//! A bunch of methods and structures more or less related to resolving macros and //! interface provided by `Resolver` to macro expander. use crate::imports::ImportResolver; use crate::Namespace::*; use crate::{BuiltinMacroState, Determinacy}; use crate::{DeriveData, Finalize, ParentScope, ResolutionError, Resolver, ScopeSet}; use crate::{ModuleKind, ModuleOrUniformRoot, NameBinding, PathResult, Segment}; use rustc_ast::{self as ast, Inline, ItemKind, ModKind, NodeId}; use rustc_ast_pretty::pprust; use rustc_attr::StabilityLevel; use rustc_data_structures::fx::FxHashSet; use rustc_data_structures::intern::Interned; use rustc_data_structures::sync::Lrc; use rustc_errors::struct_span_err; use rustc_expand::base::{Annotatable, DeriveResolutions, Indeterminate, ResolverExpand}; use rustc_expand::base::{SyntaxExtension, SyntaxExtensionKind}; use rustc_expand::compile_declarative_macro; use rustc_expand::expand::{AstFragment, Invocation, InvocationKind, SupportsMacroExpansion}; use rustc_hir::def::{self, DefKind, NonMacroAttrKind}; use rustc_hir::def_id::{CrateNum, LocalDefId}; use rustc_middle::middle::stability; use rustc_middle::ty::RegisteredTools; use rustc_session::lint::builtin::{LEGACY_DERIVE_HELPERS, SOFT_UNSTABLE}; use rustc_session::lint::builtin::{UNUSED_MACROS, UNUSED_MACRO_RULES}; use rustc_session::lint::BuiltinLintDiagnostics; use rustc_session::parse::feature_err; use rustc_session::Session; use rustc_span::edition::Edition; use rustc_span::hygiene::{self, ExpnData, ExpnKind, LocalExpnId}; use rustc_span::hygiene::{AstPass, MacroKind}; use rustc_span::symbol::{kw, sym, Ident, Symbol}; use rustc_span::{Span, DUMMY_SP}; use std::cell::Cell; use std::mem; type Res = def::Res; /// Binding produced by a `macro_rules` item. /// Not modularized, can shadow previous `macro_rules` bindings, etc. #[derive(Debug)] pub struct MacroRulesBinding<'a> { pub(crate) binding: &'a NameBinding<'a>, /// `macro_rules` scope into which the `macro_rules` item was planted. pub(crate) parent_macro_rules_scope: MacroRulesScopeRef<'a>, pub(crate) ident: Ident, } /// The scope introduced by a `macro_rules!` macro. /// This starts at the macro's definition and ends at the end of the macro's parent /// module (named or unnamed), or even further if it escapes with `#[macro_use]`. /// Some macro invocations need to introduce `macro_rules` scopes too because they /// can potentially expand into macro definitions. #[derive(Copy, Clone, Debug)] pub enum MacroRulesScope<'a> { /// Empty "root" scope at the crate start containing no names. Empty, /// The scope introduced by a `macro_rules!` macro definition. Binding(&'a MacroRulesBinding<'a>), /// The scope introduced by a macro invocation that can potentially /// create a `macro_rules!` macro definition. Invocation(LocalExpnId), } /// `macro_rules!` scopes are always kept by reference and inside a cell. /// The reason is that we update scopes with value `MacroRulesScope::Invocation(invoc_id)` /// in-place after `invoc_id` gets expanded. /// This helps to avoid uncontrollable growth of `macro_rules!` scope chains, /// which usually grow linearly with the number of macro invocations /// in a module (including derives) and hurt performance. pub(crate) type MacroRulesScopeRef<'a> = Interned<'a, Cell>>; /// Macro namespace is separated into two sub-namespaces, one for bang macros and /// one for attribute-like macros (attributes, derives). /// We ignore resolutions from one sub-namespace when searching names in scope for another. pub(crate) fn sub_namespace_match( candidate: Option, requirement: Option, ) -> bool { #[derive(PartialEq)] enum SubNS { Bang, AttrLike, } let sub_ns = |kind| match kind { MacroKind::Bang => SubNS::Bang, MacroKind::Attr | MacroKind::Derive => SubNS::AttrLike, }; let candidate = candidate.map(sub_ns); let requirement = requirement.map(sub_ns); // "No specific sub-namespace" means "matches anything" for both requirements and candidates. candidate.is_none() || requirement.is_none() || candidate == requirement } // We don't want to format a path using pretty-printing, // `format!("{}", path)`, because that tries to insert // line-breaks and is slow. fn fast_print_path(path: &ast::Path) -> Symbol { if path.segments.len() == 1 { path.segments[0].ident.name } else { let mut path_str = String::with_capacity(64); for (i, segment) in path.segments.iter().enumerate() { if i != 0 { path_str.push_str("::"); } if segment.ident.name != kw::PathRoot { path_str.push_str(segment.ident.as_str()) } } Symbol::intern(&path_str) } } pub(crate) fn registered_tools(sess: &Session, attrs: &[ast::Attribute]) -> FxHashSet { let mut registered_tools = FxHashSet::default(); for attr in sess.filter_by_name(attrs, sym::register_tool) { for nested_meta in attr.meta_item_list().unwrap_or_default() { match nested_meta.ident() { Some(ident) => { if let Some(old_ident) = registered_tools.replace(ident) { let msg = format!("{} `{}` was already registered", "tool", ident); sess.struct_span_err(ident.span, &msg) .span_label(old_ident.span, "already registered here") .emit(); } } None => { let msg = format!("`{}` only accepts identifiers", sym::register_tool); let span = nested_meta.span(); sess.struct_span_err(span, &msg).span_label(span, "not an identifier").emit(); } } } } // We implicitly add `rustfmt` and `clippy` to known tools, // but it's not an error to register them explicitly. let predefined_tools = [sym::clippy, sym::rustfmt]; registered_tools.extend(predefined_tools.iter().cloned().map(Ident::with_dummy_span)); registered_tools } // Some feature gates for inner attributes are reported as lints for backward compatibility. fn soft_custom_inner_attributes_gate(path: &ast::Path, invoc: &Invocation) -> bool { match &path.segments[..] { // `#![test]` [seg] if seg.ident.name == sym::test => return true, // `#![rustfmt::skip]` on out-of-line modules [seg1, seg2] if seg1.ident.name == sym::rustfmt && seg2.ident.name == sym::skip => { if let InvocationKind::Attr { item, .. } = &invoc.kind { if let Annotatable::Item(item) = item { if let ItemKind::Mod(_, ModKind::Loaded(_, Inline::No, _)) = item.kind { return true; } } } } _ => {} } false } impl<'a> ResolverExpand for Resolver<'a> { fn next_node_id(&mut self) -> NodeId { self.next_node_id() } fn invocation_parent(&self, id: LocalExpnId) -> LocalDefId { self.invocation_parents[&id].0 } fn resolve_dollar_crates(&mut self) { hygiene::update_dollar_crate_names(|ctxt| { let ident = Ident::new(kw::DollarCrate, DUMMY_SP.with_ctxt(ctxt)); match self.resolve_crate_root(ident).kind { ModuleKind::Def(.., name) if name != kw::Empty => name, _ => kw::Crate, } }); } fn visit_ast_fragment_with_placeholders( &mut self, expansion: LocalExpnId, fragment: &AstFragment, ) { // Integrate the new AST fragment into all the definition and module structures. // We are inside the `expansion` now, but other parent scope components are still the same. let parent_scope = ParentScope { expansion, ..self.invocation_parent_scopes[&expansion] }; let output_macro_rules_scope = self.build_reduced_graph(fragment, parent_scope); self.output_macro_rules_scopes.insert(expansion, output_macro_rules_scope); parent_scope.module.unexpanded_invocations.borrow_mut().remove(&expansion); } fn register_builtin_macro(&mut self, name: Symbol, ext: SyntaxExtensionKind) { if self.builtin_macros.insert(name, BuiltinMacroState::NotYetSeen(ext)).is_some() { self.session .diagnostic() .bug(&format!("built-in macro `{}` was already registered", name)); } } // Create a new Expansion with a definition site of the provided module, or // a fake empty `#[no_implicit_prelude]` module if no module is provided. fn expansion_for_ast_pass( &mut self, call_site: Span, pass: AstPass, features: &[Symbol], parent_module_id: Option, ) -> LocalExpnId { let parent_module = parent_module_id.map(|module_id| self.local_def_id(module_id).to_def_id()); let expn_id = LocalExpnId::fresh( ExpnData::allow_unstable( ExpnKind::AstPass(pass), call_site, self.session.edition(), features.into(), None, parent_module, ), self.create_stable_hashing_context(), ); let parent_scope = parent_module.map_or(self.empty_module, |def_id| self.expect_module(def_id)); self.ast_transform_scopes.insert(expn_id, parent_scope); expn_id } fn resolve_imports(&mut self) { ImportResolver { r: self }.resolve_imports() } fn resolve_macro_invocation( &mut self, invoc: &Invocation, eager_expansion_root: LocalExpnId, force: bool, ) -> Result, Indeterminate> { let invoc_id = invoc.expansion_data.id; let parent_scope = match self.invocation_parent_scopes.get(&invoc_id) { Some(parent_scope) => *parent_scope, None => { // If there's no entry in the table, then we are resolving an eagerly expanded // macro, which should inherit its parent scope from its eager expansion root - // the macro that requested this eager expansion. let parent_scope = *self .invocation_parent_scopes .get(&eager_expansion_root) .expect("non-eager expansion without a parent scope"); self.invocation_parent_scopes.insert(invoc_id, parent_scope); parent_scope } }; let (path, kind, inner_attr, derives) = match invoc.kind { InvocationKind::Attr { ref attr, ref derives, .. } => ( &attr.get_normal_item().path, MacroKind::Attr, attr.style == ast::AttrStyle::Inner, self.arenas.alloc_ast_paths(derives), ), InvocationKind::Bang { ref mac, .. } => (&mac.path, MacroKind::Bang, false, &[][..]), InvocationKind::Derive { ref path, .. } => (path, MacroKind::Derive, false, &[][..]), }; // Derives are not included when `invocations` are collected, so we have to add them here. let parent_scope = &ParentScope { derives, ..parent_scope }; let supports_macro_expansion = invoc.fragment_kind.supports_macro_expansion(); let node_id = invoc.expansion_data.lint_node_id; let (ext, res) = self.smart_resolve_macro_path( path, kind, supports_macro_expansion, inner_attr, parent_scope, node_id, force, soft_custom_inner_attributes_gate(path, invoc), )?; let span = invoc.span(); let def_id = res.opt_def_id(); invoc_id.set_expn_data( ext.expn_data( parent_scope.expansion, span, fast_print_path(path), def_id, def_id.map(|def_id| self.macro_def_scope(def_id).nearest_parent_mod()), ), self.create_stable_hashing_context(), ); Ok(ext) } fn record_macro_rule_usage(&mut self, id: NodeId, rule_i: usize) { let did = self.local_def_id(id); self.unused_macro_rules.remove(&(did, rule_i)); } fn check_unused_macros(&mut self) { for (_, &(node_id, ident)) in self.unused_macros.iter() { self.lint_buffer.buffer_lint( UNUSED_MACROS, node_id, ident.span, &format!("unused macro definition: `{}`", ident.name), ); } for (&(def_id, arm_i), &(ident, rule_span)) in self.unused_macro_rules.iter() { if self.unused_macros.contains_key(&def_id) { // We already lint the entire macro as unused continue; } let node_id = self.def_id_to_node_id[def_id]; self.lint_buffer.buffer_lint( UNUSED_MACRO_RULES, node_id, rule_span, &format!( "{} rule of macro `{}` is never used", crate::diagnostics::ordinalize(arm_i + 1), ident.name ), ); } } fn has_derive_copy(&self, expn_id: LocalExpnId) -> bool { self.containers_deriving_copy.contains(&expn_id) } fn resolve_derives( &mut self, expn_id: LocalExpnId, force: bool, derive_paths: &dyn Fn() -> DeriveResolutions, ) -> Result<(), Indeterminate> { // Block expansion of the container until we resolve all derives in it. // This is required for two reasons: // - Derive helper attributes are in scope for the item to which the `#[derive]` // is applied, so they have to be produced by the container's expansion rather // than by individual derives. // - Derives in the container need to know whether one of them is a built-in `Copy`. // Temporarily take the data to avoid borrow checker conflicts. let mut derive_data = mem::take(&mut self.derive_data); let entry = derive_data.entry(expn_id).or_insert_with(|| DeriveData { resolutions: derive_paths(), helper_attrs: Vec::new(), has_derive_copy: false, }); let parent_scope = self.invocation_parent_scopes[&expn_id]; for (i, (path, _, opt_ext)) in entry.resolutions.iter_mut().enumerate() { if opt_ext.is_none() { *opt_ext = Some( match self.resolve_macro_path( &path, Some(MacroKind::Derive), &parent_scope, true, force, ) { Ok((Some(ext), _)) => { if !ext.helper_attrs.is_empty() { let last_seg = path.segments.last().unwrap(); let span = last_seg.ident.span.normalize_to_macros_2_0(); entry.helper_attrs.extend( ext.helper_attrs .iter() .map(|name| (i, Ident::new(*name, span))), ); } entry.has_derive_copy |= ext.builtin_name == Some(sym::Copy); ext } Ok(_) | Err(Determinacy::Determined) => self.dummy_ext(MacroKind::Derive), Err(Determinacy::Undetermined) => { assert!(self.derive_data.is_empty()); self.derive_data = derive_data; return Err(Indeterminate); } }, ); } } // Sort helpers in a stable way independent from the derive resolution order. entry.helper_attrs.sort_by_key(|(i, _)| *i); self.helper_attrs .insert(expn_id, entry.helper_attrs.iter().map(|(_, ident)| *ident).collect()); // Mark this derive as having `Copy` either if it has `Copy` itself or if its parent derive // has `Copy`, to support cases like `#[derive(Clone, Copy)] #[derive(Debug)]`. if entry.has_derive_copy || self.has_derive_copy(parent_scope.expansion) { self.containers_deriving_copy.insert(expn_id); } assert!(self.derive_data.is_empty()); self.derive_data = derive_data; Ok(()) } fn take_derive_resolutions(&mut self, expn_id: LocalExpnId) -> Option { self.derive_data.remove(&expn_id).map(|data| data.resolutions) } // The function that implements the resolution logic of `#[cfg_accessible(path)]`. // Returns true if the path can certainly be resolved in one of three namespaces, // returns false if the path certainly cannot be resolved in any of the three namespaces. // Returns `Indeterminate` if we cannot give a certain answer yet. fn cfg_accessible( &mut self, expn_id: LocalExpnId, path: &ast::Path, ) -> Result { let span = path.span; let path = &Segment::from_path(path); let parent_scope = self.invocation_parent_scopes[&expn_id]; let mut indeterminate = false; for ns in [TypeNS, ValueNS, MacroNS].iter().copied() { match self.maybe_resolve_path(path, Some(ns), &parent_scope) { PathResult::Module(ModuleOrUniformRoot::Module(_)) => return Ok(true), PathResult::NonModule(partial_res) if partial_res.unresolved_segments() == 0 => { return Ok(true); } PathResult::NonModule(..) | // HACK(Urgau): This shouldn't be necessary PathResult::Failed { is_error_from_last_segment: false, .. } => { self.session .struct_span_err(span, "not sure whether the path is accessible or not") .note("the type may have associated items, but we are currently not checking them") .emit(); // If we get a partially resolved NonModule in one namespace, we should get the // same result in any other namespaces, so we can return early. return Ok(false); } PathResult::Indeterminate => indeterminate = true, // We can only be sure that a path doesn't exist after having tested all the // possibilities, only at that time we can return false. PathResult::Failed { .. } => {} PathResult::Module(_) => panic!("unexpected path resolution"), } } if indeterminate { return Err(Indeterminate); } Ok(false) } fn get_proc_macro_quoted_span(&self, krate: CrateNum, id: usize) -> Span { self.crate_loader.cstore().get_proc_macro_quoted_span_untracked(krate, id, self.session) } fn declare_proc_macro(&mut self, id: NodeId) { self.proc_macros.push(id) } fn registered_tools(&self) -> &RegisteredTools { &self.registered_tools } } impl<'a> Resolver<'a> { /// Resolve macro path with error reporting and recovery. /// Uses dummy syntax extensions for unresolved macros or macros with unexpected resolutions /// for better error recovery. fn smart_resolve_macro_path( &mut self, path: &ast::Path, kind: MacroKind, supports_macro_expansion: SupportsMacroExpansion, inner_attr: bool, parent_scope: &ParentScope<'a>, node_id: NodeId, force: bool, soft_custom_inner_attributes_gate: bool, ) -> Result<(Lrc, Res), Indeterminate> { let (ext, res) = match self.resolve_macro_path(path, Some(kind), parent_scope, true, force) { Ok((Some(ext), res)) => (ext, res), Ok((None, res)) => (self.dummy_ext(kind), res), Err(Determinacy::Determined) => (self.dummy_ext(kind), Res::Err), Err(Determinacy::Undetermined) => return Err(Indeterminate), }; // Report errors for the resolved macro. for segment in &path.segments { if let Some(args) = &segment.args { self.session.span_err(args.span(), "generic arguments in macro path"); } if kind == MacroKind::Attr && segment.ident.as_str().starts_with("rustc") { self.session.span_err( segment.ident.span, "attributes starting with `rustc` are reserved for use by the `rustc` compiler", ); } } match res { Res::Def(DefKind::Macro(_), def_id) => { if let Some(def_id) = def_id.as_local() { self.unused_macros.remove(&def_id); if self.proc_macro_stubs.contains(&def_id) { self.session.span_err( path.span, "can't use a procedural macro from the same crate that defines it", ); } } } Res::NonMacroAttr(..) | Res::Err => {} _ => panic!("expected `DefKind::Macro` or `Res::NonMacroAttr`"), }; self.check_stability_and_deprecation(&ext, path, node_id); let unexpected_res = if ext.macro_kind() != kind { Some((kind.article(), kind.descr_expected())) } else if matches!(res, Res::Def(..)) { match supports_macro_expansion { SupportsMacroExpansion::No => Some(("a", "non-macro attribute")), SupportsMacroExpansion::Yes { supports_inner_attrs } => { if inner_attr && !supports_inner_attrs { Some(("a", "non-macro inner attribute")) } else { None } } } } else { None }; if let Some((article, expected)) = unexpected_res { let path_str = pprust::path_to_string(path); let msg = format!("expected {}, found {} `{}`", expected, res.descr(), path_str); self.session .struct_span_err(path.span, &msg) .span_label(path.span, format!("not {} {}", article, expected)) .emit(); return Ok((self.dummy_ext(kind), Res::Err)); } // We are trying to avoid reporting this error if other related errors were reported. if res != Res::Err && inner_attr && !self.session.features_untracked().custom_inner_attributes { let msg = match res { Res::Def(..) => "inner macro attributes are unstable", Res::NonMacroAttr(..) => "custom inner attributes are unstable", _ => unreachable!(), }; if soft_custom_inner_attributes_gate { self.session.parse_sess.buffer_lint(SOFT_UNSTABLE, path.span, node_id, msg); } else { feature_err(&self.session.parse_sess, sym::custom_inner_attributes, path.span, msg) .emit(); } } Ok((ext, res)) } pub fn resolve_macro_path( &mut self, path: &ast::Path, kind: Option, parent_scope: &ParentScope<'a>, trace: bool, force: bool, ) -> Result<(Option>, Res), Determinacy> { let path_span = path.span; let mut path = Segment::from_path(path); // Possibly apply the macro helper hack if kind == Some(MacroKind::Bang) && path.len() == 1 && path[0].ident.span.ctxt().outer_expn_data().local_inner_macros { let root = Ident::new(kw::DollarCrate, path[0].ident.span); path.insert(0, Segment::from_ident(root)); } let res = if path.len() > 1 { let res = match self.maybe_resolve_path(&path, Some(MacroNS), parent_scope) { PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => { Ok(path_res.base_res()) } PathResult::Indeterminate if !force => return Err(Determinacy::Undetermined), PathResult::NonModule(..) | PathResult::Indeterminate | PathResult::Failed { .. } => Err(Determinacy::Determined), PathResult::Module(..) => unreachable!(), }; if trace { let kind = kind.expect("macro kind must be specified if tracing is enabled"); self.multi_segment_macro_resolutions.push(( path, path_span, kind, *parent_scope, res.ok(), )); } self.prohibit_imported_non_macro_attrs(None, res.ok(), path_span); res } else { let scope_set = kind.map_or(ScopeSet::All(MacroNS, false), ScopeSet::Macro); let binding = self.early_resolve_ident_in_lexical_scope( path[0].ident, scope_set, parent_scope, None, force, None, ); if let Err(Determinacy::Undetermined) = binding { return Err(Determinacy::Undetermined); } if trace { let kind = kind.expect("macro kind must be specified if tracing is enabled"); self.single_segment_macro_resolutions.push(( path[0].ident, kind, *parent_scope, binding.ok(), )); } let res = binding.map(|binding| binding.res()); self.prohibit_imported_non_macro_attrs(binding.ok(), res.ok(), path_span); res }; res.map(|res| (self.get_macro(res).map(|macro_data| macro_data.ext), res)) } pub(crate) fn finalize_macro_resolutions(&mut self) { let check_consistency = |this: &mut Self, path: &[Segment], span, kind: MacroKind, initial_res: Option, res: Res| { if let Some(initial_res) = initial_res { if res != initial_res { // Make sure compilation does not succeed if preferred macro resolution // has changed after the macro had been expanded. In theory all such // situations should be reported as errors, so this is a bug. this.session.delay_span_bug(span, "inconsistent resolution for a macro"); } } else { // It's possible that the macro was unresolved (indeterminate) and silently // expanded into a dummy fragment for recovery during expansion. // Now, post-expansion, the resolution may succeed, but we can't change the // past and need to report an error. // However, non-speculative `resolve_path` can successfully return private items // even if speculative `resolve_path` returned nothing previously, so we skip this // less informative error if the privacy error is reported elsewhere. if this.privacy_errors.is_empty() { let msg = format!( "cannot determine resolution for the {} `{}`", kind.descr(), Segment::names_to_string(path) ); let msg_note = "import resolution is stuck, try simplifying macro imports"; this.session.struct_span_err(span, &msg).note(msg_note).emit(); } } }; let macro_resolutions = mem::take(&mut self.multi_segment_macro_resolutions); for (mut path, path_span, kind, parent_scope, initial_res) in macro_resolutions { // FIXME: Path resolution will ICE if segment IDs present. for seg in &mut path { seg.id = None; } match self.resolve_path( &path, Some(MacroNS), &parent_scope, Some(Finalize::new(ast::CRATE_NODE_ID, path_span)), None, ) { PathResult::NonModule(path_res) if path_res.unresolved_segments() == 0 => { let res = path_res.base_res(); check_consistency(self, &path, path_span, kind, initial_res, res); } path_res @ PathResult::NonModule(..) | path_res @ PathResult::Failed { .. } => { let (span, label) = if let PathResult::Failed { span, label, .. } = path_res { (span, label) } else { ( path_span, format!( "partially resolved path in {} {}", kind.article(), kind.descr() ), ) }; self.report_error( span, ResolutionError::FailedToResolve { label, suggestion: None }, ); } PathResult::Module(..) | PathResult::Indeterminate => unreachable!(), } } let macro_resolutions = mem::take(&mut self.single_segment_macro_resolutions); for (ident, kind, parent_scope, initial_binding) in macro_resolutions { match self.early_resolve_ident_in_lexical_scope( ident, ScopeSet::Macro(kind), &parent_scope, Some(Finalize::new(ast::CRATE_NODE_ID, ident.span)), true, None, ) { Ok(binding) => { let initial_res = initial_binding.map(|initial_binding| { self.record_use(ident, initial_binding, false); initial_binding.res() }); let res = binding.res(); let seg = Segment::from_ident(ident); check_consistency(self, &[seg], ident.span, kind, initial_res, res); if res == Res::NonMacroAttr(NonMacroAttrKind::DeriveHelperCompat) { let node_id = self .invocation_parents .get(&parent_scope.expansion) .map_or(ast::CRATE_NODE_ID, |id| self.def_id_to_node_id[id.0]); self.lint_buffer.buffer_lint_with_diagnostic( LEGACY_DERIVE_HELPERS, node_id, ident.span, "derive helper attribute is used before it is introduced", BuiltinLintDiagnostics::LegacyDeriveHelpers(binding.span), ); } } Err(..) => { let expected = kind.descr_expected(); let msg = format!("cannot find {} `{}` in this scope", expected, ident); let mut err = self.session.struct_span_err(ident.span, &msg); self.unresolved_macro_suggestions(&mut err, kind, &parent_scope, ident); err.emit(); } } } let builtin_attrs = mem::take(&mut self.builtin_attrs); for (ident, parent_scope) in builtin_attrs { let _ = self.early_resolve_ident_in_lexical_scope( ident, ScopeSet::Macro(MacroKind::Attr), &parent_scope, Some(Finalize::new(ast::CRATE_NODE_ID, ident.span)), true, None, ); } } fn check_stability_and_deprecation( &mut self, ext: &SyntaxExtension, path: &ast::Path, node_id: NodeId, ) { let span = path.span; if let Some(stability) = &ext.stability { if let StabilityLevel::Unstable { reason, issue, is_soft, implied_by } = stability.level { let feature = stability.feature; let is_allowed = |feature| { self.active_features.contains(&feature) || span.allows_unstable(feature) }; let allowed_by_implication = implied_by.map(|feature| is_allowed(feature)).unwrap_or(false); if !is_allowed(feature) && !allowed_by_implication { let lint_buffer = &mut self.lint_buffer; let soft_handler = |lint, span, msg: &_| lint_buffer.buffer_lint(lint, node_id, span, msg); stability::report_unstable( self.session, feature, reason.to_opt_reason(), issue, None, is_soft, span, soft_handler, ); } } } if let Some(depr) = &ext.deprecation { let path = pprust::path_to_string(&path); let (message, lint) = stability::deprecation_message_and_lint(depr, "macro", &path); stability::early_report_deprecation( &mut self.lint_buffer, &message, depr.suggestion, lint, span, node_id, ); } } fn prohibit_imported_non_macro_attrs( &self, binding: Option<&'a NameBinding<'a>>, res: Option, span: Span, ) { if let Some(Res::NonMacroAttr(kind)) = res { if kind != NonMacroAttrKind::Tool && binding.map_or(true, |b| b.is_import()) { let msg = format!("cannot use {} {} through an import", kind.article(), kind.descr()); let mut err = self.session.struct_span_err(span, &msg); if let Some(binding) = binding { err.span_note(binding.span, &format!("the {} imported here", kind.descr())); } err.emit(); } } } pub(crate) fn check_reserved_macro_name(&mut self, ident: Ident, res: Res) { // Reserve some names that are not quite covered by the general check // performed on `Resolver::builtin_attrs`. if ident.name == sym::cfg || ident.name == sym::cfg_attr { let macro_kind = self.get_macro(res).map(|macro_data| macro_data.ext.macro_kind()); if macro_kind.is_some() && sub_namespace_match(macro_kind, Some(MacroKind::Attr)) { self.session.span_err( ident.span, &format!("name `{}` is reserved in attribute namespace", ident), ); } } } /// Compile the macro into a `SyntaxExtension` and its rule spans. /// /// Possibly replace its expander to a pre-defined one for built-in macros. pub(crate) fn compile_macro( &mut self, item: &ast::Item, edition: Edition, ) -> (SyntaxExtension, Vec<(usize, Span)>) { let (mut result, mut rule_spans) = compile_declarative_macro( &self.session, self.session.features_untracked(), item, edition, ); if let Some(builtin_name) = result.builtin_name { // The macro was marked with `#[rustc_builtin_macro]`. if let Some(builtin_macro) = self.builtin_macros.get_mut(&builtin_name) { // The macro is a built-in, replace its expander function // while still taking everything else from the source code. // If we already loaded this builtin macro, give a better error message than 'no such builtin macro'. match mem::replace(builtin_macro, BuiltinMacroState::AlreadySeen(item.span)) { BuiltinMacroState::NotYetSeen(ext) => { result.kind = ext; rule_spans = Vec::new(); if item.id != ast::DUMMY_NODE_ID { self.builtin_macro_kinds .insert(self.local_def_id(item.id), result.macro_kind()); } } BuiltinMacroState::AlreadySeen(span) => { struct_span_err!( self.session, item.span, E0773, "attempted to define built-in macro more than once" ) .span_note(span, "previously defined here") .emit(); } } } else { let msg = format!("cannot find a built-in macro with name `{}`", item.ident); self.session.span_err(item.span, &msg); } } (result, rule_spans) } }