use std::cmp; use rustc_data_structures::fx::FxHashMap; use rustc_hir::def_id::LOCAL_CRATE; use rustc_middle::mir::mono::{CodegenUnit, CodegenUnitNameBuilder}; use rustc_span::symbol::Symbol; use super::PartitioningCx; use crate::partitioning::PreInliningPartitioning; pub fn merge_codegen_units<'tcx>( cx: &PartitioningCx<'_, 'tcx>, initial_partitioning: &mut PreInliningPartitioning<'tcx>, ) { assert!(cx.target_cgu_count >= 1); let codegen_units = &mut initial_partitioning.codegen_units; // Note that at this point in time the `codegen_units` here may not be in a // deterministic order (but we know they're deterministically the same set). // We want this merging to produce a deterministic ordering of codegen units // from the input. // // Due to basically how we've implemented the merging below (merge the two // smallest into each other) we're sure to start off with a deterministic // order (sorted by name). This'll mean that if two cgus have the same size // the stable sort below will keep everything nice and deterministic. codegen_units.sort_by(|a, b| a.name().as_str().partial_cmp(b.name().as_str()).unwrap()); // This map keeps track of what got merged into what. let mut cgu_contents: FxHashMap> = codegen_units.iter().map(|cgu| (cgu.name(), vec![cgu.name()])).collect(); // Merge the two smallest codegen units until the target size is reached. while codegen_units.len() > cx.target_cgu_count { // Sort small cgus to the back codegen_units.sort_by_cached_key(|cgu| cmp::Reverse(cgu.size_estimate())); let mut smallest = codegen_units.pop().unwrap(); let second_smallest = codegen_units.last_mut().unwrap(); // Move the mono-items from `smallest` to `second_smallest` second_smallest.modify_size_estimate(smallest.size_estimate()); for (k, v) in smallest.items_mut().drain() { second_smallest.items_mut().insert(k, v); } // Record that `second_smallest` now contains all the stuff that was in // `smallest` before. let mut consumed_cgu_names = cgu_contents.remove(&smallest.name()).unwrap(); cgu_contents.get_mut(&second_smallest.name()).unwrap().append(&mut consumed_cgu_names); debug!( "CodegenUnit {} merged into CodegenUnit {}", smallest.name(), second_smallest.name() ); } let cgu_name_builder = &mut CodegenUnitNameBuilder::new(cx.tcx); if cx.tcx.sess.opts.incremental.is_some() { // If we are doing incremental compilation, we want CGU names to // reflect the path of the source level module they correspond to. // For CGUs that contain the code of multiple modules because of the // merging done above, we use a concatenation of the names of // all contained CGUs. let new_cgu_names: FxHashMap = cgu_contents .into_iter() // This `filter` makes sure we only update the name of CGUs that // were actually modified by merging. .filter(|(_, cgu_contents)| cgu_contents.len() > 1) .map(|(current_cgu_name, cgu_contents)| { let mut cgu_contents: Vec<&str> = cgu_contents.iter().map(|s| s.as_str()).collect(); // Sort the names, so things are deterministic and easy to // predict. // We are sorting primitive &strs here so we can use unstable sort cgu_contents.sort_unstable(); (current_cgu_name, cgu_contents.join("--")) }) .collect(); for cgu in codegen_units.iter_mut() { if let Some(new_cgu_name) = new_cgu_names.get(&cgu.name()) { if cx.tcx.sess.opts.unstable_opts.human_readable_cgu_names { cgu.set_name(Symbol::intern(&new_cgu_name)); } else { // If we don't require CGU names to be human-readable, we // use a fixed length hash of the composite CGU name // instead. let new_cgu_name = CodegenUnit::mangle_name(&new_cgu_name); cgu.set_name(Symbol::intern(&new_cgu_name)); } } } } else { // If we are compiling non-incrementally we just generate simple CGU // names containing an index. for (index, cgu) in codegen_units.iter_mut().enumerate() { cgu.set_name(numbered_codegen_unit_name(cgu_name_builder, index)); } } } fn numbered_codegen_unit_name( name_builder: &mut CodegenUnitNameBuilder<'_>, index: usize, ) -> Symbol { name_builder.build_cgu_name_no_mangle(LOCAL_CRATE, &["cgu"], Some(index)) }