | VtblEntry::MetadataAlign | VtblEntry::Vacant => None, VtblEntry::TraitVPtr(_) => { // all super trait items already covered, so skip them. None } VtblEntry::Method(instance) => { Some(*instance).filter(|instance| should_codegen_locally(tcx, instance)) } }) .map(|item| create_fn_mono_item(tcx, item, source)); output.extend(methods); } // Also add the destructor. visit_drop_use(tcx, impl_ty, false, source, output); } } //=----------------------------------------------------------------------------- // Root Collection //=----------------------------------------------------------------------------- struct RootCollector<'a, 'tcx> { tcx: TyCtxt<'tcx>, mode: MonoItemCollectionMode, output: &'a mut MonoItems<'tcx>, entry_fn: Option<(DefId, EntryFnType)>, } impl<'v> RootCollector<'_, 'v> { fn process_item(&mut self, id: hir::ItemId) { match self.tcx.def_kind(id.owner_id) { DefKind::Enum | DefKind::Struct | DefKind::Union => { let item = self.tcx.hir().item(id); match item.kind { hir::ItemKind::Enum(_, ref generics) | hir::ItemKind::Struct(_, ref generics) | hir::ItemKind::Union(_, ref generics) => { if generics.params.is_empty() { if self.mode == MonoItemCollectionMode::Eager { debug!( "RootCollector: ADT drop-glue for {}", self.tcx.def_path_str(item.owner_id.to_def_id()) ); let ty = Instance::new( item.owner_id.to_def_id(), InternalSubsts::empty(), ) .ty(self.tcx, ty::ParamEnv::reveal_all()); visit_drop_use(self.tcx, ty, true, DUMMY_SP, self.output); } } } _ => bug!(), } } DefKind::GlobalAsm => { debug!( "RootCollector: ItemKind::GlobalAsm({})", self.tcx.def_path_str(id.owner_id.to_def_id()) ); self.output.push(dummy_spanned(MonoItem::GlobalAsm(id))); } DefKind::Static(..) => { debug!( "RootCollector: ItemKind::Static({})", self.tcx.def_path_str(id.owner_id.to_def_id()) ); self.output.push(dummy_spanned(MonoItem::Static(id.owner_id.to_def_id()))); } DefKind::Const => { // const items only generate mono items if they are // actually used somewhere. Just declaring them is insufficient. // but even just declaring them must collect the items they refer to if let Ok(val) = self.tcx.const_eval_poly(id.owner_id.to_def_id()) { collect_const_value(self.tcx, val, &mut self.output); } } DefKind::Impl => { if self.mode == MonoItemCollectionMode::Eager { let item = self.tcx.hir().item(id); create_mono_items_for_default_impls(self.tcx, item, self.output); } } DefKind::Fn => { self.push_if_root(id.owner_id.def_id); } _ => {} } } fn process_impl_item(&mut self, id: hir::ImplItemId) { if matches!(self.tcx.def_kind(id.owner_id), DefKind::AssocFn) { self.push_if_root(id.owner_id.def_id); } } fn is_root(&self, def_id: LocalDefId) -> bool { !item_requires_monomorphization(self.tcx, def_id) && match self.mode { MonoItemCollectionMode::Eager => true, MonoItemCollectionMode::Lazy => { self.entry_fn.and_then(|(id, _)| id.as_local()) == Some(def_id) || self.tcx.is_reachable_non_generic(def_id) || self .tcx .codegen_fn_attrs(def_id) .flags .contains(CodegenFnAttrFlags::RUSTC_STD_INTERNAL_SYMBOL) } } } /// If `def_id` represents a root, pushes it onto the list of /// outputs. (Note that all roots must be monomorphic.) #[instrument(skip(self), level = "debug")] fn push_if_root(&mut self, def_id: LocalDefId) { if self.is_root(def_id) { debug!("found root"); let instance = Instance::mono(self.tcx, def_id.to_def_id()); self.output.push(create_fn_mono_item(self.tcx, instance, DUMMY_SP)); } } /// As a special case, when/if we encounter the /// `main()` function, we also have to generate a /// monomorphized copy of the start lang item based on /// the return type of `main`. This is not needed when /// the user writes their own `start` manually. fn push_extra_entry_roots(&mut self) { let Some((main_def_id, EntryFnType::Main { .. })) = self.entry_fn else { return; }; let start_def_id = self.tcx.require_lang_item(LangItem::Start, None); let main_ret_ty = self.tcx.fn_sig(main_def_id).output(); // Given that `main()` has no arguments, // then its return type cannot have // late-bound regions, since late-bound // regions must appear in the argument // listing. let main_ret_ty = self.tcx.normalize_erasing_regions( ty::ParamEnv::reveal_all(), main_ret_ty.no_bound_vars().unwrap(), ); let start_instance = Instance::resolve( self.tcx, ty::ParamEnv::reveal_all(), start_def_id, self.tcx.intern_substs(&[main_ret_ty.into()]), ) .unwrap() .unwrap(); self.output.push(create_fn_mono_item(self.tcx, start_instance, DUMMY_SP)); } } fn item_requires_monomorphization(tcx: TyCtxt<'_>, def_id: LocalDefId) -> bool { let generics = tcx.generics_of(def_id); generics.requires_monomorphization(tcx) } fn create_mono_items_for_default_impls<'tcx>( tcx: TyCtxt<'tcx>, item: &'tcx hir::Item<'tcx>, output: &mut MonoItems<'tcx>, ) { match item.kind { hir::ItemKind::Impl(ref impl_) => { if matches!(impl_.polarity, hir::ImplPolarity::Negative(_)) { return; } for param in impl_.generics.params { match param.kind { hir::GenericParamKind::Lifetime { .. } => {} hir::GenericParamKind::Type { .. } | hir::GenericParamKind::Const { .. } => { return; } } } debug!( "create_mono_items_for_default_impls(item={})", tcx.def_path_str(item.owner_id.to_def_id()) ); if let Some(trait_ref) = tcx.impl_trait_ref(item.owner_id) { let trait_ref = trait_ref.subst_identity(); let param_env = ty::ParamEnv::reveal_all(); let trait_ref = tcx.normalize_erasing_regions(param_env, trait_ref); let overridden_methods = tcx.impl_item_implementor_ids(item.owner_id); for method in tcx.provided_trait_methods(trait_ref.def_id) { if overridden_methods.contains_key(&method.def_id) { continue; } if tcx.generics_of(method.def_id).own_requires_monomorphization() { continue; } let substs = InternalSubsts::for_item(tcx, method.def_id, |param, _| match param.kind { GenericParamDefKind::Lifetime => tcx.lifetimes.re_erased.into(), GenericParamDefKind::Type { .. } | GenericParamDefKind::Const { .. } => { trait_ref.substs[param.index as usize] } }); let instance = ty::Instance::expect_resolve(tcx, param_env, method.def_id, substs); let mono_item = create_fn_mono_item(tcx, instance, DUMMY_SP); if mono_item.node.is_instantiable(tcx) && should_codegen_locally(tcx, &instance) { output.push(mono_item); } } } } _ => bug!(), } } /// Scans the miri alloc in order to find function calls, closures, and drop-glue. fn collect_miri<'tcx>(tcx: TyCtxt<'tcx>, alloc_id: AllocId, output: &mut MonoItems<'tcx>) { match tcx.global_alloc(alloc_id) { GlobalAlloc::Static(def_id) => { assert!(!tcx.is_thread_local_static(def_id)); let instance = Instance::mono(tcx, def_id); if should_codegen_locally(tcx, &instance) { trace!("collecting static {:?}", def_id); output.push(dummy_spanned(MonoItem::Static(def_id))); } } GlobalAlloc::Memory(alloc) => { trace!("collecting {:?} with {:#?}", alloc_id, alloc); for &inner in alloc.inner().provenance().ptrs().values() { rustc_data_structures::stack::ensure_sufficient_stack(|| { collect_miri(tcx, inner, output); }); } } GlobalAlloc::Function(fn_instance) => { if should_codegen_locally(tcx, &fn_instance) { trace!("collecting {:?} with {:#?}", alloc_id, fn_instance); output.push(create_fn_mono_item(tcx, fn_instance, DUMMY_SP)); } } GlobalAlloc::VTable(ty, trait_ref) => { let alloc_id = tcx.vtable_allocation((ty, trait_ref)); collect_miri(tcx, alloc_id, output) } } } /// Scans the MIR in order to find function calls, closures, and drop-glue. #[instrument(skip(tcx, output), level = "debug")] fn collect_neighbours<'tcx>( tcx: TyCtxt<'tcx>, instance: Instance<'tcx>, output: &mut MonoItems<'tcx>, ) { let body = tcx.instance_mir(instance.def); MirNeighborCollector { tcx, body: &body, output, instance }.visit_body(&body); } #[instrument(skip(tcx, output), level = "debug")] fn collect_const_value<'tcx>( tcx: TyCtxt<'tcx>, value: ConstValue<'tcx>, output: &mut MonoItems<'tcx>, ) { match value { ConstValue::Scalar(Scalar::Ptr(ptr, _size)) => collect_miri(tcx, ptr.provenance, output), ConstValue::Slice { data: alloc, start: _, end: _ } | ConstValue::ByRef { alloc, .. } => { for &id in alloc.inner().provenance().ptrs().values() { collect_miri(tcx, id, output); } } _ => {} } }