#![doc(html_root_url = "https://doc.rust-lang.org/nightly/nightly-rustc/")] #![feature(associated_type_defaults)] #![feature(rustc_private)] #![feature(try_blocks)] #![feature(let_chains)] #![recursion_limit = "256"] #![deny(rustc::untranslatable_diagnostic)] #![deny(rustc::diagnostic_outside_of_impl)] #[macro_use] extern crate tracing; mod errors; use rustc_ast::MacroDef; use rustc_attr as attr; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::intern::Interned; use rustc_hir as hir; use rustc_hir::def::{DefKind, Res}; use rustc_hir::def_id::{DefId, LocalDefId, LocalDefIdSet, CRATE_DEF_ID}; use rustc_hir::intravisit::{self, Visitor}; use rustc_hir::{AssocItemKind, HirIdSet, ItemId, Node, PatKind}; use rustc_middle::bug; use rustc_middle::hir::nested_filter; use rustc_middle::middle::privacy::{EffectiveVisibilities, Level}; use rustc_middle::span_bug; use rustc_middle::ty::query::Providers; use rustc_middle::ty::subst::InternalSubsts; use rustc_middle::ty::{self, Const, DefIdTree, GenericParamDefKind}; use rustc_middle::ty::{TraitRef, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor}; use rustc_session::lint; use rustc_span::hygiene::Transparency; use rustc_span::symbol::{kw, sym, Ident}; use rustc_span::Span; use std::marker::PhantomData; use std::ops::ControlFlow; use std::{cmp, fmt, mem}; use errors::{ FieldIsPrivate, FieldIsPrivateLabel, FromPrivateDependencyInPublicInterface, InPublicInterface, InPublicInterfaceTraits, ItemIsPrivate, PrivateInPublicLint, ReportEffectiveVisibility, UnnamedItemIsPrivate, }; //////////////////////////////////////////////////////////////////////////////// /// Generic infrastructure used to implement specific visitors below. //////////////////////////////////////////////////////////////////////////////// /// Implemented to visit all `DefId`s in a type. /// Visiting `DefId`s is useful because visibilities and reachabilities are attached to them. /// The idea is to visit "all components of a type", as documented in /// . /// The default type visitor (`TypeVisitor`) does most of the job, but it has some shortcomings. /// First, it doesn't have overridable `fn visit_trait_ref`, so we have to catch trait `DefId`s /// manually. Second, it doesn't visit some type components like signatures of fn types, or traits /// in `impl Trait`, see individual comments in `DefIdVisitorSkeleton::visit_ty`. trait DefIdVisitor<'tcx> { type BreakTy = (); fn tcx(&self) -> TyCtxt<'tcx>; fn shallow(&self) -> bool { false } fn skip_assoc_tys(&self) -> bool { false } fn visit_def_id( &mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display, ) -> ControlFlow; /// Not overridden, but used to actually visit types and traits. fn skeleton(&mut self) -> DefIdVisitorSkeleton<'_, 'tcx, Self> { DefIdVisitorSkeleton { def_id_visitor: self, visited_opaque_tys: Default::default(), dummy: Default::default(), } } fn visit(&mut self, ty_fragment: impl TypeVisitable<'tcx>) -> ControlFlow { ty_fragment.visit_with(&mut self.skeleton()) } fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow { self.skeleton().visit_trait(trait_ref) } fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow { self.skeleton().visit_projection_ty(projection) } fn visit_predicates( &mut self, predicates: ty::GenericPredicates<'tcx>, ) -> ControlFlow { self.skeleton().visit_predicates(predicates) } } struct DefIdVisitorSkeleton<'v, 'tcx, V: ?Sized> { def_id_visitor: &'v mut V, visited_opaque_tys: FxHashSet, dummy: PhantomData>, } impl<'tcx, V> DefIdVisitorSkeleton<'_, 'tcx, V> where V: DefIdVisitor<'tcx> + ?Sized, { fn visit_trait(&mut self, trait_ref: TraitRef<'tcx>) -> ControlFlow { let TraitRef { def_id, substs, .. } = trait_ref; self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref.print_only_trait_path())?; if self.def_id_visitor.shallow() { ControlFlow::Continue(()) } else { substs.visit_with(self) } } fn visit_projection_ty(&mut self, projection: ty::AliasTy<'tcx>) -> ControlFlow { let tcx = self.def_id_visitor.tcx(); let (trait_ref, assoc_substs) = if tcx.def_kind(projection.def_id) != DefKind::ImplTraitPlaceholder { projection.trait_ref_and_own_substs(tcx) } else { // HACK(RPITIT): Remove this when RPITITs are lowered to regular assoc tys let def_id = tcx.impl_trait_in_trait_parent(projection.def_id); let trait_generics = tcx.generics_of(def_id); ( tcx.mk_trait_ref(def_id, projection.substs.truncate_to(tcx, trait_generics)), &projection.substs[trait_generics.count()..], ) }; self.visit_trait(trait_ref)?; if self.def_id_visitor.shallow() { ControlFlow::Continue(()) } else { assoc_substs.iter().try_for_each(|subst| subst.visit_with(self)) } } fn visit_predicate(&mut self, predicate: ty::Predicate<'tcx>) -> ControlFlow { match predicate.kind().skip_binder() { ty::PredicateKind::Clause(ty::Clause::Trait(ty::TraitPredicate { trait_ref, constness: _, polarity: _, })) => self.visit_trait(trait_ref), ty::PredicateKind::Clause(ty::Clause::Projection(ty::ProjectionPredicate { projection_ty, term, })) => { term.visit_with(self)?; self.visit_projection_ty(projection_ty) } ty::PredicateKind::Clause(ty::Clause::TypeOutlives(ty::OutlivesPredicate( ty, _region, ))) => ty.visit_with(self), ty::PredicateKind::Clause(ty::Clause::RegionOutlives(..)) => ControlFlow::Continue(()), ty::PredicateKind::ConstEvaluatable(ct) => ct.visit_with(self), ty::PredicateKind::WellFormed(arg) => arg.visit_with(self), _ => bug!("unexpected predicate: {:?}", predicate), } } fn visit_predicates( &mut self, predicates: ty::GenericPredicates<'tcx>, ) -> ControlFlow { let ty::GenericPredicates { parent: _, predicates } = predicates; predicates.iter().try_for_each(|&(predicate, _span)| self.visit_predicate(predicate)) } } impl<'tcx, V> TypeVisitor<'tcx> for DefIdVisitorSkeleton<'_, 'tcx, V> where V: DefIdVisitor<'tcx> + ?Sized, { type BreakTy = V::BreakTy; fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow { let tcx = self.def_id_visitor.tcx(); // InternalSubsts are not visited here because they are visited below // in `super_visit_with`. match *ty.kind() { ty::Adt(ty::AdtDef(Interned(&ty::AdtDefData { did: def_id, .. }, _)), ..) | ty::Foreign(def_id) | ty::FnDef(def_id, ..) | ty::Closure(def_id, ..) | ty::Generator(def_id, ..) => { self.def_id_visitor.visit_def_id(def_id, "type", &ty)?; if self.def_id_visitor.shallow() { return ControlFlow::Continue(()); } // Default type visitor doesn't visit signatures of fn types. // Something like `fn() -> Priv {my_func}` is considered a private type even if // `my_func` is public, so we need to visit signatures. if let ty::FnDef(..) = ty.kind() { tcx.fn_sig(def_id).visit_with(self)?; } // Inherent static methods don't have self type in substs. // Something like `fn() {my_method}` type of the method // `impl Pub { pub fn my_method() {} }` is considered a private type, // so we need to visit the self type additionally. if let Some(assoc_item) = tcx.opt_associated_item(def_id) { if let Some(impl_def_id) = assoc_item.impl_container(tcx) { tcx.type_of(impl_def_id).visit_with(self)?; } } } ty::Alias(ty::Projection, proj) => { if self.def_id_visitor.skip_assoc_tys() { // Visitors searching for minimal visibility/reachability want to // conservatively approximate associated types like `::Alias` // as visible/reachable even if both `Type` and `Trait` are private. // Ideally, associated types should be substituted in the same way as // free type aliases, but this isn't done yet. return ControlFlow::Continue(()); } // This will also visit substs if necessary, so we don't need to recurse. return self.visit_projection_ty(proj); } ty::Dynamic(predicates, ..) => { // All traits in the list are considered the "primary" part of the type // and are visited by shallow visitors. for predicate in predicates { let trait_ref = match predicate.skip_binder() { ty::ExistentialPredicate::Trait(trait_ref) => trait_ref, ty::ExistentialPredicate::Projection(proj) => proj.trait_ref(tcx), ty::ExistentialPredicate::AutoTrait(def_id) => { ty::ExistentialTraitRef { def_id, substs: InternalSubsts::empty() } } }; let ty::ExistentialTraitRef { def_id, substs: _ } = trait_ref; self.def_id_visitor.visit_def_id(def_id, "trait", &trait_ref)?; } } ty::Alias(ty::Opaque, ty::AliasTy { def_id, .. }) => { // Skip repeated `Opaque`s to avoid infinite recursion. if self.visited_opaque_tys.insert(def_id) { // The intent is to treat `impl Trait1 + Trait2` identically to // `dyn Trait1 + Trait2`. Therefore we ignore def-id of the opaque type itself // (it either has no visibility, or its visibility is insignificant, like // visibilities of type aliases) and recurse into bounds instead to go // through the trait list (default type visitor doesn't visit those traits). // All traits in the list are considered the "primary" part of the type // and are visited by shallow visitors. self.visit_predicates(ty::GenericPredicates { parent: None, predicates: tcx.explicit_item_bounds(def_id), })?; } } // These types don't have their own def-ids (but may have subcomponents // with def-ids that should be visited recursively). ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Str | ty::Never | ty::Array(..) | ty::Slice(..) | ty::Tuple(..) | ty::RawPtr(..) | ty::Ref(..) | ty::FnPtr(..) | ty::Param(..) | ty::Error(_) | ty::GeneratorWitness(..) => {} ty::Bound(..) | ty::Placeholder(..) | ty::Infer(..) => { bug!("unexpected type: {:?}", ty) } } if self.def_id_visitor.shallow() { ControlFlow::Continue(()) } else { ty.super_visit_with(self) } } fn visit_const(&mut self, c: Const<'tcx>) -> ControlFlow { let tcx = self.def_id_visitor.tcx(); tcx.expand_abstract_consts(c).super_visit_with(self) } } fn min(vis1: ty::Visibility, vis2: ty::Visibility, tcx: TyCtxt<'_>) -> ty::Visibility { if vis1.is_at_least(vis2, tcx) { vis2 } else { vis1 } } //////////////////////////////////////////////////////////////////////////////// /// Visitor used to determine impl visibility and reachability. //////////////////////////////////////////////////////////////////////////////// struct FindMin<'a, 'tcx, VL: VisibilityLike> { tcx: TyCtxt<'tcx>, effective_visibilities: &'a EffectiveVisibilities, min: VL, } impl<'a, 'tcx, VL: VisibilityLike> DefIdVisitor<'tcx> for FindMin<'a, 'tcx, VL> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn shallow(&self) -> bool { VL::SHALLOW } fn skip_assoc_tys(&self) -> bool { true } fn visit_def_id( &mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display, ) -> ControlFlow { if let Some(def_id) = def_id.as_local() { self.min = VL::new_min(self, def_id); } ControlFlow::Continue(()) } } trait VisibilityLike: Sized { const MAX: Self; const SHALLOW: bool = false; fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self; // Returns an over-approximation (`skip_assoc_tys` = true) of visibility due to // associated types for which we can't determine visibility precisely. fn of_impl( def_id: LocalDefId, tcx: TyCtxt<'_>, effective_visibilities: &EffectiveVisibilities, ) -> Self { let mut find = FindMin { tcx, effective_visibilities, min: Self::MAX }; find.visit(tcx.type_of(def_id)); if let Some(trait_ref) = tcx.impl_trait_ref(def_id) { find.visit_trait(trait_ref.subst_identity()); } find.min } } impl VisibilityLike for ty::Visibility { const MAX: Self = ty::Visibility::Public; fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self { min(find.tcx.local_visibility(def_id), find.min, find.tcx) } } impl VisibilityLike for Option { const MAX: Self = Some(Level::Direct); // Type inference is very smart sometimes. // It can make an impl reachable even some components of its type or trait are unreachable. // E.g. methods of `impl ReachableTrait for ReachableTy { ... }` // can be usable from other crates (#57264). So we skip substs when calculating reachability // and consider an impl reachable if its "shallow" type and trait are reachable. // // The assumption we make here is that type-inference won't let you use an impl without knowing // both "shallow" version of its self type and "shallow" version of its trait if it exists // (which require reaching the `DefId`s in them). const SHALLOW: bool = true; fn new_min(find: &FindMin<'_, '_, Self>, def_id: LocalDefId) -> Self { cmp::min(find.effective_visibilities.public_at_level(def_id), find.min) } } //////////////////////////////////////////////////////////////////////////////// /// The embargo visitor, used to determine the exports of the AST. //////////////////////////////////////////////////////////////////////////////// struct EmbargoVisitor<'tcx> { tcx: TyCtxt<'tcx>, /// Effective visibilities for reachable nodes. effective_visibilities: EffectiveVisibilities, /// A set of pairs corresponding to modules, where the first module is /// reachable via a macro that's defined in the second module. This cannot /// be represented as reachable because it can't handle the following case: /// /// pub mod n { // Should be `Public` /// pub(crate) mod p { // Should *not* be accessible /// pub fn f() -> i32 { 12 } // Must be `Reachable` /// } /// } /// pub macro m() { /// n::p::f() /// } macro_reachable: FxHashSet<(LocalDefId, LocalDefId)>, /// Previous visibility level; `None` means unreachable. prev_level: Option, /// Has something changed in the level map? changed: bool, } struct ReachEverythingInTheInterfaceVisitor<'a, 'tcx> { level: Option, item_def_id: LocalDefId, ev: &'a mut EmbargoVisitor<'tcx>, } impl<'tcx> EmbargoVisitor<'tcx> { fn get(&self, def_id: LocalDefId) -> Option { self.effective_visibilities.public_at_level(def_id) } /// Updates node level and returns the updated level. fn update(&mut self, def_id: LocalDefId, level: Option) -> Option { let old_level = self.get(def_id); // Visibility levels can only grow. if level > old_level { self.effective_visibilities.set_public_at_level( def_id, || ty::Visibility::Restricted(self.tcx.parent_module_from_def_id(def_id)), level.unwrap(), ); self.changed = true; level } else { old_level } } fn reach( &mut self, def_id: LocalDefId, level: Option, ) -> ReachEverythingInTheInterfaceVisitor<'_, 'tcx> { ReachEverythingInTheInterfaceVisitor { level: cmp::min(level, Some(Level::Reachable)), item_def_id: def_id, ev: self, } } // We have to make sure that the items that macros might reference // are reachable, since they might be exported transitively. fn update_reachability_from_macro(&mut self, local_def_id: LocalDefId, md: &MacroDef) { // Non-opaque macros cannot make other items more accessible than they already are. let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id); let attrs = self.tcx.hir().attrs(hir_id); if attr::find_transparency(attrs, md.macro_rules).0 != Transparency::Opaque { return; } let macro_module_def_id = self.tcx.local_parent(local_def_id); if self.tcx.opt_def_kind(macro_module_def_id) != Some(DefKind::Mod) { // The macro's parent doesn't correspond to a `mod`, return early (#63164, #65252). return; } if self.get(local_def_id).is_none() { return; } // Since we are starting from an externally visible module, // all the parents in the loop below are also guaranteed to be modules. let mut module_def_id = macro_module_def_id; loop { let changed_reachability = self.update_macro_reachable(module_def_id, macro_module_def_id); if changed_reachability || module_def_id == CRATE_DEF_ID { break; } module_def_id = self.tcx.local_parent(module_def_id); } } /// Updates the item as being reachable through a macro defined in the given /// module. Returns `true` if the level has changed. fn update_macro_reachable( &mut self, module_def_id: LocalDefId, defining_mod: LocalDefId, ) -> bool { if self.macro_reachable.insert((module_def_id, defining_mod)) { self.update_macro_reachable_mod(module_def_id, defining_mod); true } else { false } } fn update_macro_reachable_mod(&mut self, module_def_id: LocalDefId, defining_mod: LocalDefId) { let module = self.tcx.hir().get_module(module_def_id).0; for item_id in module.item_ids { let def_kind = self.tcx.def_kind(item_id.owner_id); let vis = self.tcx.local_visibility(item_id.owner_id.def_id); self.update_macro_reachable_def(item_id.owner_id.def_id, def_kind, vis, defining_mod); } if let Some(exports) = self.tcx.module_reexports(module_def_id) { for export in exports { if export.vis.is_accessible_from(defining_mod, self.tcx) { if let Res::Def(def_kind, def_id) = export.res { if let Some(def_id) = def_id.as_local() { let vis = self.tcx.local_visibility(def_id); self.update_macro_reachable_def(def_id, def_kind, vis, defining_mod); } } } } } } fn update_macro_reachable_def( &mut self, def_id: LocalDefId, def_kind: DefKind, vis: ty::Visibility, module: LocalDefId, ) { let level = Some(Level::Reachable); if vis.is_public() { self.update(def_id, level); } match def_kind { // No type privacy, so can be directly marked as reachable. DefKind::Const | DefKind::Static(_) | DefKind::TraitAlias | DefKind::TyAlias => { if vis.is_accessible_from(module, self.tcx) { self.update(def_id, level); } } // Hygiene isn't really implemented for `macro_rules!` macros at the // moment. Accordingly, marking them as reachable is unwise. `macro` macros // have normal hygiene, so we can treat them like other items without type // privacy and mark them reachable. DefKind::Macro(_) => { let item = self.tcx.hir().expect_item(def_id); if let hir::ItemKind::Macro(MacroDef { macro_rules: false, .. }, _) = item.kind { if vis.is_accessible_from(module, self.tcx) { self.update(def_id, level); } } } // We can't use a module name as the final segment of a path, except // in use statements. Since re-export checking doesn't consider // hygiene these don't need to be marked reachable. The contents of // the module, however may be reachable. DefKind::Mod => { if vis.is_accessible_from(module, self.tcx) { self.update_macro_reachable(def_id, module); } } DefKind::Struct | DefKind::Union => { // While structs and unions have type privacy, their fields do not. if vis.is_public() { let item = self.tcx.hir().expect_item(def_id); if let hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) = item.kind { for field in struct_def.fields() { let field_vis = self.tcx.local_visibility(field.def_id); if field_vis.is_accessible_from(module, self.tcx) { self.reach(field.def_id, level).ty(); } } } else { bug!("item {:?} with DefKind {:?}", item, def_kind); } } } // These have type privacy, so are not reachable unless they're // public, or are not namespaced at all. DefKind::AssocConst | DefKind::AssocTy | DefKind::ConstParam | DefKind::Ctor(_, _) | DefKind::Enum | DefKind::ForeignTy | DefKind::Fn | DefKind::OpaqueTy | DefKind::ImplTraitPlaceholder | DefKind::AssocFn | DefKind::Trait | DefKind::TyParam | DefKind::Variant | DefKind::LifetimeParam | DefKind::ExternCrate | DefKind::Use | DefKind::ForeignMod | DefKind::AnonConst | DefKind::InlineConst | DefKind::Field | DefKind::GlobalAsm | DefKind::Impl | DefKind::Closure | DefKind::Generator => (), } } } impl<'tcx> Visitor<'tcx> for EmbargoVisitor<'tcx> { type NestedFilter = nested_filter::All; /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map(&mut self) -> Self::Map { self.tcx.hir() } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { let item_level = match item.kind { hir::ItemKind::Impl { .. } => { let impl_level = Option::::of_impl( item.owner_id.def_id, self.tcx, &self.effective_visibilities, ); self.update(item.owner_id.def_id, impl_level) } _ => self.get(item.owner_id.def_id), }; // Update levels of nested things. match item.kind { hir::ItemKind::Enum(ref def, _) => { for variant in def.variants { let variant_level = self.update(variant.def_id, item_level); if let Some(ctor_def_id) = variant.data.ctor_def_id() { self.update(ctor_def_id, item_level); } for field in variant.data.fields() { self.update(field.def_id, variant_level); } } } hir::ItemKind::Impl(ref impl_) => { for impl_item_ref in impl_.items { if impl_.of_trait.is_some() || self.tcx.visibility(impl_item_ref.id.owner_id).is_public() { self.update(impl_item_ref.id.owner_id.def_id, item_level); } } } hir::ItemKind::Trait(.., trait_item_refs) => { for trait_item_ref in trait_item_refs { self.update(trait_item_ref.id.owner_id.def_id, item_level); } } hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => { if let Some(ctor_def_id) = def.ctor_def_id() { self.update(ctor_def_id, item_level); } for field in def.fields() { let vis = self.tcx.visibility(field.def_id); if vis.is_public() { self.update(field.def_id, item_level); } } } hir::ItemKind::Macro(ref macro_def, _) => { self.update_reachability_from_macro(item.owner_id.def_id, macro_def); } hir::ItemKind::ForeignMod { items, .. } => { for foreign_item in items { if self.tcx.visibility(foreign_item.id.owner_id).is_public() { self.update(foreign_item.id.owner_id.def_id, item_level); } } } hir::ItemKind::OpaqueTy(..) | hir::ItemKind::Use(..) | hir::ItemKind::Static(..) | hir::ItemKind::Const(..) | hir::ItemKind::GlobalAsm(..) | hir::ItemKind::TyAlias(..) | hir::ItemKind::Mod(..) | hir::ItemKind::TraitAlias(..) | hir::ItemKind::Fn(..) | hir::ItemKind::ExternCrate(..) => {} } // Mark all items in interfaces of reachable items as reachable. match item.kind { // The interface is empty. hir::ItemKind::Macro(..) | hir::ItemKind::ExternCrate(..) => {} // All nested items are checked by `visit_item`. hir::ItemKind::Mod(..) => {} // Handled in `rustc_resolve`. hir::ItemKind::Use(..) => {} // The interface is empty. hir::ItemKind::GlobalAsm(..) => {} hir::ItemKind::OpaqueTy(ref opaque) => { // HACK(jynelson): trying to infer the type of `impl trait` breaks `async-std` (and `pub async fn` in general) // Since rustdoc never needs to do codegen and doesn't care about link-time reachability, // mark this as unreachable. // See https://github.com/rust-lang/rust/issues/75100 if !opaque.in_trait && !self.tcx.sess.opts.actually_rustdoc { // FIXME: This is some serious pessimization intended to workaround deficiencies // in the reachability pass (`middle/reachable.rs`). Types are marked as link-time // reachable if they are returned via `impl Trait`, even from private functions. let exist_level = cmp::max(item_level, Some(Level::ReachableThroughImplTrait)); self.reach(item.owner_id.def_id, exist_level).generics().predicates().ty(); } } // Visit everything. hir::ItemKind::Const(..) | hir::ItemKind::Static(..) | hir::ItemKind::Fn(..) | hir::ItemKind::TyAlias(..) => { if item_level.is_some() { self.reach(item.owner_id.def_id, item_level).generics().predicates().ty(); } } hir::ItemKind::Trait(.., trait_item_refs) => { if item_level.is_some() { self.reach(item.owner_id.def_id, item_level).generics().predicates(); for trait_item_ref in trait_item_refs { let tcx = self.tcx; let mut reach = self.reach(trait_item_ref.id.owner_id.def_id, item_level); reach.generics().predicates(); if trait_item_ref.kind == AssocItemKind::Type && !tcx.impl_defaultness(trait_item_ref.id.owner_id).has_value() { // No type to visit. } else { reach.ty(); } } } } hir::ItemKind::TraitAlias(..) => { if item_level.is_some() { self.reach(item.owner_id.def_id, item_level).generics().predicates(); } } // Visit everything except for private impl items. hir::ItemKind::Impl(ref impl_) => { if item_level.is_some() { self.reach(item.owner_id.def_id, item_level) .generics() .predicates() .ty() .trait_ref(); for impl_item_ref in impl_.items { let impl_item_level = self.get(impl_item_ref.id.owner_id.def_id); if impl_item_level.is_some() { self.reach(impl_item_ref.id.owner_id.def_id, impl_item_level) .generics() .predicates() .ty(); } } } } // Visit everything, but enum variants have their own levels. hir::ItemKind::Enum(ref def, _) => { if item_level.is_some() { self.reach(item.owner_id.def_id, item_level).generics().predicates(); } for variant in def.variants { let variant_level = self.get(variant.def_id); if variant_level.is_some() { for field in variant.data.fields() { self.reach(field.def_id, variant_level).ty(); } // Corner case: if the variant is reachable, but its // enum is not, make the enum reachable as well. self.reach(item.owner_id.def_id, variant_level).ty(); } if let Some(ctor_def_id) = variant.data.ctor_def_id() { let ctor_level = self.get(ctor_def_id); if ctor_level.is_some() { self.reach(item.owner_id.def_id, ctor_level).ty(); } } } } // Visit everything, but foreign items have their own levels. hir::ItemKind::ForeignMod { items, .. } => { for foreign_item in items { let foreign_item_level = self.get(foreign_item.id.owner_id.def_id); if foreign_item_level.is_some() { self.reach(foreign_item.id.owner_id.def_id, foreign_item_level) .generics() .predicates() .ty(); } } } // Visit everything except for private fields. hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) => { if item_level.is_some() { self.reach(item.owner_id.def_id, item_level).generics().predicates(); for field in struct_def.fields() { let field_level = self.get(field.def_id); if field_level.is_some() { self.reach(field.def_id, field_level).ty(); } } } if let Some(ctor_def_id) = struct_def.ctor_def_id() { let ctor_level = self.get(ctor_def_id); if ctor_level.is_some() { self.reach(item.owner_id.def_id, ctor_level).ty(); } } } } let orig_level = mem::replace(&mut self.prev_level, item_level); intravisit::walk_item(self, item); self.prev_level = orig_level; } fn visit_block(&mut self, b: &'tcx hir::Block<'tcx>) { // Blocks can have public items, for example impls, but they always // start as completely private regardless of publicity of a function, // constant, type, field, etc., in which this block resides. let orig_level = mem::replace(&mut self.prev_level, None); intravisit::walk_block(self, b); self.prev_level = orig_level; } } impl ReachEverythingInTheInterfaceVisitor<'_, '_> { fn generics(&mut self) -> &mut Self { for param in &self.ev.tcx.generics_of(self.item_def_id).params { match param.kind { GenericParamDefKind::Lifetime => {} GenericParamDefKind::Type { has_default, .. } => { if has_default { self.visit(self.ev.tcx.type_of(param.def_id)); } } GenericParamDefKind::Const { has_default } => { self.visit(self.ev.tcx.type_of(param.def_id)); if has_default { self.visit(self.ev.tcx.const_param_default(param.def_id).subst_identity()); } } } } self } fn predicates(&mut self) -> &mut Self { self.visit_predicates(self.ev.tcx.predicates_of(self.item_def_id)); self } fn ty(&mut self) -> &mut Self { self.visit(self.ev.tcx.type_of(self.item_def_id)); self } fn trait_ref(&mut self) -> &mut Self { if let Some(trait_ref) = self.ev.tcx.impl_trait_ref(self.item_def_id) { self.visit_trait(trait_ref.subst_identity()); } self } } impl<'tcx> DefIdVisitor<'tcx> for ReachEverythingInTheInterfaceVisitor<'_, 'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.ev.tcx } fn visit_def_id( &mut self, def_id: DefId, _kind: &str, _descr: &dyn fmt::Display, ) -> ControlFlow { if let Some(def_id) = def_id.as_local() { if let (ty::Visibility::Public, _) | (_, Some(Level::ReachableThroughImplTrait)) = (self.tcx().visibility(def_id.to_def_id()), self.level) { self.ev.update(def_id, self.level); } } ControlFlow::Continue(()) } } //////////////////////////////////////////////////////////////////////////////// /// Visitor, used for EffectiveVisibilities table checking //////////////////////////////////////////////////////////////////////////////// pub struct TestReachabilityVisitor<'tcx, 'a> { tcx: TyCtxt<'tcx>, effective_visibilities: &'a EffectiveVisibilities, } impl<'tcx, 'a> TestReachabilityVisitor<'tcx, 'a> { fn effective_visibility_diagnostic(&mut self, def_id: LocalDefId) { if self.tcx.has_attr(def_id.to_def_id(), sym::rustc_effective_visibility) { let mut error_msg = String::new(); let span = self.tcx.def_span(def_id.to_def_id()); if let Some(effective_vis) = self.effective_visibilities.effective_vis(def_id) { for level in Level::all_levels() { let vis_str = match effective_vis.at_level(level) { ty::Visibility::Restricted(restricted_id) => { if restricted_id.is_top_level_module() { "pub(crate)".to_string() } else if *restricted_id == self.tcx.parent_module_from_def_id(def_id) { "pub(self)".to_string() } else { format!("pub({})", self.tcx.item_name(restricted_id.to_def_id())) } } ty::Visibility::Public => "pub".to_string(), }; if level != Level::Direct { error_msg.push_str(", "); } error_msg.push_str(&format!("{level:?}: {vis_str}")); } } else { error_msg.push_str("not in the table"); } self.tcx.sess.emit_err(ReportEffectiveVisibility { span, descr: error_msg }); } } } impl<'tcx, 'a> Visitor<'tcx> for TestReachabilityVisitor<'tcx, 'a> { fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { self.effective_visibility_diagnostic(item.owner_id.def_id); match item.kind { hir::ItemKind::Enum(ref def, _) => { for variant in def.variants.iter() { self.effective_visibility_diagnostic(variant.def_id); if let Some(ctor_def_id) = variant.data.ctor_def_id() { self.effective_visibility_diagnostic(ctor_def_id); } for field in variant.data.fields() { self.effective_visibility_diagnostic(field.def_id); } } } hir::ItemKind::Struct(ref def, _) | hir::ItemKind::Union(ref def, _) => { if let Some(ctor_def_id) = def.ctor_def_id() { self.effective_visibility_diagnostic(ctor_def_id); } for field in def.fields() { self.effective_visibility_diagnostic(field.def_id); } } _ => {} } } fn visit_trait_item(&mut self, item: &'tcx hir::TraitItem<'tcx>) { self.effective_visibility_diagnostic(item.owner_id.def_id); } fn visit_impl_item(&mut self, item: &'tcx hir::ImplItem<'tcx>) { self.effective_visibility_diagnostic(item.owner_id.def_id); } fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) { self.effective_visibility_diagnostic(item.owner_id.def_id); } } ////////////////////////////////////////////////////////////////////////////////////// /// Name privacy visitor, checks privacy and reports violations. /// Most of name privacy checks are performed during the main resolution phase, /// or later in type checking when field accesses and associated items are resolved. /// This pass performs remaining checks for fields in struct expressions and patterns. ////////////////////////////////////////////////////////////////////////////////////// struct NamePrivacyVisitor<'tcx> { tcx: TyCtxt<'tcx>, maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>, current_item: LocalDefId, } impl<'tcx> NamePrivacyVisitor<'tcx> { /// Gets the type-checking results for the current body. /// As this will ICE if called outside bodies, only call when working with /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies). #[track_caller] fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> { self.maybe_typeck_results .expect("`NamePrivacyVisitor::typeck_results` called outside of body") } // Checks that a field in a struct constructor (expression or pattern) is accessible. fn check_field( &mut self, use_ctxt: Span, // syntax context of the field name at the use site span: Span, // span of the field pattern, e.g., `x: 0` def: ty::AdtDef<'tcx>, // definition of the struct or enum field: &'tcx ty::FieldDef, in_update_syntax: bool, ) { if def.is_enum() { return; } // definition of the field let ident = Ident::new(kw::Empty, use_ctxt); let hir_id = self.tcx.hir().local_def_id_to_hir_id(self.current_item); let def_id = self.tcx.adjust_ident_and_get_scope(ident, def.did(), hir_id).1; if !field.vis.is_accessible_from(def_id, self.tcx) { self.tcx.sess.emit_err(FieldIsPrivate { span, field_name: field.name, variant_descr: def.variant_descr(), def_path_str: self.tcx.def_path_str(def.did()), label: if in_update_syntax { FieldIsPrivateLabel::IsUpdateSyntax { span, field_name: field.name } } else { FieldIsPrivateLabel::Other { span } }, }); } } } impl<'tcx> Visitor<'tcx> for NamePrivacyVisitor<'tcx> { type NestedFilter = nested_filter::All; /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map(&mut self) -> Self::Map { self.tcx.hir() } fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) { // Don't visit nested modules, since we run a separate visitor walk // for each module in `effective_visibilities` } fn visit_nested_body(&mut self, body: hir::BodyId) { let old_maybe_typeck_results = self.maybe_typeck_results.replace(self.tcx.typeck_body(body)); let body = self.tcx.hir().body(body); self.visit_body(body); self.maybe_typeck_results = old_maybe_typeck_results; } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id); intravisit::walk_item(self, item); self.current_item = orig_current_item; } fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) { if let hir::ExprKind::Struct(qpath, fields, ref base) = expr.kind { let res = self.typeck_results().qpath_res(qpath, expr.hir_id); let adt = self.typeck_results().expr_ty(expr).ty_adt_def().unwrap(); let variant = adt.variant_of_res(res); if let Some(base) = *base { // If the expression uses FRU we need to make sure all the unmentioned fields // are checked for privacy (RFC 736). Rather than computing the set of // unmentioned fields, just check them all. for (vf_index, variant_field) in variant.fields.iter().enumerate() { let field = fields .iter() .find(|f| self.typeck_results().field_index(f.hir_id) == vf_index); let (use_ctxt, span) = match field { Some(field) => (field.ident.span, field.span), None => (base.span, base.span), }; self.check_field(use_ctxt, span, adt, variant_field, true); } } else { for field in fields { let use_ctxt = field.ident.span; let index = self.typeck_results().field_index(field.hir_id); self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false); } } } intravisit::walk_expr(self, expr); } fn visit_pat(&mut self, pat: &'tcx hir::Pat<'tcx>) { if let PatKind::Struct(ref qpath, fields, _) = pat.kind { let res = self.typeck_results().qpath_res(qpath, pat.hir_id); let adt = self.typeck_results().pat_ty(pat).ty_adt_def().unwrap(); let variant = adt.variant_of_res(res); for field in fields { let use_ctxt = field.ident.span; let index = self.typeck_results().field_index(field.hir_id); self.check_field(use_ctxt, field.span, adt, &variant.fields[index], false); } } intravisit::walk_pat(self, pat); } } //////////////////////////////////////////////////////////////////////////////////////////// /// Type privacy visitor, checks types for privacy and reports violations. /// Both explicitly written types and inferred types of expressions and patterns are checked. /// Checks are performed on "semantic" types regardless of names and their hygiene. //////////////////////////////////////////////////////////////////////////////////////////// struct TypePrivacyVisitor<'tcx> { tcx: TyCtxt<'tcx>, maybe_typeck_results: Option<&'tcx ty::TypeckResults<'tcx>>, current_item: LocalDefId, span: Span, } impl<'tcx> TypePrivacyVisitor<'tcx> { /// Gets the type-checking results for the current body. /// As this will ICE if called outside bodies, only call when working with /// `Expr` or `Pat` nodes (they are guaranteed to be found only in bodies). #[track_caller] fn typeck_results(&self) -> &'tcx ty::TypeckResults<'tcx> { self.maybe_typeck_results .expect("`TypePrivacyVisitor::typeck_results` called outside of body") } fn item_is_accessible(&self, did: DefId) -> bool { self.tcx.visibility(did).is_accessible_from(self.current_item, self.tcx) } // Take node-id of an expression or pattern and check its type for privacy. fn check_expr_pat_type(&mut self, id: hir::HirId, span: Span) -> bool { self.span = span; let typeck_results = self.typeck_results(); let result: ControlFlow<()> = try { self.visit(typeck_results.node_type(id))?; self.visit(typeck_results.node_substs(id))?; if let Some(adjustments) = typeck_results.adjustments().get(id) { adjustments.iter().try_for_each(|adjustment| self.visit(adjustment.target))?; } }; result.is_break() } fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { let is_error = !self.item_is_accessible(def_id); if is_error { self.tcx.sess.emit_err(ItemIsPrivate { span: self.span, kind, descr: descr.into() }); } is_error } } impl<'tcx> Visitor<'tcx> for TypePrivacyVisitor<'tcx> { type NestedFilter = nested_filter::All; /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map(&mut self) -> Self::Map { self.tcx.hir() } fn visit_mod(&mut self, _m: &'tcx hir::Mod<'tcx>, _s: Span, _n: hir::HirId) { // Don't visit nested modules, since we run a separate visitor walk // for each module in `effective_visibilities` } fn visit_nested_body(&mut self, body: hir::BodyId) { let old_maybe_typeck_results = self.maybe_typeck_results.replace(self.tcx.typeck_body(body)); let body = self.tcx.hir().body(body); self.visit_body(body); self.maybe_typeck_results = old_maybe_typeck_results; } fn visit_generic_arg(&mut self, generic_arg: &'tcx hir::GenericArg<'tcx>) { match generic_arg { hir::GenericArg::Type(t) => self.visit_ty(t), hir::GenericArg::Infer(inf) => self.visit_infer(inf), hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {} } } fn visit_ty(&mut self, hir_ty: &'tcx hir::Ty<'tcx>) { self.span = hir_ty.span; if let Some(typeck_results) = self.maybe_typeck_results { // Types in bodies. if self.visit(typeck_results.node_type(hir_ty.hir_id)).is_break() { return; } } else { // Types in signatures. // FIXME: This is very ineffective. Ideally each HIR type should be converted // into a semantic type only once and the result should be cached somehow. if self.visit(rustc_hir_analysis::hir_ty_to_ty(self.tcx, hir_ty)).is_break() { return; } } intravisit::walk_ty(self, hir_ty); } fn visit_infer(&mut self, inf: &'tcx hir::InferArg) { self.span = inf.span; if let Some(typeck_results) = self.maybe_typeck_results { if let Some(ty) = typeck_results.node_type_opt(inf.hir_id) { if self.visit(ty).is_break() { return; } } else { // We don't do anything for const infers here. } } else { bug!("visit_infer without typeck_results"); } intravisit::walk_inf(self, inf); } fn visit_trait_ref(&mut self, trait_ref: &'tcx hir::TraitRef<'tcx>) { self.span = trait_ref.path.span; if self.maybe_typeck_results.is_none() { // Avoid calling `hir_trait_to_predicates` in bodies, it will ICE. // The traits' privacy in bodies is already checked as a part of trait object types. let bounds = rustc_hir_analysis::hir_trait_to_predicates( self.tcx, trait_ref, // NOTE: This isn't really right, but the actual type doesn't matter here. It's // just required by `ty::TraitRef`. self.tcx.types.never, ); for (pred, _) in bounds.predicates() { match pred.kind().skip_binder() { ty::PredicateKind::Clause(ty::Clause::Trait(trait_predicate)) => { if self.visit_trait(trait_predicate.trait_ref).is_break() { return; } } ty::PredicateKind::Clause(ty::Clause::Projection(proj_predicate)) => { let term = self.visit(proj_predicate.term); if term.is_break() || self.visit_projection_ty(proj_predicate.projection_ty).is_break() { return; } } _ => {} } } } intravisit::walk_trait_ref(self, trait_ref); } // Check types of expressions fn visit_expr(&mut self, expr: &'tcx hir::Expr<'tcx>) { if self.check_expr_pat_type(expr.hir_id, expr.span) { // Do not check nested expressions if the error already happened. return; } match expr.kind { hir::ExprKind::Assign(_, rhs, _) | hir::ExprKind::Match(rhs, ..) => { // Do not report duplicate errors for `x = y` and `match x { ... }`. if self.check_expr_pat_type(rhs.hir_id, rhs.span) { return; } } hir::ExprKind::MethodCall(segment, ..) => { // Method calls have to be checked specially. self.span = segment.ident.span; if let Some(def_id) = self.typeck_results().type_dependent_def_id(expr.hir_id) { if self.visit(self.tcx.type_of(def_id)).is_break() { return; } } else { self.tcx .sess .delay_span_bug(expr.span, "no type-dependent def for method call"); } } _ => {} } intravisit::walk_expr(self, expr); } // Prohibit access to associated items with insufficient nominal visibility. // // Additionally, until better reachability analysis for macros 2.0 is available, // we prohibit access to private statics from other crates, this allows to give // more code internal visibility at link time. (Access to private functions // is already prohibited by type privacy for function types.) fn visit_qpath(&mut self, qpath: &'tcx hir::QPath<'tcx>, id: hir::HirId, span: Span) { let def = match qpath { hir::QPath::Resolved(_, path) => match path.res { Res::Def(kind, def_id) => Some((kind, def_id)), _ => None, }, hir::QPath::TypeRelative(..) | hir::QPath::LangItem(..) => self .maybe_typeck_results .and_then(|typeck_results| typeck_results.type_dependent_def(id)), }; let def = def.filter(|(kind, _)| { matches!( kind, DefKind::AssocFn | DefKind::AssocConst | DefKind::AssocTy | DefKind::Static(_) ) }); if let Some((kind, def_id)) = def { let is_local_static = if let DefKind::Static(_) = kind { def_id.is_local() } else { false }; if !self.item_is_accessible(def_id) && !is_local_static { let name = match *qpath { hir::QPath::LangItem(it, ..) => { self.tcx.lang_items().get(it).map(|did| self.tcx.def_path_str(did)) } hir::QPath::Resolved(_, path) => Some(self.tcx.def_path_str(path.res.def_id())), hir::QPath::TypeRelative(_, segment) => Some(segment.ident.to_string()), }; let kind = kind.descr(def_id); let sess = self.tcx.sess; let _ = match name { Some(name) => { sess.emit_err(ItemIsPrivate { span, kind, descr: (&name).into() }) } None => sess.emit_err(UnnamedItemIsPrivate { span, kind }), }; return; } } intravisit::walk_qpath(self, qpath, id); } // Check types of patterns. fn visit_pat(&mut self, pattern: &'tcx hir::Pat<'tcx>) { if self.check_expr_pat_type(pattern.hir_id, pattern.span) { // Do not check nested patterns if the error already happened. return; } intravisit::walk_pat(self, pattern); } fn visit_local(&mut self, local: &'tcx hir::Local<'tcx>) { if let Some(init) = local.init { if self.check_expr_pat_type(init.hir_id, init.span) { // Do not report duplicate errors for `let x = y`. return; } } intravisit::walk_local(self, local); } // Check types in item interfaces. fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { let orig_current_item = mem::replace(&mut self.current_item, item.owner_id.def_id); let old_maybe_typeck_results = self.maybe_typeck_results.take(); intravisit::walk_item(self, item); self.maybe_typeck_results = old_maybe_typeck_results; self.current_item = orig_current_item; } } impl<'tcx> DefIdVisitor<'tcx> for TypePrivacyVisitor<'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_def_id( &mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display, ) -> ControlFlow { if self.check_def_id(def_id, kind, descr) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) } } } /////////////////////////////////////////////////////////////////////////////// /// Obsolete visitors for checking for private items in public interfaces. /// These visitors are supposed to be kept in frozen state and produce an /// "old error node set". For backward compatibility the new visitor reports /// warnings instead of hard errors when the erroneous node is not in this old set. /////////////////////////////////////////////////////////////////////////////// struct ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { tcx: TyCtxt<'tcx>, effective_visibilities: &'a EffectiveVisibilities, in_variant: bool, // Set of errors produced by this obsolete visitor. old_error_set: HirIdSet, } struct ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> { inner: &'a ObsoleteVisiblePrivateTypesVisitor<'b, 'tcx>, /// Whether the type refers to private types. contains_private: bool, /// Whether we've recurred at all (i.e., if we're pointing at the /// first type on which `visit_ty` was called). at_outer_type: bool, /// Whether that first type is a public path. outer_type_is_public_path: bool, } impl<'a, 'tcx> ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { fn path_is_private_type(&self, path: &hir::Path<'_>) -> bool { let did = match path.res { Res::PrimTy(..) | Res::SelfTyParam { .. } | Res::SelfTyAlias { .. } | Res::Err => { return false; } res => res.def_id(), }; // A path can only be private if: // it's in this crate... if let Some(did) = did.as_local() { // .. and it corresponds to a private type in the AST (this returns // `None` for type parameters). match self.tcx.hir().find(self.tcx.hir().local_def_id_to_hir_id(did)) { Some(Node::Item(_)) => !self.tcx.visibility(did).is_public(), Some(_) | None => false, } } else { false } } fn trait_is_public(&self, trait_id: LocalDefId) -> bool { // FIXME: this would preferably be using `exported_items`, but all // traits are exported currently (see `EmbargoVisitor.exported_trait`). self.effective_visibilities.is_directly_public(trait_id) } fn check_generic_bound(&mut self, bound: &hir::GenericBound<'_>) { if let hir::GenericBound::Trait(ref trait_ref, _) = *bound { if self.path_is_private_type(trait_ref.trait_ref.path) { self.old_error_set.insert(trait_ref.trait_ref.hir_ref_id); } } } fn item_is_public(&self, def_id: LocalDefId) -> bool { self.effective_visibilities.is_reachable(def_id) || self.tcx.visibility(def_id).is_public() } } impl<'a, 'b, 'tcx, 'v> Visitor<'v> for ObsoleteCheckTypeForPrivatenessVisitor<'a, 'b, 'tcx> { fn visit_generic_arg(&mut self, generic_arg: &'v hir::GenericArg<'v>) { match generic_arg { hir::GenericArg::Type(t) => self.visit_ty(t), hir::GenericArg::Infer(inf) => self.visit_ty(&inf.to_ty()), hir::GenericArg::Lifetime(_) | hir::GenericArg::Const(_) => {} } } fn visit_ty(&mut self, ty: &hir::Ty<'_>) { if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = ty.kind { if self.inner.path_is_private_type(path) { self.contains_private = true; // Found what we're looking for, so let's stop working. return; } } if let hir::TyKind::Path(_) = ty.kind { if self.at_outer_type { self.outer_type_is_public_path = true; } } self.at_outer_type = false; intravisit::walk_ty(self, ty) } // Don't want to recurse into `[, .. expr]`. fn visit_expr(&mut self, _: &hir::Expr<'_>) {} } impl<'a, 'tcx> Visitor<'tcx> for ObsoleteVisiblePrivateTypesVisitor<'a, 'tcx> { type NestedFilter = nested_filter::All; /// We want to visit items in the context of their containing /// module and so forth, so supply a crate for doing a deep walk. fn nested_visit_map(&mut self) -> Self::Map { self.tcx.hir() } fn visit_item(&mut self, item: &'tcx hir::Item<'tcx>) { match item.kind { // Contents of a private mod can be re-exported, so we need // to check internals. hir::ItemKind::Mod(_) => {} // An `extern {}` doesn't introduce a new privacy // namespace (the contents have their own privacies). hir::ItemKind::ForeignMod { .. } => {} hir::ItemKind::Trait(.., bounds, _) => { if !self.trait_is_public(item.owner_id.def_id) { return; } for bound in bounds.iter() { self.check_generic_bound(bound) } } // Impls need some special handling to try to offer useful // error messages without (too many) false positives // (i.e., we could just return here to not check them at // all, or some worse estimation of whether an impl is // publicly visible). hir::ItemKind::Impl(ref impl_) => { // `impl [... for] Private` is never visible. let self_contains_private; // `impl [... for] Public<...>`, but not `impl [... for] // Vec` or `(Public,)`, etc. let self_is_public_path; // Check the properties of the `Self` type: { let mut visitor = ObsoleteCheckTypeForPrivatenessVisitor { inner: self, contains_private: false, at_outer_type: true, outer_type_is_public_path: false, }; visitor.visit_ty(impl_.self_ty); self_contains_private = visitor.contains_private; self_is_public_path = visitor.outer_type_is_public_path; } // Miscellaneous info about the impl: // `true` iff this is `impl Private for ...`. let not_private_trait = impl_.of_trait.as_ref().map_or( true, // no trait counts as public trait |tr| { if let Some(def_id) = tr.path.res.def_id().as_local() { self.trait_is_public(def_id) } else { true // external traits must be public } }, ); // `true` iff this is a trait impl or at least one method is public. // // `impl Public { $( fn ...() {} )* }` is not visible. // // This is required over just using the methods' privacy // directly because we might have `impl> ...`, // and we shouldn't warn about the generics if all the methods // are private (because `T` won't be visible externally). let trait_or_some_public_method = impl_.of_trait.is_some() || impl_.items.iter().any(|impl_item_ref| { let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); match impl_item.kind { hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) => self .effective_visibilities .is_reachable(impl_item_ref.id.owner_id.def_id), hir::ImplItemKind::Type(_) => false, } }); if !self_contains_private && not_private_trait && trait_or_some_public_method { intravisit::walk_generics(self, &impl_.generics); match impl_.of_trait { None => { for impl_item_ref in impl_.items { // This is where we choose whether to walk down // further into the impl to check its items. We // should only walk into public items so that we // don't erroneously report errors for private // types in private items. let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); match impl_item.kind { hir::ImplItemKind::Const(..) | hir::ImplItemKind::Fn(..) if self.item_is_public(impl_item.owner_id.def_id) => { intravisit::walk_impl_item(self, impl_item) } hir::ImplItemKind::Type(..) => { intravisit::walk_impl_item(self, impl_item) } _ => {} } } } Some(ref tr) => { // Any private types in a trait impl fall into three // categories. // 1. mentioned in the trait definition // 2. mentioned in the type params/generics // 3. mentioned in the associated types of the impl // // Those in 1. can only occur if the trait is in // this crate and will have been warned about on the // trait definition (there's no need to warn twice // so we don't check the methods). // // Those in 2. are warned via walk_generics and this // call here. intravisit::walk_path(self, tr.path); // Those in 3. are warned with this call. for impl_item_ref in impl_.items { let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); if let hir::ImplItemKind::Type(ty) = impl_item.kind { self.visit_ty(ty); } } } } } else if impl_.of_trait.is_none() && self_is_public_path { // `impl Public { ... }`. Any public static // methods will be visible as `Public::foo`. let mut found_pub_static = false; for impl_item_ref in impl_.items { if self .effective_visibilities .is_reachable(impl_item_ref.id.owner_id.def_id) || self.tcx.visibility(impl_item_ref.id.owner_id).is_public() { let impl_item = self.tcx.hir().impl_item(impl_item_ref.id); match impl_item_ref.kind { AssocItemKind::Const => { found_pub_static = true; intravisit::walk_impl_item(self, impl_item); } AssocItemKind::Fn { has_self: false } => { found_pub_static = true; intravisit::walk_impl_item(self, impl_item); } _ => {} } } } if found_pub_static { intravisit::walk_generics(self, &impl_.generics) } } return; } // `type ... = ...;` can contain private types, because // we're introducing a new name. hir::ItemKind::TyAlias(..) => return, // Not at all public, so we don't care. _ if !self.item_is_public(item.owner_id.def_id) => { return; } _ => {} } // We've carefully constructed it so that if we're here, then // any `visit_ty`'s will be called on things that are in // public signatures, i.e., things that we're interested in for // this visitor. intravisit::walk_item(self, item); } fn visit_generics(&mut self, generics: &'tcx hir::Generics<'tcx>) { for predicate in generics.predicates { match predicate { hir::WherePredicate::BoundPredicate(bound_pred) => { for bound in bound_pred.bounds.iter() { self.check_generic_bound(bound) } } hir::WherePredicate::RegionPredicate(_) => {} hir::WherePredicate::EqPredicate(eq_pred) => { self.visit_ty(eq_pred.rhs_ty); } } } } fn visit_foreign_item(&mut self, item: &'tcx hir::ForeignItem<'tcx>) { if self.effective_visibilities.is_reachable(item.owner_id.def_id) { intravisit::walk_foreign_item(self, item) } } fn visit_ty(&mut self, t: &'tcx hir::Ty<'tcx>) { if let hir::TyKind::Path(hir::QPath::Resolved(_, path)) = t.kind { if self.path_is_private_type(path) { self.old_error_set.insert(t.hir_id); } } intravisit::walk_ty(self, t) } fn visit_variant(&mut self, v: &'tcx hir::Variant<'tcx>) { if self.effective_visibilities.is_reachable(v.def_id) { self.in_variant = true; intravisit::walk_variant(self, v); self.in_variant = false; } } fn visit_field_def(&mut self, s: &'tcx hir::FieldDef<'tcx>) { let vis = self.tcx.visibility(s.def_id); if vis.is_public() || self.in_variant { intravisit::walk_field_def(self, s); } } // We don't need to introspect into these at all: an // expression/block context can't possibly contain exported things. // (Making them no-ops stops us from traversing the whole AST without // having to be super careful about our `walk_...` calls above.) fn visit_block(&mut self, _: &'tcx hir::Block<'tcx>) {} fn visit_expr(&mut self, _: &'tcx hir::Expr<'tcx>) {} } /////////////////////////////////////////////////////////////////////////////// /// SearchInterfaceForPrivateItemsVisitor traverses an item's interface and /// finds any private components in it. /// PrivateItemsInPublicInterfacesVisitor ensures there are no private types /// and traits in public interfaces. /////////////////////////////////////////////////////////////////////////////// struct SearchInterfaceForPrivateItemsVisitor<'tcx> { tcx: TyCtxt<'tcx>, item_def_id: LocalDefId, /// The visitor checks that each component type is at least this visible. required_visibility: ty::Visibility, has_old_errors: bool, in_assoc_ty: bool, } impl SearchInterfaceForPrivateItemsVisitor<'_> { fn generics(&mut self) -> &mut Self { for param in &self.tcx.generics_of(self.item_def_id).params { match param.kind { GenericParamDefKind::Lifetime => {} GenericParamDefKind::Type { has_default, .. } => { if has_default { self.visit(self.tcx.type_of(param.def_id)); } } // FIXME(generic_const_exprs): May want to look inside const here GenericParamDefKind::Const { .. } => { self.visit(self.tcx.type_of(param.def_id)); } } } self } fn predicates(&mut self) -> &mut Self { // N.B., we use `explicit_predicates_of` and not `predicates_of` // because we don't want to report privacy errors due to where // clauses that the compiler inferred. We only want to // consider the ones that the user wrote. This is important // for the inferred outlives rules; see // `tests/ui/rfc-2093-infer-outlives/privacy.rs`. self.visit_predicates(self.tcx.explicit_predicates_of(self.item_def_id)); self } fn bounds(&mut self) -> &mut Self { self.visit_predicates(ty::GenericPredicates { parent: None, predicates: self.tcx.explicit_item_bounds(self.item_def_id), }); self } fn ty(&mut self) -> &mut Self { self.visit(self.tcx.type_of(self.item_def_id)); self } fn check_def_id(&mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display) -> bool { if self.leaks_private_dep(def_id) { self.tcx.emit_spanned_lint( lint::builtin::EXPORTED_PRIVATE_DEPENDENCIES, self.tcx.hir().local_def_id_to_hir_id(self.item_def_id), self.tcx.def_span(self.item_def_id.to_def_id()), FromPrivateDependencyInPublicInterface { kind, descr: descr.into(), krate: self.tcx.crate_name(def_id.krate), }, ); } let Some(local_def_id) = def_id.as_local() else { return false; }; let vis = self.tcx.local_visibility(local_def_id); if !vis.is_at_least(self.required_visibility, self.tcx) { let hir_id = self.tcx.hir().local_def_id_to_hir_id(local_def_id); let vis_descr = match vis { ty::Visibility::Public => "public", ty::Visibility::Restricted(vis_def_id) => { if vis_def_id == self.tcx.parent_module(hir_id) { "private" } else if vis_def_id.is_top_level_module() { "crate-private" } else { "restricted" } } }; let span = self.tcx.def_span(self.item_def_id.to_def_id()); if self.has_old_errors || self.in_assoc_ty || self.tcx.resolutions(()).has_pub_restricted { let vis_span = self.tcx.def_span(def_id); if kind == "trait" { self.tcx.sess.emit_err(InPublicInterfaceTraits { span, vis_descr, kind, descr: descr.into(), vis_span, }); } else { self.tcx.sess.emit_err(InPublicInterface { span, vis_descr, kind, descr: descr.into(), vis_span, }); } } else { self.tcx.emit_spanned_lint( lint::builtin::PRIVATE_IN_PUBLIC, hir_id, span, PrivateInPublicLint { vis_descr, kind, descr: descr.into() }, ); } } false } /// An item is 'leaked' from a private dependency if all /// of the following are true: /// 1. It's contained within a public type /// 2. It comes from a private crate fn leaks_private_dep(&self, item_id: DefId) -> bool { let ret = self.required_visibility.is_public() && self.tcx.is_private_dep(item_id.krate); debug!("leaks_private_dep(item_id={:?})={}", item_id, ret); ret } } impl<'tcx> DefIdVisitor<'tcx> for SearchInterfaceForPrivateItemsVisitor<'tcx> { fn tcx(&self) -> TyCtxt<'tcx> { self.tcx } fn visit_def_id( &mut self, def_id: DefId, kind: &str, descr: &dyn fmt::Display, ) -> ControlFlow { if self.check_def_id(def_id, kind, descr) { ControlFlow::Break(()) } else { ControlFlow::Continue(()) } } } struct PrivateItemsInPublicInterfacesChecker<'tcx> { tcx: TyCtxt<'tcx>, old_error_set_ancestry: LocalDefIdSet, } impl<'tcx> PrivateItemsInPublicInterfacesChecker<'tcx> { fn check( &self, def_id: LocalDefId, required_visibility: ty::Visibility, ) -> SearchInterfaceForPrivateItemsVisitor<'tcx> { SearchInterfaceForPrivateItemsVisitor { tcx: self.tcx, item_def_id: def_id, required_visibility, has_old_errors: self.old_error_set_ancestry.contains(&def_id), in_assoc_ty: false, } } fn check_assoc_item( &self, def_id: LocalDefId, assoc_item_kind: AssocItemKind, vis: ty::Visibility, ) { let mut check = self.check(def_id, vis); let (check_ty, is_assoc_ty) = match assoc_item_kind { AssocItemKind::Const | AssocItemKind::Fn { .. } => (true, false), AssocItemKind::Type => (self.tcx.impl_defaultness(def_id).has_value(), true), }; check.in_assoc_ty = is_assoc_ty; check.generics().predicates(); if check_ty { check.ty(); } } pub fn check_item(&mut self, id: ItemId) { let tcx = self.tcx; let def_id = id.owner_id.def_id; let item_visibility = tcx.local_visibility(def_id); let def_kind = tcx.def_kind(def_id); match def_kind { DefKind::Const | DefKind::Static(_) | DefKind::Fn | DefKind::TyAlias => { self.check(def_id, item_visibility).generics().predicates().ty(); } DefKind::OpaqueTy => { // `ty()` for opaque types is the underlying type, // it's not a part of interface, so we skip it. self.check(def_id, item_visibility).generics().bounds(); } DefKind::Trait => { let item = tcx.hir().item(id); if let hir::ItemKind::Trait(.., trait_item_refs) = item.kind { self.check(item.owner_id.def_id, item_visibility).generics().predicates(); for trait_item_ref in trait_item_refs { self.check_assoc_item( trait_item_ref.id.owner_id.def_id, trait_item_ref.kind, item_visibility, ); if let AssocItemKind::Type = trait_item_ref.kind { self.check(trait_item_ref.id.owner_id.def_id, item_visibility).bounds(); } } } } DefKind::TraitAlias => { self.check(def_id, item_visibility).generics().predicates(); } DefKind::Enum => { let item = tcx.hir().item(id); if let hir::ItemKind::Enum(ref def, _) = item.kind { self.check(item.owner_id.def_id, item_visibility).generics().predicates(); for variant in def.variants { for field in variant.data.fields() { self.check(field.def_id, item_visibility).ty(); } } } } // Subitems of foreign modules have their own publicity. DefKind::ForeignMod => { let item = tcx.hir().item(id); if let hir::ItemKind::ForeignMod { items, .. } = item.kind { for foreign_item in items { let vis = tcx.local_visibility(foreign_item.id.owner_id.def_id); self.check(foreign_item.id.owner_id.def_id, vis) .generics() .predicates() .ty(); } } } // Subitems of structs and unions have their own publicity. DefKind::Struct | DefKind::Union => { let item = tcx.hir().item(id); if let hir::ItemKind::Struct(ref struct_def, _) | hir::ItemKind::Union(ref struct_def, _) = item.kind { self.check(item.owner_id.def_id, item_visibility).generics().predicates(); for field in struct_def.fields() { let field_visibility = tcx.local_visibility(field.def_id); self.check(field.def_id, min(item_visibility, field_visibility, tcx)).ty(); } } } // An inherent impl is public when its type is public // Subitems of inherent impls have their own publicity. // A trait impl is public when both its type and its trait are public // Subitems of trait impls have inherited publicity. DefKind::Impl => { let item = tcx.hir().item(id); if let hir::ItemKind::Impl(ref impl_) = item.kind { let impl_vis = ty::Visibility::of_impl(item.owner_id.def_id, tcx, &Default::default()); // check that private components do not appear in the generics or predicates of inherent impls // this check is intentionally NOT performed for impls of traits, per #90586 if impl_.of_trait.is_none() { self.check(item.owner_id.def_id, impl_vis).generics().predicates(); } for impl_item_ref in impl_.items { let impl_item_vis = if impl_.of_trait.is_none() { min( tcx.local_visibility(impl_item_ref.id.owner_id.def_id), impl_vis, tcx, ) } else { impl_vis }; self.check_assoc_item( impl_item_ref.id.owner_id.def_id, impl_item_ref.kind, impl_item_vis, ); } } } _ => {} } } } pub fn provide(providers: &mut Providers) { *providers = Providers { visibility, effective_visibilities, check_private_in_public, check_mod_privacy, ..*providers }; } fn visibility(tcx: TyCtxt<'_>, def_id: DefId) -> ty::Visibility { local_visibility(tcx, def_id.expect_local()).to_def_id() } fn local_visibility(tcx: TyCtxt<'_>, def_id: LocalDefId) -> ty::Visibility { match tcx.resolutions(()).visibilities.get(&def_id) { Some(vis) => *vis, None => { let hir_id = tcx.hir().local_def_id_to_hir_id(def_id); match tcx.hir().get(hir_id) { // Unique types created for closures participate in type privacy checking. // They have visibilities inherited from the module they are defined in. Node::Expr(hir::Expr { kind: hir::ExprKind::Closure{..}, .. }) // - AST lowering creates dummy `use` items which don't // get their entries in the resolver's visibility table. // - AST lowering also creates opaque type items with inherited visibilities. // Visibility on them should have no effect, but to avoid the visibility // query failing on some items, we provide it for opaque types as well. | Node::Item(hir::Item { kind: hir::ItemKind::Use(_, hir::UseKind::ListStem) | hir::ItemKind::OpaqueTy(..), .. }) => ty::Visibility::Restricted(tcx.parent_module(hir_id)), // Visibilities of trait impl items are inherited from their traits // and are not filled in resolve. Node::ImplItem(impl_item) => { match tcx.hir().get_by_def_id(tcx.hir().get_parent_item(hir_id).def_id) { Node::Item(hir::Item { kind: hir::ItemKind::Impl(hir::Impl { of_trait: Some(tr), .. }), .. }) => tr.path.res.opt_def_id().map_or_else( || { tcx.sess.delay_span_bug(tr.path.span, "trait without a def-id"); ty::Visibility::Public }, |def_id| tcx.visibility(def_id).expect_local(), ), _ => span_bug!(impl_item.span, "the parent is not a trait impl"), } } _ => span_bug!( tcx.def_span(def_id), "visibility table unexpectedly missing a def-id: {:?}", def_id, ), } } } } fn check_mod_privacy(tcx: TyCtxt<'_>, module_def_id: LocalDefId) { // Check privacy of names not checked in previous compilation stages. let mut visitor = NamePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id }; let (module, span, hir_id) = tcx.hir().get_module(module_def_id); intravisit::walk_mod(&mut visitor, module, hir_id); // Check privacy of explicitly written types and traits as well as // inferred types of expressions and patterns. let mut visitor = TypePrivacyVisitor { tcx, maybe_typeck_results: None, current_item: module_def_id, span }; intravisit::walk_mod(&mut visitor, module, hir_id); } fn effective_visibilities(tcx: TyCtxt<'_>, (): ()) -> &EffectiveVisibilities { // Build up a set of all exported items in the AST. This is a set of all // items which are reachable from external crates based on visibility. let mut visitor = EmbargoVisitor { tcx, effective_visibilities: tcx.resolutions(()).effective_visibilities.clone(), macro_reachable: Default::default(), prev_level: Some(Level::Direct), changed: false, }; visitor.effective_visibilities.check_invariants(tcx, true); loop { tcx.hir().walk_toplevel_module(&mut visitor); if visitor.changed { visitor.changed = false; } else { break; } } visitor.effective_visibilities.check_invariants(tcx, false); let mut check_visitor = TestReachabilityVisitor { tcx, effective_visibilities: &visitor.effective_visibilities }; tcx.hir().visit_all_item_likes_in_crate(&mut check_visitor); tcx.arena.alloc(visitor.effective_visibilities) } fn check_private_in_public(tcx: TyCtxt<'_>, (): ()) { let effective_visibilities = tcx.effective_visibilities(()); let mut visitor = ObsoleteVisiblePrivateTypesVisitor { tcx, effective_visibilities, in_variant: false, old_error_set: Default::default(), }; tcx.hir().walk_toplevel_module(&mut visitor); let mut old_error_set_ancestry = HirIdSet::default(); for mut id in visitor.old_error_set.iter().copied() { loop { if !old_error_set_ancestry.insert(id) { break; } let parent = tcx.hir().parent_id(id); if parent == id { break; } id = parent; } } // Check for private types and traits in public interfaces. let mut checker = PrivateItemsInPublicInterfacesChecker { tcx, // Only definition IDs are ever searched in `old_error_set_ancestry`, // so we can filter away all non-definition IDs at this point. old_error_set_ancestry: old_error_set_ancestry .into_iter() .filter_map(|hir_id| tcx.hir().opt_local_def_id(hir_id)) .collect(), }; for id in tcx.hir().items() { checker.check_item(id); } }