//! The implementation of the query system itself. This defines the macros that //! generate the actual methods on tcx which find and execute the provider, //! manage the caches, and so forth. use crate::dep_graph::{DepContext, DepKind, DepNode, DepNodeIndex}; use crate::ich::StableHashingContext; use crate::query::caches::QueryCache; use crate::query::job::{report_cycle, QueryInfo, QueryJob, QueryJobId, QueryJobInfo}; use crate::query::{QueryContext, QueryMap, QuerySideEffects, QueryStackFrame}; use crate::values::Value; use crate::HandleCycleError; use rustc_data_structures::fingerprint::Fingerprint; use rustc_data_structures::fx::FxHashMap; #[cfg(parallel_compiler)] use rustc_data_structures::profiling::TimingGuard; #[cfg(parallel_compiler)] use rustc_data_structures::sharded::Sharded; use rustc_data_structures::sync::Lock; use rustc_errors::{DiagnosticBuilder, ErrorGuaranteed, FatalError}; use rustc_session::Session; use rustc_span::{Span, DUMMY_SP}; use std::borrow::Borrow; use std::cell::Cell; use std::collections::hash_map::Entry; use std::fmt::Debug; use std::hash::Hash; use std::mem; use std::ptr; use thin_vec::ThinVec; use super::QueryConfig; pub struct QueryState { #[cfg(parallel_compiler)] active: Sharded>>, #[cfg(not(parallel_compiler))] active: Lock>>, } /// Indicates the state of a query for a given key in a query map. enum QueryResult { /// An already executing query. The query job can be used to await for its completion. Started(QueryJob), /// The query panicked. Queries trying to wait on this will raise a fatal error which will /// silently panic. Poisoned, } impl QueryState where K: Eq + Hash + Clone + Debug, D: DepKind, { pub fn all_inactive(&self) -> bool { #[cfg(parallel_compiler)] { let shards = self.active.lock_shards(); shards.iter().all(|shard| shard.is_empty()) } #[cfg(not(parallel_compiler))] { self.active.lock().is_empty() } } pub fn try_collect_active_jobs( &self, qcx: Qcx, make_query: fn(Qcx, K) -> QueryStackFrame, jobs: &mut QueryMap, ) -> Option<()> { #[cfg(parallel_compiler)] { // We use try_lock_shards here since we are called from the // deadlock handler, and this shouldn't be locked. let shards = self.active.try_lock_shards()?; for shard in shards.iter() { for (k, v) in shard.iter() { if let QueryResult::Started(ref job) = *v { let query = make_query(qcx, k.clone()); jobs.insert(job.id, QueryJobInfo { query, job: job.clone() }); } } } } #[cfg(not(parallel_compiler))] { // We use try_lock here since we are called from the // deadlock handler, and this shouldn't be locked. // (FIXME: Is this relevant for non-parallel compilers? It doesn't // really hurt much.) for (k, v) in self.active.try_lock()?.iter() { if let QueryResult::Started(ref job) = *v { let query = make_query(qcx, k.clone()); jobs.insert(job.id, QueryJobInfo { query, job: job.clone() }); } } } Some(()) } } impl Default for QueryState { fn default() -> QueryState { QueryState { active: Default::default() } } } /// A type representing the responsibility to execute the job in the `job` field. /// This will poison the relevant query if dropped. struct JobOwner<'tcx, K, D: DepKind> where K: Eq + Hash + Clone, { state: &'tcx QueryState, key: K, id: QueryJobId, } #[cold] #[inline(never)] fn mk_cycle( qcx: Qcx, cycle_error: CycleError, handler: HandleCycleError, cache: &dyn crate::query::QueryStorage, ) -> R where Qcx: QueryContext + crate::query::HasDepContext, V: std::fmt::Debug + Value, R: Clone, { let error = report_cycle(qcx.dep_context().sess(), &cycle_error); let value = handle_cycle_error(*qcx.dep_context(), &cycle_error, error, handler); cache.store_nocache(value) } fn handle_cycle_error( tcx: Tcx, cycle_error: &CycleError, mut error: DiagnosticBuilder<'_, ErrorGuaranteed>, handler: HandleCycleError, ) -> V where Tcx: DepContext, V: Value, { use HandleCycleError::*; match handler { Error => { error.emit(); Value::from_cycle_error(tcx, &cycle_error.cycle) } Fatal => { error.emit(); tcx.sess().abort_if_errors(); unreachable!() } DelayBug => { error.delay_as_bug(); Value::from_cycle_error(tcx, &cycle_error.cycle) } } } impl<'tcx, K, D: DepKind> JobOwner<'tcx, K, D> where K: Eq + Hash + Clone, { /// Either gets a `JobOwner` corresponding the query, allowing us to /// start executing the query, or returns with the result of the query. /// This function assumes that `try_get_cached` is already called and returned `lookup`. /// If the query is executing elsewhere, this will wait for it and return the result. /// If the query panicked, this will silently panic. /// /// This function is inlined because that results in a noticeable speed-up /// for some compile-time benchmarks. #[inline(always)] fn try_start<'b, Qcx>( qcx: &'b Qcx, state: &'b QueryState, span: Span, key: K, ) -> TryGetJob<'b, K, D> where Qcx: QueryContext + crate::query::HasDepContext, { #[cfg(parallel_compiler)] let mut state_lock = state.active.get_shard_by_value(&key).lock(); #[cfg(not(parallel_compiler))] let mut state_lock = state.active.lock(); let lock = &mut *state_lock; match lock.entry(key) { Entry::Vacant(entry) => { let id = qcx.next_job_id(); let job = qcx.current_query_job(); let job = QueryJob::new(id, span, job); let key = entry.key().clone(); entry.insert(QueryResult::Started(job)); let owner = JobOwner { state, id, key }; return TryGetJob::NotYetStarted(owner); } Entry::Occupied(mut entry) => { match entry.get_mut() { #[cfg(not(parallel_compiler))] QueryResult::Started(job) => { let id = job.id; drop(state_lock); // If we are single-threaded we know that we have cycle error, // so we just return the error. return TryGetJob::Cycle(id.find_cycle_in_stack( qcx.try_collect_active_jobs().unwrap(), &qcx.current_query_job(), span, )); } #[cfg(parallel_compiler)] QueryResult::Started(job) => { // For parallel queries, we'll block and wait until the query running // in another thread has completed. Record how long we wait in the // self-profiler. let query_blocked_prof_timer = qcx.dep_context().profiler().query_blocked(); // Get the latch out let latch = job.latch(); drop(state_lock); // With parallel queries we might just have to wait on some other // thread. let result = latch.wait_on(qcx.current_query_job(), span); match result { Ok(()) => TryGetJob::JobCompleted(query_blocked_prof_timer), Err(cycle) => TryGetJob::Cycle(cycle), } } QueryResult::Poisoned => FatalError.raise(), } } } } /// Completes the query by updating the query cache with the `result`, /// signals the waiter and forgets the JobOwner, so it won't poison the query fn complete(self, cache: &C, result: C::Value, dep_node_index: DepNodeIndex) -> C::Stored where C: QueryCache, { // We can move out of `self` here because we `mem::forget` it below let key = unsafe { ptr::read(&self.key) }; let state = self.state; // Forget ourself so our destructor won't poison the query mem::forget(self); let (job, result) = { let job = { #[cfg(parallel_compiler)] let mut lock = state.active.get_shard_by_value(&key).lock(); #[cfg(not(parallel_compiler))] let mut lock = state.active.lock(); match lock.remove(&key).unwrap() { QueryResult::Started(job) => job, QueryResult::Poisoned => panic!(), } }; let result = cache.complete(key, result, dep_node_index); (job, result) }; job.signal_complete(); result } } impl<'tcx, K, D> Drop for JobOwner<'tcx, K, D> where K: Eq + Hash + Clone, D: DepKind, { #[inline(never)] #[cold] fn drop(&mut self) { // Poison the query so jobs waiting on it panic. let state = self.state; let job = { #[cfg(parallel_compiler)] let mut shard = state.active.get_shard_by_value(&self.key).lock(); #[cfg(not(parallel_compiler))] let mut shard = state.active.lock(); let job = match shard.remove(&self.key).unwrap() { QueryResult::Started(job) => job, QueryResult::Poisoned => panic!(), }; shard.insert(self.key.clone(), QueryResult::Poisoned); job }; // Also signal the completion of the job, so waiters // will continue execution. job.signal_complete(); } } #[derive(Clone)] pub(crate) struct CycleError { /// The query and related span that uses the cycle. pub usage: Option<(Span, QueryStackFrame)>, pub cycle: Vec>, } /// The result of `try_start`. enum TryGetJob<'tcx, K, D> where K: Eq + Hash + Clone, D: DepKind, { /// The query is not yet started. Contains a guard to the cache eventually used to start it. NotYetStarted(JobOwner<'tcx, K, D>), /// The query was already completed. /// Returns the result of the query and its dep-node index /// if it succeeded or a cycle error if it failed. #[cfg(parallel_compiler)] JobCompleted(TimingGuard<'tcx>), /// Trying to execute the query resulted in a cycle. Cycle(CycleError), } /// Checks if the query is already computed and in the cache. /// It returns the shard index and a lock guard to the shard, /// which will be used if the query is not in the cache and we need /// to compute it. #[inline] pub fn try_get_cached( tcx: Tcx, cache: &C, key: &C::Key, // `on_hit` can be called while holding a lock to the query cache on_hit: OnHit, ) -> Result where C: QueryCache, Tcx: DepContext, OnHit: FnOnce(&C::Stored) -> R, { cache.lookup(&key, |value, index| { if std::intrinsics::unlikely(tcx.profiler().enabled()) { tcx.profiler().query_cache_hit(index.into()); } tcx.dep_graph().read_index(index); on_hit(value) }) } fn try_execute_query( qcx: Qcx, state: &QueryState, cache: &Q::Cache, span: Span, key: Q::Key, dep_node: Option>, ) -> (Q::Stored, Option) where Q: QueryConfig, Qcx: QueryContext, { match JobOwner::<'_, Q::Key, Qcx::DepKind>::try_start(&qcx, state, span, key.clone()) { TryGetJob::NotYetStarted(job) => { let (result, dep_node_index) = execute_job::(qcx, key.clone(), dep_node, job.id); if Q::FEEDABLE { // We may have put a value inside the cache from inside the execution. // Verify that it has the same hash as what we have now, to ensure consistency. let _ = cache.lookup(&key, |cached_result, _| { let hasher = Q::HASH_RESULT.expect("feedable forbids no_hash"); let old_hash = qcx.dep_context().with_stable_hashing_context(|mut hcx| hasher(&mut hcx, cached_result.borrow())); let new_hash = qcx.dep_context().with_stable_hashing_context(|mut hcx| hasher(&mut hcx, &result)); debug_assert_eq!( old_hash, new_hash, "Computed query value for {:?}({:?}) is inconsistent with fed value,\ncomputed={:#?}\nfed={:#?}", Q::DEP_KIND, key, result, cached_result, ); }); } let result = job.complete(cache, result, dep_node_index); (result, Some(dep_node_index)) } TryGetJob::Cycle(error) => { let result = mk_cycle(qcx, error, Q::HANDLE_CYCLE_ERROR, cache); (result, None) } #[cfg(parallel_compiler)] TryGetJob::JobCompleted(query_blocked_prof_timer) => { let (v, index) = cache .lookup(&key, |value, index| (value.clone(), index)) .unwrap_or_else(|_| panic!("value must be in cache after waiting")); if std::intrinsics::unlikely(qcx.dep_context().profiler().enabled()) { qcx.dep_context().profiler().query_cache_hit(index.into()); } query_blocked_prof_timer.finish_with_query_invocation_id(index.into()); (v, Some(index)) } } } fn execute_job( qcx: Qcx, key: Q::Key, mut dep_node_opt: Option>, job_id: QueryJobId, ) -> (Q::Value, DepNodeIndex) where Q: QueryConfig, Qcx: QueryContext, { let dep_graph = qcx.dep_context().dep_graph(); // Fast path for when incr. comp. is off. if !dep_graph.is_fully_enabled() { let prof_timer = qcx.dep_context().profiler().query_provider(); let result = qcx.start_query(job_id, Q::DEPTH_LIMIT, None, || { Q::compute(qcx, &key)(*qcx.dep_context(), key) }); let dep_node_index = dep_graph.next_virtual_depnode_index(); prof_timer.finish_with_query_invocation_id(dep_node_index.into()); return (result, dep_node_index); } if !Q::ANON && !Q::EVAL_ALWAYS { // `to_dep_node` is expensive for some `DepKind`s. let dep_node = dep_node_opt.get_or_insert_with(|| Q::construct_dep_node(*qcx.dep_context(), &key)); // The diagnostics for this query will be promoted to the current session during // `try_mark_green()`, so we can ignore them here. if let Some(ret) = qcx.start_query(job_id, false, None, || { try_load_from_disk_and_cache_in_memory::(qcx, &key, &dep_node) }) { return ret; } } let prof_timer = qcx.dep_context().profiler().query_provider(); let diagnostics = Lock::new(ThinVec::new()); let (result, dep_node_index) = qcx.start_query(job_id, Q::DEPTH_LIMIT, Some(&diagnostics), || { if Q::ANON { return dep_graph.with_anon_task(*qcx.dep_context(), Q::DEP_KIND, || { Q::compute(qcx, &key)(*qcx.dep_context(), key) }); } // `to_dep_node` is expensive for some `DepKind`s. let dep_node = dep_node_opt.unwrap_or_else(|| Q::construct_dep_node(*qcx.dep_context(), &key)); let task = Q::compute(qcx, &key); dep_graph.with_task(dep_node, *qcx.dep_context(), key, task, Q::HASH_RESULT) }); prof_timer.finish_with_query_invocation_id(dep_node_index.into()); let diagnostics = diagnostics.into_inner(); let side_effects = QuerySideEffects { diagnostics }; if std::intrinsics::unlikely(!side_effects.is_empty()) { if Q::ANON { qcx.store_side_effects_for_anon_node(dep_node_index, side_effects); } else { qcx.store_side_effects(dep_node_index, side_effects); } } (result, dep_node_index) } fn try_load_from_disk_and_cache_in_memory( qcx: Qcx, key: &Q::Key, dep_node: &DepNode, ) -> Option<(Q::Value, DepNodeIndex)> where Q: QueryConfig, Qcx: QueryContext, { // Note this function can be called concurrently from the same query // We must ensure that this is handled correctly. let dep_graph = qcx.dep_context().dep_graph(); let (prev_dep_node_index, dep_node_index) = dep_graph.try_mark_green(qcx, &dep_node)?; debug_assert!(dep_graph.is_green(dep_node)); // First we try to load the result from the on-disk cache. // Some things are never cached on disk. if let Some(try_load_from_disk) = Q::try_load_from_disk(qcx, &key) { let prof_timer = qcx.dep_context().profiler().incr_cache_loading(); // The call to `with_query_deserialization` enforces that no new `DepNodes` // are created during deserialization. See the docs of that method for more // details. let result = dep_graph.with_query_deserialization(|| try_load_from_disk(qcx, prev_dep_node_index)); prof_timer.finish_with_query_invocation_id(dep_node_index.into()); if let Some(result) = result { if std::intrinsics::unlikely( qcx.dep_context().sess().opts.unstable_opts.query_dep_graph, ) { dep_graph.mark_debug_loaded_from_disk(*dep_node) } let prev_fingerprint = qcx .dep_context() .dep_graph() .prev_fingerprint_of(dep_node) .unwrap_or(Fingerprint::ZERO); // If `-Zincremental-verify-ich` is specified, re-hash results from // the cache and make sure that they have the expected fingerprint. // // If not, we still seek to verify a subset of fingerprints loaded // from disk. Re-hashing results is fairly expensive, so we can't // currently afford to verify every hash. This subset should still // give us some coverage of potential bugs though. let try_verify = prev_fingerprint.as_value().1 % 32 == 0; if std::intrinsics::unlikely( try_verify || qcx.dep_context().sess().opts.unstable_opts.incremental_verify_ich, ) { incremental_verify_ich(*qcx.dep_context(), &result, dep_node, Q::HASH_RESULT); } return Some((result, dep_node_index)); } // We always expect to find a cached result for things that // can be forced from `DepNode`. debug_assert!( !qcx.dep_context().fingerprint_style(dep_node.kind).reconstructible(), "missing on-disk cache entry for {dep_node:?}" ); } // We could not load a result from the on-disk cache, so // recompute. let prof_timer = qcx.dep_context().profiler().query_provider(); // The dep-graph for this computation is already in-place. let result = dep_graph.with_ignore(|| Q::compute(qcx, key)(*qcx.dep_context(), key.clone())); prof_timer.finish_with_query_invocation_id(dep_node_index.into()); // Verify that re-running the query produced a result with the expected hash // This catches bugs in query implementations, turning them into ICEs. // For example, a query might sort its result by `DefId` - since `DefId`s are // not stable across compilation sessions, the result could get up getting sorted // in a different order when the query is re-run, even though all of the inputs // (e.g. `DefPathHash` values) were green. // // See issue #82920 for an example of a miscompilation that would get turned into // an ICE by this check incremental_verify_ich(*qcx.dep_context(), &result, dep_node, Q::HASH_RESULT); Some((result, dep_node_index)) } #[instrument(skip(tcx, result, hash_result), level = "debug")] pub(crate) fn incremental_verify_ich( tcx: Tcx, result: &V, dep_node: &DepNode, hash_result: Option, &V) -> Fingerprint>, ) -> Fingerprint where Tcx: DepContext, { assert!( tcx.dep_graph().is_green(dep_node), "fingerprint for green query instance not loaded from cache: {dep_node:?}", ); let new_hash = hash_result.map_or(Fingerprint::ZERO, |f| { tcx.with_stable_hashing_context(|mut hcx| f(&mut hcx, result)) }); let old_hash = tcx.dep_graph().prev_fingerprint_of(dep_node); if Some(new_hash) != old_hash { incremental_verify_ich_failed( tcx.sess(), DebugArg::from(&dep_node), DebugArg::from(&result), ); } new_hash } // This DebugArg business is largely a mirror of std::fmt::ArgumentV1, which is // currently not exposed publicly. // // The PR which added this attempted to use `&dyn Debug` instead, but that // showed statistically significant worse compiler performance. It's not // actually clear what the cause there was -- the code should be cold. If this // can be replaced with `&dyn Debug` with on perf impact, then it probably // should be. extern "C" { type Opaque; } struct DebugArg<'a> { value: &'a Opaque, fmt: fn(&Opaque, &mut std::fmt::Formatter<'_>) -> std::fmt::Result, } impl<'a, T> From<&'a T> for DebugArg<'a> where T: std::fmt::Debug, { fn from(value: &'a T) -> DebugArg<'a> { DebugArg { value: unsafe { std::mem::transmute(value) }, fmt: unsafe { std::mem::transmute(::fmt as fn(_, _) -> std::fmt::Result) }, } } } impl std::fmt::Debug for DebugArg<'_> { fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result { (self.fmt)(self.value, f) } } // Note that this is marked #[cold] and intentionally takes the equivalent of // `dyn Debug` for its arguments, as we want to avoid generating a bunch of // different implementations for LLVM to chew on (and filling up the final // binary, too). #[cold] fn incremental_verify_ich_failed(sess: &Session, dep_node: DebugArg<'_>, result: DebugArg<'_>) { // When we emit an error message and panic, we try to debug-print the `DepNode` // and query result. Unfortunately, this can cause us to run additional queries, // which may result in another fingerprint mismatch while we're in the middle // of processing this one. To avoid a double-panic (which kills the process // before we can print out the query static), we print out a terse // but 'safe' message if we detect a re-entrant call to this method. thread_local! { static INSIDE_VERIFY_PANIC: Cell = const { Cell::new(false) }; }; let old_in_panic = INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.replace(true)); if old_in_panic { sess.emit_err(crate::error::Reentrant); } else { let run_cmd = if let Some(crate_name) = &sess.opts.crate_name { format!("`cargo clean -p {crate_name}` or `cargo clean`") } else { "`cargo clean`".to_string() }; sess.emit_err(crate::error::IncrementCompilation { run_cmd, dep_node: format!("{dep_node:?}"), }); panic!("Found unstable fingerprints for {dep_node:?}: {result:?}"); } INSIDE_VERIFY_PANIC.with(|in_panic| in_panic.set(old_in_panic)); } /// Ensure that either this query has all green inputs or been executed. /// Executing `query::ensure(D)` is considered a read of the dep-node `D`. /// Returns true if the query should still run. /// /// This function is particularly useful when executing passes for their /// side-effects -- e.g., in order to report errors for erroneous programs. /// /// Note: The optimization is only available during incr. comp. #[inline(never)] fn ensure_must_run(qcx: Qcx, key: &Q::Key) -> (bool, Option>) where Q: QueryConfig, Qcx: QueryContext, { if Q::EVAL_ALWAYS { return (true, None); } // Ensuring an anonymous query makes no sense assert!(!Q::ANON); let dep_node = Q::construct_dep_node(*qcx.dep_context(), key); let dep_graph = qcx.dep_context().dep_graph(); match dep_graph.try_mark_green(qcx, &dep_node) { None => { // A None return from `try_mark_green` means that this is either // a new dep node or that the dep node has already been marked red. // Either way, we can't call `dep_graph.read()` as we don't have the // DepNodeIndex. We must invoke the query itself. The performance cost // this introduces should be negligible as we'll immediately hit the // in-memory cache, or another query down the line will. (true, Some(dep_node)) } Some((_, dep_node_index)) => { dep_graph.read_index(dep_node_index); qcx.dep_context().profiler().query_cache_hit(dep_node_index.into()); (false, None) } } } #[derive(Debug)] pub enum QueryMode { Get, Ensure, } pub fn get_query(qcx: Qcx, span: Span, key: Q::Key, mode: QueryMode) -> Option where D: DepKind, Q: QueryConfig, Q::Value: Value, Qcx: QueryContext, { let dep_node = if let QueryMode::Ensure = mode { let (must_run, dep_node) = ensure_must_run::(qcx, &key); if !must_run { return None; } dep_node } else { None }; let (result, dep_node_index) = try_execute_query::( qcx, Q::query_state(qcx), Q::query_cache(qcx), span, key, dep_node, ); if let Some(dep_node_index) = dep_node_index { qcx.dep_context().dep_graph().read_index(dep_node_index) } Some(result) } pub fn force_query(qcx: Qcx, key: Q::Key, dep_node: DepNode) where D: DepKind, Q: QueryConfig, Q::Value: Value, Qcx: QueryContext, { // We may be concurrently trying both execute and force a query. // Ensure that only one of them runs the query. let cache = Q::query_cache(qcx); let cached = cache.lookup(&key, |_, index| { if std::intrinsics::unlikely(qcx.dep_context().profiler().enabled()) { qcx.dep_context().profiler().query_cache_hit(index.into()); } }); match cached { Ok(()) => return, Err(()) => {} } let state = Q::query_state(qcx); debug_assert!(!Q::ANON); try_execute_query::(qcx, state, cache, DUMMY_SP, key, Some(dep_node)); }