//! Partitioning Codegen Units for Incremental Compilation //! ====================================================== //! //! The task of this module is to take the complete set of monomorphizations of //! a crate and produce a set of codegen units from it, where a codegen unit //! is a named set of (mono-item, linkage) pairs. That is, this module //! decides which monomorphization appears in which codegen units with which //! linkage. The following paragraphs describe some of the background on the //! partitioning scheme. //! //! The most important opportunity for saving on compilation time with //! incremental compilation is to avoid re-codegenning and re-optimizing code. //! Since the unit of codegen and optimization for LLVM is "modules" or, how //! we call them "codegen units", the particulars of how much time can be saved //! by incremental compilation are tightly linked to how the output program is //! partitioned into these codegen units prior to passing it to LLVM -- //! especially because we have to treat codegen units as opaque entities once //! they are created: There is no way for us to incrementally update an existing //! LLVM module and so we have to build any such module from scratch if it was //! affected by some change in the source code. //! //! From that point of view it would make sense to maximize the number of //! codegen units by, for example, putting each function into its own module. //! That way only those modules would have to be re-compiled that were actually //! affected by some change, minimizing the number of functions that could have //! been re-used but just happened to be located in a module that is //! re-compiled. //! //! However, since LLVM optimization does not work across module boundaries, //! using such a highly granular partitioning would lead to very slow runtime //! code since it would effectively prohibit inlining and other inter-procedure //! optimizations. We want to avoid that as much as possible. //! //! Thus we end up with a trade-off: The bigger the codegen units, the better //! LLVM's optimizer can do its work, but also the smaller the compilation time //! reduction we get from incremental compilation. //! //! Ideally, we would create a partitioning such that there are few big codegen //! units with few interdependencies between them. For now though, we use the //! following heuristic to determine the partitioning: //! //! - There are two codegen units for every source-level module: //! - One for "stable", that is non-generic, code //! - One for more "volatile" code, i.e., monomorphized instances of functions //! defined in that module //! //! In order to see why this heuristic makes sense, let's take a look at when a //! codegen unit can get invalidated: //! //! 1. The most straightforward case is when the BODY of a function or global //! changes. Then any codegen unit containing the code for that item has to be //! re-compiled. Note that this includes all codegen units where the function //! has been inlined. //! //! 2. The next case is when the SIGNATURE of a function or global changes. In //! this case, all codegen units containing a REFERENCE to that item have to be //! re-compiled. This is a superset of case 1. //! //! 3. The final and most subtle case is when a REFERENCE to a generic function //! is added or removed somewhere. Even though the definition of the function //! might be unchanged, a new REFERENCE might introduce a new monomorphized //! instance of this function which has to be placed and compiled somewhere. //! Conversely, when removing a REFERENCE, it might have been the last one with //! that particular set of generic arguments and thus we have to remove it. //! //! From the above we see that just using one codegen unit per source-level //! module is not such a good idea, since just adding a REFERENCE to some //! generic item somewhere else would invalidate everything within the module //! containing the generic item. The heuristic above reduces this detrimental //! side-effect of references a little by at least not touching the non-generic //! code of the module. //! //! A Note on Inlining //! ------------------ //! As briefly mentioned above, in order for LLVM to be able to inline a //! function call, the body of the function has to be available in the LLVM //! module where the call is made. This has a few consequences for partitioning: //! //! - The partitioning algorithm has to take care of placing functions into all //! codegen units where they should be available for inlining. It also has to //! decide on the correct linkage for these functions. //! //! - The partitioning algorithm has to know which functions are likely to get //! inlined, so it can distribute function instantiations accordingly. Since //! there is no way of knowing for sure which functions LLVM will decide to //! inline in the end, we apply a heuristic here: Only functions marked with //! `#[inline]` are considered for inlining by the partitioner. The current //! implementation will not try to determine if a function is likely to be //! inlined by looking at the functions definition. //! //! Note though that as a side-effect of creating a codegen units per //! source-level module, functions from the same module will be available for //! inlining, even when they are not marked `#[inline]`. mod default; mod merging; use std::cmp; use std::fs::{self, File}; use std::io::{BufWriter, Write}; use std::path::{Path, PathBuf}; use rustc_data_structures::fx::{FxHashMap, FxHashSet}; use rustc_data_structures::sync; use rustc_hir::def_id::{DefIdSet, LOCAL_CRATE}; use rustc_middle::mir; use rustc_middle::mir::mono::MonoItem; use rustc_middle::mir::mono::{CodegenUnit, Linkage}; use rustc_middle::ty::print::with_no_trimmed_paths; use rustc_middle::ty::query::Providers; use rustc_middle::ty::TyCtxt; use rustc_session::config::{DumpMonoStatsFormat, SwitchWithOptPath}; use rustc_span::symbol::Symbol; use crate::collector::InliningMap; use crate::collector::{self, MonoItemCollectionMode}; use crate::errors::{ CouldntDumpMonoStats, SymbolAlreadyDefined, UnknownCguCollectionMode, UnknownPartitionStrategy, }; pub struct PartitioningCx<'a, 'tcx> { tcx: TyCtxt<'tcx>, target_cgu_count: usize, inlining_map: &'a InliningMap<'tcx>, } trait Partitioner<'tcx> { fn place_root_mono_items( &mut self, cx: &PartitioningCx<'_, 'tcx>, mono_items: &mut dyn Iterator>, ) -> PreInliningPartitioning<'tcx>; fn merge_codegen_units( &mut self, cx: &PartitioningCx<'_, 'tcx>, initial_partitioning: &mut PreInliningPartitioning<'tcx>, ); fn place_inlined_mono_items( &mut self, cx: &PartitioningCx<'_, 'tcx>, initial_partitioning: PreInliningPartitioning<'tcx>, ) -> PostInliningPartitioning<'tcx>; fn internalize_symbols( &mut self, cx: &PartitioningCx<'_, 'tcx>, partitioning: &mut PostInliningPartitioning<'tcx>, ); } fn get_partitioner<'tcx>(tcx: TyCtxt<'tcx>) -> Box> { let strategy = match &tcx.sess.opts.unstable_opts.cgu_partitioning_strategy { None => "default", Some(s) => &s[..], }; match strategy { "default" => Box::new(default::DefaultPartitioning), _ => { tcx.sess.emit_fatal(UnknownPartitionStrategy); } } } pub fn partition<'tcx>( tcx: TyCtxt<'tcx>, mono_items: &mut dyn Iterator>, max_cgu_count: usize, inlining_map: &InliningMap<'tcx>, ) -> Vec> { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning"); let mut partitioner = get_partitioner(tcx); let cx = &PartitioningCx { tcx, target_cgu_count: max_cgu_count, inlining_map }; // In the first step, we place all regular monomorphizations into their // respective 'home' codegen unit. Regular monomorphizations are all // functions and statics defined in the local crate. let mut initial_partitioning = { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_roots"); partitioner.place_root_mono_items(cx, mono_items) }; initial_partitioning.codegen_units.iter_mut().for_each(|cgu| cgu.create_size_estimate(tcx)); debug_dump(tcx, "INITIAL PARTITIONING:", initial_partitioning.codegen_units.iter()); // Merge until we have at most `max_cgu_count` codegen units. { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_merge_cgus"); partitioner.merge_codegen_units(cx, &mut initial_partitioning); debug_dump(tcx, "POST MERGING:", initial_partitioning.codegen_units.iter()); } // In the next step, we use the inlining map to determine which additional // monomorphizations have to go into each codegen unit. These additional // monomorphizations can be drop-glue, functions from external crates, and // local functions the definition of which is marked with `#[inline]`. let mut post_inlining = { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_place_inline_items"); partitioner.place_inlined_mono_items(cx, initial_partitioning) }; post_inlining.codegen_units.iter_mut().for_each(|cgu| cgu.create_size_estimate(tcx)); debug_dump(tcx, "POST INLINING:", post_inlining.codegen_units.iter()); // Next we try to make as many symbols "internal" as possible, so LLVM has // more freedom to optimize. if !tcx.sess.link_dead_code() { let _prof_timer = tcx.prof.generic_activity("cgu_partitioning_internalize_symbols"); partitioner.internalize_symbols(cx, &mut post_inlining); } let instrument_dead_code = tcx.sess.instrument_coverage() && !tcx.sess.instrument_coverage_except_unused_functions(); if instrument_dead_code { assert!( post_inlining.codegen_units.len() > 0, "There must be at least one CGU that code coverage data can be generated in." ); // Find the smallest CGU that has exported symbols and put the dead // function stubs in that CGU. We look for exported symbols to increase // the likelihood the linker won't throw away the dead functions. // FIXME(#92165): In order to truly resolve this, we need to make sure // the object file (CGU) containing the dead function stubs is included // in the final binary. This will probably require forcing these // function symbols to be included via `-u` or `/include` linker args. let mut cgus: Vec<_> = post_inlining.codegen_units.iter_mut().collect(); cgus.sort_by_key(|cgu| cgu.size_estimate()); let dead_code_cgu = if let Some(cgu) = cgus.into_iter().rev().find(|cgu| { cgu.items().iter().any(|(_, (linkage, _))| *linkage == Linkage::External) }) { cgu } else { // If there are no CGUs that have externally linked items, // then we just pick the first CGU as a fallback. &mut post_inlining.codegen_units[0] }; dead_code_cgu.make_code_coverage_dead_code_cgu(); } // Finally, sort by codegen unit name, so that we get deterministic results. let PostInliningPartitioning { codegen_units: mut result, mono_item_placements: _, internalization_candidates: _, } = post_inlining; result.sort_by(|a, b| a.name().as_str().partial_cmp(b.name().as_str()).unwrap()); result } pub struct PreInliningPartitioning<'tcx> { codegen_units: Vec>, roots: FxHashSet>, internalization_candidates: FxHashSet>, } /// For symbol internalization, we need to know whether a symbol/mono-item is /// accessed from outside the codegen unit it is defined in. This type is used /// to keep track of that. #[derive(Clone, PartialEq, Eq, Debug)] enum MonoItemPlacement { SingleCgu { cgu_name: Symbol }, MultipleCgus, } struct PostInliningPartitioning<'tcx> { codegen_units: Vec>, mono_item_placements: FxHashMap, MonoItemPlacement>, internalization_candidates: FxHashSet>, } fn debug_dump<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, label: &str, cgus: I) where I: Iterator>, 'tcx: 'a, { let dump = move || { use std::fmt::Write; let s = &mut String::new(); let _ = writeln!(s, "{label}"); for cgu in cgus { let _ = writeln!(s, "CodegenUnit {} estimated size {} :", cgu.name(), cgu.size_estimate()); for (mono_item, linkage) in cgu.items() { let symbol_name = mono_item.symbol_name(tcx).name; let symbol_hash_start = symbol_name.rfind('h'); let symbol_hash = symbol_hash_start.map_or("", |i| &symbol_name[i..]); let _ = writeln!( s, " - {} [{:?}] [{}] estimated size {}", mono_item, linkage, symbol_hash, mono_item.size_estimate(tcx) ); } let _ = writeln!(s); } std::mem::take(s) }; debug!("{}", dump()); } #[inline(never)] // give this a place in the profiler fn assert_symbols_are_distinct<'a, 'tcx, I>(tcx: TyCtxt<'tcx>, mono_items: I) where I: Iterator>, 'tcx: 'a, { let _prof_timer = tcx.prof.generic_activity("assert_symbols_are_distinct"); let mut symbols: Vec<_> = mono_items.map(|mono_item| (mono_item, mono_item.symbol_name(tcx))).collect(); symbols.sort_by_key(|sym| sym.1); for &[(mono_item1, ref sym1), (mono_item2, ref sym2)] in symbols.array_windows() { if sym1 == sym2 { let span1 = mono_item1.local_span(tcx); let span2 = mono_item2.local_span(tcx); // Deterministically select one of the spans for error reporting let span = match (span1, span2) { (Some(span1), Some(span2)) => { Some(if span1.lo().0 > span2.lo().0 { span1 } else { span2 }) } (span1, span2) => span1.or(span2), }; tcx.sess.emit_fatal(SymbolAlreadyDefined { span, symbol: sym1.to_string() }); } } } fn collect_and_partition_mono_items(tcx: TyCtxt<'_>, (): ()) -> (&DefIdSet, &[CodegenUnit<'_>]) { let collection_mode = match tcx.sess.opts.unstable_opts.print_mono_items { Some(ref s) => { let mode = s.to_lowercase(); let mode = mode.trim(); if mode == "eager" { MonoItemCollectionMode::Eager } else { if mode != "lazy" { tcx.sess.emit_warning(UnknownCguCollectionMode { mode }); } MonoItemCollectionMode::Lazy } } None => { if tcx.sess.link_dead_code() { MonoItemCollectionMode::Eager } else { MonoItemCollectionMode::Lazy } } }; let (items, inlining_map) = collector::collect_crate_mono_items(tcx, collection_mode); tcx.sess.abort_if_errors(); let (codegen_units, _) = tcx.sess.time("partition_and_assert_distinct_symbols", || { sync::join( || { let mut codegen_units = partition( tcx, &mut items.iter().cloned(), tcx.sess.codegen_units(), &inlining_map, ); codegen_units[0].make_primary(); &*tcx.arena.alloc_from_iter(codegen_units) }, || assert_symbols_are_distinct(tcx, items.iter()), ) }); if tcx.prof.enabled() { // Record CGU size estimates for self-profiling. for cgu in codegen_units { tcx.prof.artifact_size( "codegen_unit_size_estimate", cgu.name().as_str(), cgu.size_estimate() as u64, ); } } let mono_items: DefIdSet = items .iter() .filter_map(|mono_item| match *mono_item { MonoItem::Fn(ref instance) => Some(instance.def_id()), MonoItem::Static(def_id) => Some(def_id), _ => None, }) .collect(); // Output monomorphization stats per def_id if let SwitchWithOptPath::Enabled(ref path) = tcx.sess.opts.unstable_opts.dump_mono_stats { if let Err(err) = dump_mono_items_stats(tcx, &codegen_units, path, tcx.crate_name(LOCAL_CRATE)) { tcx.sess.emit_fatal(CouldntDumpMonoStats { error: err.to_string() }); } } if tcx.sess.opts.unstable_opts.print_mono_items.is_some() { let mut item_to_cgus: FxHashMap<_, Vec<_>> = Default::default(); for cgu in codegen_units { for (&mono_item, &linkage) in cgu.items() { item_to_cgus.entry(mono_item).or_default().push((cgu.name(), linkage)); } } let mut item_keys: Vec<_> = items .iter() .map(|i| { let mut output = with_no_trimmed_paths!(i.to_string()); output.push_str(" @@"); let mut empty = Vec::new(); let cgus = item_to_cgus.get_mut(i).unwrap_or(&mut empty); cgus.sort_by_key(|(name, _)| *name); cgus.dedup(); for &(ref cgu_name, (linkage, _)) in cgus.iter() { output.push(' '); output.push_str(cgu_name.as_str()); let linkage_abbrev = match linkage { Linkage::External => "External", Linkage::AvailableExternally => "Available", Linkage::LinkOnceAny => "OnceAny", Linkage::LinkOnceODR => "OnceODR", Linkage::WeakAny => "WeakAny", Linkage::WeakODR => "WeakODR", Linkage::Appending => "Appending", Linkage::Internal => "Internal", Linkage::Private => "Private", Linkage::ExternalWeak => "ExternalWeak", Linkage::Common => "Common", }; output.push('['); output.push_str(linkage_abbrev); output.push(']'); } output }) .collect(); item_keys.sort(); for item in item_keys { println!("MONO_ITEM {item}"); } } (tcx.arena.alloc(mono_items), codegen_units) } /// Outputs stats about instantation counts and estimated size, per `MonoItem`'s /// def, to a file in the given output directory. fn dump_mono_items_stats<'tcx>( tcx: TyCtxt<'tcx>, codegen_units: &[CodegenUnit<'tcx>], output_directory: &Option, crate_name: Symbol, ) -> Result<(), Box> { let output_directory = if let Some(ref directory) = output_directory { fs::create_dir_all(directory)?; directory } else { Path::new(".") }; let format = tcx.sess.opts.unstable_opts.dump_mono_stats_format; let ext = format.extension(); let filename = format!("{crate_name}.mono_items.{ext}"); let output_path = output_directory.join(&filename); let file = File::create(&output_path)?; let mut file = BufWriter::new(file); // Gather instantiated mono items grouped by def_id let mut items_per_def_id: FxHashMap<_, Vec<_>> = Default::default(); for cgu in codegen_units { for (&mono_item, _) in cgu.items() { // Avoid variable-sized compiler-generated shims if mono_item.is_user_defined() { items_per_def_id.entry(mono_item.def_id()).or_default().push(mono_item); } } } #[derive(serde::Serialize)] struct MonoItem { name: String, instantiation_count: usize, size_estimate: usize, total_estimate: usize, } // Output stats sorted by total instantiated size, from heaviest to lightest let mut stats: Vec<_> = items_per_def_id .into_iter() .map(|(def_id, items)| { let name = with_no_trimmed_paths!(tcx.def_path_str(def_id)); let instantiation_count = items.len(); let size_estimate = items[0].size_estimate(tcx); let total_estimate = instantiation_count * size_estimate; MonoItem { name, instantiation_count, size_estimate, total_estimate } }) .collect(); stats.sort_unstable_by_key(|item| cmp::Reverse(item.total_estimate)); if !stats.is_empty() { match format { DumpMonoStatsFormat::Json => serde_json::to_writer(file, &stats)?, DumpMonoStatsFormat::Markdown => { writeln!( file, "| Item | Instantiation count | Estimated Cost Per Instantiation | Total Estimated Cost |" )?; writeln!(file, "| --- | ---: | ---: | ---: |")?; for MonoItem { name, instantiation_count, size_estimate, total_estimate } in stats { writeln!( file, "| `{name}` | {instantiation_count} | {size_estimate} | {total_estimate} |" )?; } } } } Ok(()) } fn codegened_and_inlined_items(tcx: TyCtxt<'_>, (): ()) -> &DefIdSet { let (items, cgus) = tcx.collect_and_partition_mono_items(()); let mut visited = DefIdSet::default(); let mut result = items.clone(); for cgu in cgus { for (item, _) in cgu.items() { if let MonoItem::Fn(ref instance) = item { let did = instance.def_id(); if !visited.insert(did) { continue; } let body = tcx.instance_mir(instance.def); for block in body.basic_blocks.iter() { for statement in &block.statements { let mir::StatementKind::Coverage(_) = statement.kind else { continue }; let scope = statement.source_info.scope; if let Some(inlined) = scope.inlined_instance(&body.source_scopes) { result.insert(inlined.def_id()); } } } } } } tcx.arena.alloc(result) } pub fn provide(providers: &mut Providers) { providers.collect_and_partition_mono_items = collect_and_partition_mono_items; providers.codegened_and_inlined_items = codegened_and_inlined_items; providers.is_codegened_item = |tcx, def_id| { let (all_mono_items, _) = tcx.collect_and_partition_mono_items(()); all_mono_items.contains(&def_id) }; providers.codegen_unit = |tcx, name| { let (_, all) = tcx.collect_and_partition_mono_items(()); all.iter() .find(|cgu| cgu.name() == name) .unwrap_or_else(|| panic!("failed to find cgu with name {name:?}")) }; }