//! A module for searching for libraries use std::env; use std::fs; use std::iter::FromIterator; use std::path::{Path, PathBuf}; use crate::search_paths::{PathKind, SearchPath}; use rustc_fs_util::fix_windows_verbatim_for_gcc; #[derive(Copy, Clone)] pub enum FileMatch { FileMatches, FileDoesntMatch, } #[derive(Clone)] pub struct FileSearch<'a> { sysroot: &'a Path, triple: &'a str, search_paths: &'a [SearchPath], tlib_path: &'a SearchPath, kind: PathKind, } impl<'a> FileSearch<'a> { pub fn search_paths(&self) -> impl Iterator { let kind = self.kind; self.search_paths .iter() .filter(move |sp| sp.kind.matches(kind)) .chain(std::iter::once(self.tlib_path)) } pub fn get_lib_path(&self) -> PathBuf { make_target_lib_path(self.sysroot, self.triple) } pub fn get_self_contained_lib_path(&self) -> PathBuf { self.get_lib_path().join("self-contained") } pub fn new( sysroot: &'a Path, triple: &'a str, search_paths: &'a [SearchPath], tlib_path: &'a SearchPath, kind: PathKind, ) -> FileSearch<'a> { debug!("using sysroot = {}, triple = {}", sysroot.display(), triple); FileSearch { sysroot, triple, search_paths, tlib_path, kind } } /// Returns just the directories within the search paths. pub fn search_path_dirs(&self) -> Vec { self.search_paths().map(|sp| sp.dir.to_path_buf()).collect() } } pub fn make_target_lib_path(sysroot: &Path, target_triple: &str) -> PathBuf { let rustlib_path = rustc_target::target_rustlib_path(sysroot, target_triple); PathBuf::from_iter([sysroot, Path::new(&rustlib_path), Path::new("lib")]) } /// This function checks if sysroot is found using env::args().next(), and if it /// is not found, uses env::current_exe() to imply sysroot. pub fn get_or_default_sysroot() -> PathBuf { // Follow symlinks. If the resolved path is relative, make it absolute. fn canonicalize(path: PathBuf) -> PathBuf { let path = fs::canonicalize(&path).unwrap_or(path); // See comments on this target function, but the gist is that // gcc chokes on verbatim paths which fs::canonicalize generates // so we try to avoid those kinds of paths. fix_windows_verbatim_for_gcc(&path) } // Use env::current_exe() to get the path of the executable following // symlinks/canonicalizing components. fn from_current_exe() -> PathBuf { match env::current_exe() { Ok(exe) => { let mut p = canonicalize(exe); p.pop(); p.pop(); p } Err(e) => panic!("failed to get current_exe: {e}"), } } // Use env::args().next() to get the path of the executable without // following symlinks/canonicalizing any component. This makes the rustc // binary able to locate Rust libraries in systems using content-addressable // storage (CAS). fn from_env_args_next() -> Option { match env::args_os().next() { Some(first_arg) => { let mut p = PathBuf::from(first_arg); // Check if sysroot is found using env::args().next() only if the rustc in argv[0] // is a symlink (see #79253). We might want to change/remove it to conform with // https://www.gnu.org/prep/standards/standards.html#Finding-Program-Files in the // future. if fs::read_link(&p).is_err() { // Path is not a symbolic link or does not exist. return None; } // Pop off `bin/rustc`, obtaining the suspected sysroot. p.pop(); p.pop(); // Look for the target rustlib directory in the suspected sysroot. let mut rustlib_path = rustc_target::target_rustlib_path(&p, "dummy"); rustlib_path.pop(); // pop off the dummy target. if rustlib_path.exists() { Some(p) } else { None } } None => None, } } // Check if sysroot is found using env::args().next(), and if is not found, // use env::current_exe() to imply sysroot. from_env_args_next().unwrap_or_else(from_current_exe) }