use crate::{ImplTraitContext, Resolver}; use rustc_ast::visit::{self, FnKind}; use rustc_ast::*; use rustc_expand::expand::AstFragment; use rustc_hir::def::{CtorKind, CtorOf, DefKind}; use rustc_hir::def_id::LocalDefId; use rustc_span::hygiene::LocalExpnId; use rustc_span::symbol::{kw, sym, Symbol}; use rustc_span::Span; pub(crate) fn collect_definitions( resolver: &mut Resolver<'_, '_>, fragment: &AstFragment, expansion: LocalExpnId, ) { let (parent_def, impl_trait_context) = resolver.invocation_parents[&expansion]; fragment.visit_with(&mut DefCollector { resolver, parent_def, expansion, impl_trait_context }); } /// Creates `DefId`s for nodes in the AST. struct DefCollector<'a, 'b, 'tcx> { resolver: &'a mut Resolver<'b, 'tcx>, parent_def: LocalDefId, impl_trait_context: ImplTraitContext, expansion: LocalExpnId, } impl<'a, 'b, 'tcx> DefCollector<'a, 'b, 'tcx> { fn create_def( &mut self, node_id: NodeId, name: Symbol, def_kind: DefKind, span: Span, ) -> LocalDefId { let parent_def = self.parent_def; debug!( "create_def(node_id={:?}, def_kind={:?}, parent_def={:?})", node_id, def_kind, parent_def ); self.resolver.create_def( parent_def, node_id, name, def_kind, self.expansion.to_expn_id(), span.with_parent(None), ) } fn with_parent(&mut self, parent_def: LocalDefId, f: F) { let orig_parent_def = std::mem::replace(&mut self.parent_def, parent_def); f(self); self.parent_def = orig_parent_def; } fn with_impl_trait( &mut self, impl_trait_context: ImplTraitContext, f: F, ) { let orig_itc = std::mem::replace(&mut self.impl_trait_context, impl_trait_context); f(self); self.impl_trait_context = orig_itc; } fn collect_field(&mut self, field: &'a FieldDef, index: Option) { let index = |this: &Self| { index.unwrap_or_else(|| { let node_id = NodeId::placeholder_from_expn_id(this.expansion); this.resolver.placeholder_field_indices[&node_id] }) }; if field.is_placeholder { let old_index = self.resolver.placeholder_field_indices.insert(field.id, index(self)); assert!(old_index.is_none(), "placeholder field index is reset for a node ID"); self.visit_macro_invoc(field.id); } else { let name = field.ident.map_or_else(|| sym::integer(index(self)), |ident| ident.name); let def = self.create_def(field.id, name, DefKind::Field, field.span); self.with_parent(def, |this| visit::walk_field_def(this, field)); } } fn visit_macro_invoc(&mut self, id: NodeId) { let id = id.placeholder_to_expn_id(); let old_parent = self.resolver.invocation_parents.insert(id, (self.parent_def, self.impl_trait_context)); assert!(old_parent.is_none(), "parent `LocalDefId` is reset for an invocation"); } } impl<'a, 'b, 'tcx> visit::Visitor<'a> for DefCollector<'a, 'b, 'tcx> { fn visit_item(&mut self, i: &'a Item) { debug!("visit_item: {:?}", i); // Pick the def data. This need not be unique, but the more // information we encapsulate into, the better let mut opt_macro_data = None; let def_kind = match &i.kind { ItemKind::Impl(i) => DefKind::Impl { of_trait: i.of_trait.is_some() }, ItemKind::ForeignMod(..) => DefKind::ForeignMod, ItemKind::Mod(..) => DefKind::Mod, ItemKind::Trait(..) => DefKind::Trait, ItemKind::TraitAlias(..) => DefKind::TraitAlias, ItemKind::Enum(..) => DefKind::Enum, ItemKind::Struct(..) => DefKind::Struct, ItemKind::Union(..) => DefKind::Union, ItemKind::ExternCrate(..) => DefKind::ExternCrate, ItemKind::TyAlias(..) => DefKind::TyAlias, ItemKind::Static(s) => DefKind::Static(s.mutability), ItemKind::Const(..) => DefKind::Const, ItemKind::Fn(..) => DefKind::Fn, ItemKind::MacroDef(..) => { let macro_data = self.resolver.compile_macro(i, self.resolver.tcx.sess.edition()); let macro_kind = macro_data.ext.macro_kind(); opt_macro_data = Some(macro_data); DefKind::Macro(macro_kind) } ItemKind::MacCall(..) => { visit::walk_item(self, i); return self.visit_macro_invoc(i.id); } ItemKind::GlobalAsm(..) => DefKind::GlobalAsm, ItemKind::Use(..) => { return visit::walk_item(self, i); } }; let def_id = self.create_def(i.id, i.ident.name, def_kind, i.span); if let Some(macro_data) = opt_macro_data { self.resolver.macro_map.insert(def_id.to_def_id(), macro_data); } self.with_parent(def_id, |this| { this.with_impl_trait(ImplTraitContext::Existential, |this| { match i.kind { ItemKind::Struct(ref struct_def, _) | ItemKind::Union(ref struct_def, _) => { // If this is a unit or tuple-like struct, register the constructor. if let Some((ctor_kind, ctor_node_id)) = CtorKind::from_ast(struct_def) { this.create_def( ctor_node_id, kw::Empty, DefKind::Ctor(CtorOf::Struct, ctor_kind), i.span, ); } } _ => {} } visit::walk_item(this, i); }) }); } fn visit_fn(&mut self, fn_kind: FnKind<'a>, span: Span, _: NodeId) { if let FnKind::Fn(_, _, sig, _, generics, body) = fn_kind { match sig.header.coroutine_kind { Some(coroutine_kind) => { self.visit_generics(generics); // For async functions, we need to create their inner defs inside of a // closure to match their desugared representation. Besides that, // we must mirror everything that `visit::walk_fn` below does. self.visit_fn_header(&sig.header); for param in &sig.decl.inputs { self.visit_param(param); } self.visit_fn_ret_ty(&sig.decl.output); // If this async fn has no body (i.e. it's an async fn signature in a trait) // then the closure_def will never be used, and we should avoid generating a // def-id for it. if let Some(body) = body { let closure_def = self.create_def( coroutine_kind.closure_id(), kw::Empty, DefKind::Closure, span, ); self.with_parent(closure_def, |this| this.visit_block(body)); } return; } None => {} } } visit::walk_fn(self, fn_kind); } fn visit_use_tree(&mut self, use_tree: &'a UseTree, id: NodeId, _nested: bool) { self.create_def(id, kw::Empty, DefKind::Use, use_tree.span); visit::walk_use_tree(self, use_tree, id); } fn visit_foreign_item(&mut self, fi: &'a ForeignItem) { let def_kind = match fi.kind { ForeignItemKind::Static(_, mt, _) => DefKind::Static(mt), ForeignItemKind::Fn(_) => DefKind::Fn, ForeignItemKind::TyAlias(_) => DefKind::ForeignTy, ForeignItemKind::MacCall(_) => return self.visit_macro_invoc(fi.id), }; let def = self.create_def(fi.id, fi.ident.name, def_kind, fi.span); self.with_parent(def, |this| visit::walk_foreign_item(this, fi)); } fn visit_variant(&mut self, v: &'a Variant) { if v.is_placeholder { return self.visit_macro_invoc(v.id); } let def = self.create_def(v.id, v.ident.name, DefKind::Variant, v.span); self.with_parent(def, |this| { if let Some((ctor_kind, ctor_node_id)) = CtorKind::from_ast(&v.data) { this.create_def( ctor_node_id, kw::Empty, DefKind::Ctor(CtorOf::Variant, ctor_kind), v.span, ); } visit::walk_variant(this, v) }); } fn visit_variant_data(&mut self, data: &'a VariantData) { // The assumption here is that non-`cfg` macro expansion cannot change field indices. // It currently holds because only inert attributes are accepted on fields, // and every such attribute expands into a single field after it's resolved. for (index, field) in data.fields().iter().enumerate() { self.collect_field(field, Some(index)); } } fn visit_generic_param(&mut self, param: &'a GenericParam) { if param.is_placeholder { self.visit_macro_invoc(param.id); return; } let def_kind = match param.kind { GenericParamKind::Lifetime { .. } => DefKind::LifetimeParam, GenericParamKind::Type { .. } => DefKind::TyParam, GenericParamKind::Const { .. } => DefKind::ConstParam, }; self.create_def(param.id, param.ident.name, def_kind, param.ident.span); // impl-Trait can happen inside generic parameters, like // ``` // fn foo>() {} // ``` // // In that case, the impl-trait is lowered as an additional generic parameter. self.with_impl_trait(ImplTraitContext::Universal, |this| { visit::walk_generic_param(this, param) }); } fn visit_assoc_item(&mut self, i: &'a AssocItem, ctxt: visit::AssocCtxt) { let def_kind = match &i.kind { AssocItemKind::Fn(..) => DefKind::AssocFn, AssocItemKind::Const(..) => DefKind::AssocConst, AssocItemKind::Type(..) => DefKind::AssocTy, AssocItemKind::MacCall(..) => return self.visit_macro_invoc(i.id), }; let def = self.create_def(i.id, i.ident.name, def_kind, i.span); self.with_parent(def, |this| visit::walk_assoc_item(this, i, ctxt)); } fn visit_pat(&mut self, pat: &'a Pat) { match pat.kind { PatKind::MacCall(..) => self.visit_macro_invoc(pat.id), _ => visit::walk_pat(self, pat), } } fn visit_anon_const(&mut self, constant: &'a AnonConst) { let def = self.create_def(constant.id, kw::Empty, DefKind::AnonConst, constant.value.span); self.with_parent(def, |this| visit::walk_anon_const(this, constant)); } fn visit_expr(&mut self, expr: &'a Expr) { let parent_def = match expr.kind { ExprKind::MacCall(..) => return self.visit_macro_invoc(expr.id), ExprKind::Closure(ref closure) => { // Async closures desugar to closures inside of closures, so // we must create two defs. let closure_def = self.create_def(expr.id, kw::Empty, DefKind::Closure, expr.span); match closure.coroutine_kind { Some(coroutine_kind) => self.create_def( coroutine_kind.closure_id(), kw::Empty, DefKind::Closure, expr.span, ), None => closure_def, } } ExprKind::Gen(_, _, _) => { self.create_def(expr.id, kw::Empty, DefKind::Closure, expr.span) } ExprKind::ConstBlock(ref constant) => { let def = self.create_def( constant.id, kw::Empty, DefKind::InlineConst, constant.value.span, ); self.with_parent(def, |this| visit::walk_anon_const(this, constant)); return; } _ => self.parent_def, }; self.with_parent(parent_def, |this| visit::walk_expr(this, expr)); } fn visit_ty(&mut self, ty: &'a Ty) { match ty.kind { TyKind::MacCall(..) => self.visit_macro_invoc(ty.id), _ => visit::walk_ty(self, ty), } } fn visit_stmt(&mut self, stmt: &'a Stmt) { match stmt.kind { StmtKind::MacCall(..) => self.visit_macro_invoc(stmt.id), _ => visit::walk_stmt(self, stmt), } } fn visit_arm(&mut self, arm: &'a Arm) { if arm.is_placeholder { self.visit_macro_invoc(arm.id) } else { visit::walk_arm(self, arm) } } fn visit_expr_field(&mut self, f: &'a ExprField) { if f.is_placeholder { self.visit_macro_invoc(f.id) } else { visit::walk_expr_field(self, f) } } fn visit_pat_field(&mut self, fp: &'a PatField) { if fp.is_placeholder { self.visit_macro_invoc(fp.id) } else { visit::walk_pat_field(self, fp) } } fn visit_param(&mut self, p: &'a Param) { if p.is_placeholder { self.visit_macro_invoc(p.id) } else { self.with_impl_trait(ImplTraitContext::Universal, |this| visit::walk_param(this, p)) } } // This method is called only when we are visiting an individual field // after expanding an attribute on it. fn visit_field_def(&mut self, field: &'a FieldDef) { self.collect_field(field, None); } fn visit_crate(&mut self, krate: &'a Crate) { if krate.is_placeholder { self.visit_macro_invoc(krate.id) } else { visit::walk_crate(self, krate) } } }