//! Types for tracking pieces of source code within a crate. //! //! The [`SourceMap`] tracks all the source code used within a single crate, mapping //! from integer byte positions to the original source code location. Each bit //! of source parsed during crate parsing (typically files, in-memory strings, //! or various bits of macro expansion) cover a continuous range of bytes in the //! `SourceMap` and are represented by [`SourceFile`]s. Byte positions are stored in //! [`Span`] and used pervasively in the compiler. They are absolute positions //! within the `SourceMap`, which upon request can be converted to line and column //! information, source code snippets, etc. pub use crate::hygiene::{ExpnData, ExpnKind}; pub use crate::*; use rustc_data_structures::fx::FxHashMap; use rustc_data_structures::stable_hasher::StableHasher; use rustc_data_structures::sync::{AtomicU32, Lrc, MappedReadGuard, ReadGuard, RwLock}; use std::cmp; use std::hash::Hash; use std::path::{self, Path, PathBuf}; use std::sync::atomic::Ordering; use std::fs; use std::io; #[cfg(test)] mod tests; /// Returns the span itself if it doesn't come from a macro expansion, /// otherwise return the call site span up to the `enclosing_sp` by /// following the `expn_data` chain. pub fn original_sp(sp: Span, enclosing_sp: Span) -> Span { let expn_data1 = sp.ctxt().outer_expn_data(); let expn_data2 = enclosing_sp.ctxt().outer_expn_data(); if expn_data1.is_root() || !expn_data2.is_root() && expn_data1.call_site == expn_data2.call_site { sp } else { original_sp(expn_data1.call_site, enclosing_sp) } } pub mod monotonic { use std::ops::{Deref, DerefMut}; /// A `MonotonicVec` is a `Vec` which can only be grown. /// Once inserted, an element can never be removed or swapped, /// guaranteeing that any indices into a `MonotonicVec` are stable // This is declared in its own module to ensure that the private // field is inaccessible pub struct MonotonicVec(Vec); impl MonotonicVec { pub fn new(val: Vec) -> MonotonicVec { MonotonicVec(val) } pub fn push(&mut self, val: T) { self.0.push(val); } } impl Default for MonotonicVec { fn default() -> Self { MonotonicVec::new(vec![]) } } impl Deref for MonotonicVec { type Target = Vec; fn deref(&self) -> &Self::Target { &self.0 } } impl !DerefMut for MonotonicVec {} } #[derive(Clone, Encodable, Decodable, Debug, Copy, HashStable_Generic)] pub struct Spanned { pub node: T, pub span: Span, } pub fn respan(sp: Span, t: T) -> Spanned { Spanned { node: t, span: sp } } pub fn dummy_spanned(t: T) -> Spanned { respan(DUMMY_SP, t) } // _____________________________________________________________________________ // SourceFile, MultiByteChar, FileName, FileLines // /// An abstraction over the fs operations used by the Parser. pub trait FileLoader { /// Query the existence of a file. fn file_exists(&self, path: &Path) -> bool; /// Read the contents of a UTF-8 file into memory. fn read_file(&self, path: &Path) -> io::Result; /// Read the contents of a potentially non-UTF-8 file into memory. fn read_binary_file(&self, path: &Path) -> io::Result>; } /// A FileLoader that uses std::fs to load real files. pub struct RealFileLoader; impl FileLoader for RealFileLoader { fn file_exists(&self, path: &Path) -> bool { path.exists() } fn read_file(&self, path: &Path) -> io::Result { fs::read_to_string(path) } fn read_binary_file(&self, path: &Path) -> io::Result> { fs::read(path) } } /// This is a [SourceFile] identifier that is used to correlate source files between /// subsequent compilation sessions (which is something we need to do during /// incremental compilation). /// /// The [StableSourceFileId] also contains the CrateNum of the crate the source /// file was originally parsed for. This way we get two separate entries in /// the [SourceMap] if the same file is part of both the local and an upstream /// crate. Trying to only have one entry for both cases is problematic because /// at the point where we discover that there's a local use of the file in /// addition to the upstream one, we might already have made decisions based on /// the assumption that it's an upstream file. Treating the two files as /// different has no real downsides. #[derive(Copy, Clone, PartialEq, Eq, Hash, Encodable, Decodable, Debug)] pub struct StableSourceFileId { /// A hash of the source file's [`FileName`]. This is hash so that it's size /// is more predictable than if we included the actual [`FileName`] value. pub file_name_hash: u64, /// The [`CrateNum`] of the crate this source file was originally parsed for. /// We cannot include this information in the hash because at the time /// of hashing we don't have the context to map from the [`CrateNum`]'s numeric /// value to a `StableCrateId`. pub cnum: CrateNum, } // FIXME: we need a more globally consistent approach to the problem solved by // StableSourceFileId, perhaps built atop source_file.name_hash. impl StableSourceFileId { pub fn new(source_file: &SourceFile) -> StableSourceFileId { StableSourceFileId::new_from_name(&source_file.name, source_file.cnum) } fn new_from_name(name: &FileName, cnum: CrateNum) -> StableSourceFileId { let mut hasher = StableHasher::new(); name.hash(&mut hasher); StableSourceFileId { file_name_hash: hasher.finish(), cnum } } } // _____________________________________________________________________________ // SourceMap // #[derive(Default)] pub(super) struct SourceMapFiles { source_files: monotonic::MonotonicVec>, stable_id_to_source_file: FxHashMap>, } pub struct SourceMap { /// The address space below this value is currently used by the files in the source map. used_address_space: AtomicU32, files: RwLock, file_loader: Box, // This is used to apply the file path remapping as specified via // `--remap-path-prefix` to all `SourceFile`s allocated within this `SourceMap`. path_mapping: FilePathMapping, /// The algorithm used for hashing the contents of each source file. hash_kind: SourceFileHashAlgorithm, } impl SourceMap { pub fn new(path_mapping: FilePathMapping) -> SourceMap { Self::with_file_loader_and_hash_kind( Box::new(RealFileLoader), path_mapping, SourceFileHashAlgorithm::Md5, ) } pub fn with_file_loader_and_hash_kind( file_loader: Box, path_mapping: FilePathMapping, hash_kind: SourceFileHashAlgorithm, ) -> SourceMap { SourceMap { used_address_space: AtomicU32::new(0), files: Default::default(), file_loader, path_mapping, hash_kind, } } pub fn path_mapping(&self) -> &FilePathMapping { &self.path_mapping } pub fn file_exists(&self, path: &Path) -> bool { self.file_loader.file_exists(path) } pub fn load_file(&self, path: &Path) -> io::Result> { let src = self.file_loader.read_file(path)?; let filename = path.to_owned().into(); Ok(self.new_source_file(filename, src)) } /// Loads source file as a binary blob. /// /// Unlike `load_file`, guarantees that no normalization like BOM-removal /// takes place. pub fn load_binary_file(&self, path: &Path) -> io::Result> { let bytes = self.file_loader.read_binary_file(path)?; // We need to add file to the `SourceMap`, so that it is present // in dep-info. There's also an edge case that file might be both // loaded as a binary via `include_bytes!` and as proper `SourceFile` // via `mod`, so we try to use real file contents and not just an // empty string. let text = std::str::from_utf8(&bytes).unwrap_or("").to_string(); self.new_source_file(path.to_owned().into(), text); Ok(bytes) } // By returning a `MonotonicVec`, we ensure that consumers cannot invalidate // any existing indices pointing into `files`. pub fn files(&self) -> MappedReadGuard<'_, monotonic::MonotonicVec>> { ReadGuard::map(self.files.borrow(), |files| &files.source_files) } pub fn source_file_by_stable_id( &self, stable_id: StableSourceFileId, ) -> Option> { self.files.borrow().stable_id_to_source_file.get(&stable_id).cloned() } fn allocate_address_space(&self, size: usize) -> Result { let size = u32::try_from(size).map_err(|_| OffsetOverflowError)?; loop { let current = self.used_address_space.load(Ordering::Relaxed); let next = current .checked_add(size) // Add one so there is some space between files. This lets us distinguish // positions in the `SourceMap`, even in the presence of zero-length files. .and_then(|next| next.checked_add(1)) .ok_or(OffsetOverflowError)?; if self .used_address_space .compare_exchange(current, next, Ordering::Relaxed, Ordering::Relaxed) .is_ok() { return Ok(usize::try_from(current).unwrap()); } } } /// Creates a new `SourceFile`. /// If a file already exists in the `SourceMap` with the same ID, that file is returned /// unmodified. pub fn new_source_file(&self, filename: FileName, src: String) -> Lrc { self.try_new_source_file(filename, src).unwrap_or_else(|OffsetOverflowError| { eprintln!("fatal error: rustc does not support files larger than 4GB"); crate::fatal_error::FatalError.raise() }) } fn try_new_source_file( &self, filename: FileName, src: String, ) -> Result, OffsetOverflowError> { // Note that filename may not be a valid path, eg it may be `` etc, // but this is okay because the directory determined by `path.pop()` will // be empty, so the working directory will be used. let (filename, _) = self.path_mapping.map_filename_prefix(&filename); let file_id = StableSourceFileId::new_from_name(&filename, LOCAL_CRATE); let lrc_sf = match self.source_file_by_stable_id(file_id) { Some(lrc_sf) => lrc_sf, None => { let start_pos = self.allocate_address_space(src.len())?; let source_file = Lrc::new(SourceFile::new( filename, src, Pos::from_usize(start_pos), self.hash_kind, )); // Let's make sure the file_id we generated above actually matches // the ID we generate for the SourceFile we just created. debug_assert_eq!(StableSourceFileId::new(&source_file), file_id); let mut files = self.files.borrow_mut(); files.source_files.push(source_file.clone()); files.stable_id_to_source_file.insert(file_id, source_file.clone()); source_file } }; Ok(lrc_sf) } /// Allocates a new `SourceFile` representing a source file from an external /// crate. The source code of such an "imported `SourceFile`" is not available, /// but we still know enough to generate accurate debuginfo location /// information for things inlined from other crates. pub fn new_imported_source_file( &self, filename: FileName, src_hash: SourceFileHash, name_hash: u128, source_len: usize, cnum: CrateNum, file_local_lines: Lock, mut file_local_multibyte_chars: Vec, mut file_local_non_narrow_chars: Vec, mut file_local_normalized_pos: Vec, original_start_pos: BytePos, metadata_index: u32, ) -> Lrc { let start_pos = self .allocate_address_space(source_len) .expect("not enough address space for imported source file"); let end_pos = Pos::from_usize(start_pos + source_len); let start_pos = Pos::from_usize(start_pos); // Translate these positions into the new global frame of reference, // now that the offset of the SourceFile is known. // // These are all unsigned values. `original_start_pos` may be larger or // smaller than `start_pos`, but `pos` is always larger than both. // Therefore, `(pos - original_start_pos) + start_pos` won't overflow // but `start_pos - original_start_pos` might. So we use the former // form rather than pre-computing the offset into a local variable. The // compiler backend can optimize away the repeated computations in a // way that won't trigger overflow checks. match &mut *file_local_lines.borrow_mut() { SourceFileLines::Lines(lines) => { for pos in lines { *pos = (*pos - original_start_pos) + start_pos; } } SourceFileLines::Diffs(SourceFileDiffs { line_start, .. }) => { *line_start = (*line_start - original_start_pos) + start_pos; } } for mbc in &mut file_local_multibyte_chars { mbc.pos = (mbc.pos - original_start_pos) + start_pos; } for swc in &mut file_local_non_narrow_chars { *swc = (*swc - original_start_pos) + start_pos; } for nc in &mut file_local_normalized_pos { nc.pos = (nc.pos - original_start_pos) + start_pos; } let source_file = Lrc::new(SourceFile { name: filename, src: None, src_hash, external_src: Lock::new(ExternalSource::Foreign { kind: ExternalSourceKind::AbsentOk, metadata_index, }), start_pos, end_pos, lines: file_local_lines, multibyte_chars: file_local_multibyte_chars, non_narrow_chars: file_local_non_narrow_chars, normalized_pos: file_local_normalized_pos, name_hash, cnum, }); let mut files = self.files.borrow_mut(); files.source_files.push(source_file.clone()); files .stable_id_to_source_file .insert(StableSourceFileId::new(&source_file), source_file.clone()); source_file } /// If there is a doctest offset, applies it to the line. pub fn doctest_offset_line(&self, file: &FileName, orig: usize) -> usize { match file { FileName::DocTest(_, offset) => { if *offset < 0 { orig - (-(*offset)) as usize } else { orig + *offset as usize } } _ => orig, } } /// Return the SourceFile that contains the given `BytePos` pub fn lookup_source_file(&self, pos: BytePos) -> Lrc { let idx = self.lookup_source_file_idx(pos); (*self.files.borrow().source_files)[idx].clone() } /// Looks up source information about a `BytePos`. pub fn lookup_char_pos(&self, pos: BytePos) -> Loc { let sf = self.lookup_source_file(pos); let (line, col, col_display) = sf.lookup_file_pos_with_col_display(pos); Loc { file: sf, line, col, col_display } } /// If the corresponding `SourceFile` is empty, does not return a line number. pub fn lookup_line(&self, pos: BytePos) -> Result> { let f = self.lookup_source_file(pos); match f.lookup_line(pos) { Some(line) => Ok(SourceFileAndLine { sf: f, line }), None => Err(f), } } pub fn span_to_string( &self, sp: Span, filename_display_pref: FileNameDisplayPreference, ) -> String { let (source_file, lo_line, lo_col, hi_line, hi_col) = self.span_to_location_info(sp); let file_name = match source_file { Some(sf) => sf.name.display(filename_display_pref).to_string(), None => return "no-location".to_string(), }; format!( "{file_name}:{lo_line}:{lo_col}{}", if let FileNameDisplayPreference::Short = filename_display_pref { String::new() } else { format!(": {hi_line}:{hi_col}") } ) } pub fn span_to_location_info( &self, sp: Span, ) -> (Option>, usize, usize, usize, usize) { if self.files.borrow().source_files.is_empty() || sp.is_dummy() { return (None, 0, 0, 0, 0); } let lo = self.lookup_char_pos(sp.lo()); let hi = self.lookup_char_pos(sp.hi()); (Some(lo.file), lo.line, lo.col.to_usize() + 1, hi.line, hi.col.to_usize() + 1) } /// Format the span location suitable for embedding in build artifacts pub fn span_to_embeddable_string(&self, sp: Span) -> String { self.span_to_string(sp, FileNameDisplayPreference::Remapped) } /// Format the span location suitable for pretty printing anotations with relative line numbers pub fn span_to_relative_line_string(&self, sp: Span, relative_to: Span) -> String { if self.files.borrow().source_files.is_empty() || sp.is_dummy() || relative_to.is_dummy() { return "no-location".to_string(); } let lo = self.lookup_char_pos(sp.lo()); let hi = self.lookup_char_pos(sp.hi()); let offset = self.lookup_char_pos(relative_to.lo()); if lo.file.name != offset.file.name || !relative_to.contains(sp) { return self.span_to_embeddable_string(sp); } let lo_line = lo.line.saturating_sub(offset.line); let hi_line = hi.line.saturating_sub(offset.line); format!( "{}:+{}:{}: +{}:{}", lo.file.name.display(FileNameDisplayPreference::Remapped), lo_line, lo.col.to_usize() + 1, hi_line, hi.col.to_usize() + 1, ) } /// Format the span location to be printed in diagnostics. Must not be emitted /// to build artifacts as this may leak local file paths. Use span_to_embeddable_string /// for string suitable for embedding. pub fn span_to_diagnostic_string(&self, sp: Span) -> String { self.span_to_string(sp, self.path_mapping.filename_display_for_diagnostics) } pub fn span_to_filename(&self, sp: Span) -> FileName { self.lookup_char_pos(sp.lo()).file.name.clone() } pub fn filename_for_diagnostics<'a>(&self, filename: &'a FileName) -> FileNameDisplay<'a> { filename.display(self.path_mapping.filename_display_for_diagnostics) } pub fn is_multiline(&self, sp: Span) -> bool { let lo = self.lookup_source_file_idx(sp.lo()); let hi = self.lookup_source_file_idx(sp.hi()); if lo != hi { return true; } let f = (*self.files.borrow().source_files)[lo].clone(); f.lookup_line(sp.lo()) != f.lookup_line(sp.hi()) } #[instrument(skip(self), level = "trace")] pub fn is_valid_span(&self, sp: Span) -> Result<(Loc, Loc), SpanLinesError> { let lo = self.lookup_char_pos(sp.lo()); trace!(?lo); let hi = self.lookup_char_pos(sp.hi()); trace!(?hi); if lo.file.start_pos != hi.file.start_pos { return Err(SpanLinesError::DistinctSources(Box::new(DistinctSources { begin: (lo.file.name.clone(), lo.file.start_pos), end: (hi.file.name.clone(), hi.file.start_pos), }))); } Ok((lo, hi)) } pub fn is_line_before_span_empty(&self, sp: Span) -> bool { match self.span_to_prev_source(sp) { Ok(s) => s.rsplit_once('\n').unwrap_or(("", &s)).1.trim_start().is_empty(), Err(_) => false, } } pub fn span_to_lines(&self, sp: Span) -> FileLinesResult { debug!("span_to_lines(sp={:?})", sp); let (lo, hi) = self.is_valid_span(sp)?; assert!(hi.line >= lo.line); if sp.is_dummy() { return Ok(FileLines { file: lo.file, lines: Vec::new() }); } let mut lines = Vec::with_capacity(hi.line - lo.line + 1); // The span starts partway through the first line, // but after that it starts from offset 0. let mut start_col = lo.col; // For every line but the last, it extends from `start_col` // and to the end of the line. Be careful because the line // numbers in Loc are 1-based, so we subtract 1 to get 0-based // lines. // // FIXME: now that we handle DUMMY_SP up above, we should consider // asserting that the line numbers here are all indeed 1-based. let hi_line = hi.line.saturating_sub(1); for line_index in lo.line.saturating_sub(1)..hi_line { let line_len = lo.file.get_line(line_index).map_or(0, |s| s.chars().count()); lines.push(LineInfo { line_index, start_col, end_col: CharPos::from_usize(line_len) }); start_col = CharPos::from_usize(0); } // For the last line, it extends from `start_col` to `hi.col`: lines.push(LineInfo { line_index: hi_line, start_col, end_col: hi.col }); Ok(FileLines { file: lo.file, lines }) } /// Extracts the source surrounding the given `Span` using the `extract_source` function. The /// extract function takes three arguments: a string slice containing the source, an index in /// the slice for the beginning of the span and an index in the slice for the end of the span. fn span_to_source(&self, sp: Span, extract_source: F) -> Result where F: Fn(&str, usize, usize) -> Result, { let local_begin = self.lookup_byte_offset(sp.lo()); let local_end = self.lookup_byte_offset(sp.hi()); if local_begin.sf.start_pos != local_end.sf.start_pos { Err(SpanSnippetError::DistinctSources(Box::new(DistinctSources { begin: (local_begin.sf.name.clone(), local_begin.sf.start_pos), end: (local_end.sf.name.clone(), local_end.sf.start_pos), }))) } else { self.ensure_source_file_source_present(local_begin.sf.clone()); let start_index = local_begin.pos.to_usize(); let end_index = local_end.pos.to_usize(); let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize(); if start_index > end_index || end_index > source_len { return Err(SpanSnippetError::MalformedForSourcemap(MalformedSourceMapPositions { name: local_begin.sf.name.clone(), source_len, begin_pos: local_begin.pos, end_pos: local_end.pos, })); } if let Some(ref src) = local_begin.sf.src { extract_source(src, start_index, end_index) } else if let Some(src) = local_begin.sf.external_src.borrow().get_source() { extract_source(src, start_index, end_index) } else { Err(SpanSnippetError::SourceNotAvailable { filename: local_begin.sf.name.clone() }) } } } pub fn is_span_accessible(&self, sp: Span) -> bool { self.span_to_source(sp, |src, start_index, end_index| { Ok(src.get(start_index..end_index).is_some()) }) .map_or(false, |is_accessible| is_accessible) } /// Returns the source snippet as `String` corresponding to the given `Span`. pub fn span_to_snippet(&self, sp: Span) -> Result { self.span_to_source(sp, |src, start_index, end_index| { src.get(start_index..end_index) .map(|s| s.to_string()) .ok_or(SpanSnippetError::IllFormedSpan(sp)) }) } pub fn span_to_margin(&self, sp: Span) -> Option { Some(self.indentation_before(sp)?.len()) } pub fn indentation_before(&self, sp: Span) -> Option { self.span_to_source(sp, |src, start_index, _| { let before = &src[..start_index]; let last_line = before.rsplit_once('\n').map_or(before, |(_, last)| last); Ok(last_line .split_once(|c: char| !c.is_whitespace()) .map_or(last_line, |(indent, _)| indent) .to_string()) }) .ok() } /// Returns the source snippet as `String` before the given `Span`. pub fn span_to_prev_source(&self, sp: Span) -> Result { self.span_to_source(sp, |src, start_index, _| { src.get(..start_index).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp)) }) } /// Extends the given `Span` to just after the previous occurrence of `c`. Return the same span /// if no character could be found or if an error occurred while retrieving the code snippet. pub fn span_extend_to_prev_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span { if let Ok(prev_source) = self.span_to_prev_source(sp) { let prev_source = prev_source.rsplit(c).next().unwrap_or(""); if !prev_source.is_empty() && (accept_newlines || !prev_source.contains('\n')) { return sp.with_lo(BytePos(sp.lo().0 - prev_source.len() as u32)); } } sp } /// Extends the given `Span` to just after the previous occurrence of `pat` when surrounded by /// whitespace. Returns None if the pattern could not be found or if an error occurred while /// retrieving the code snippet. pub fn span_extend_to_prev_str( &self, sp: Span, pat: &str, accept_newlines: bool, include_whitespace: bool, ) -> Option { // assure that the pattern is delimited, to avoid the following // fn my_fn() // ^^^^ returned span without the check // ---------- correct span let prev_source = self.span_to_prev_source(sp).ok()?; for ws in &[" ", "\t", "\n"] { let pat = pat.to_owned() + ws; if let Some(pat_pos) = prev_source.rfind(&pat) { let just_after_pat_pos = pat_pos + pat.len() - 1; let just_after_pat_plus_ws = if include_whitespace { just_after_pat_pos + prev_source[just_after_pat_pos..] .find(|c: char| !c.is_whitespace()) .unwrap_or(0) } else { just_after_pat_pos }; let len = prev_source.len() - just_after_pat_plus_ws; let prev_source = &prev_source[just_after_pat_plus_ws..]; if accept_newlines || !prev_source.trim_start().contains('\n') { return Some(sp.with_lo(BytePos(sp.lo().0 - len as u32))); } } } None } /// Returns the source snippet as `String` after the given `Span`. pub fn span_to_next_source(&self, sp: Span) -> Result { self.span_to_source(sp, |src, _, end_index| { src.get(end_index..).map(|s| s.to_string()).ok_or(SpanSnippetError::IllFormedSpan(sp)) }) } /// Extends the given `Span` while the next character matches the predicate pub fn span_extend_while( &self, span: Span, f: impl Fn(char) -> bool, ) -> Result { self.span_to_source(span, |s, _start, end| { let n = s[end..].char_indices().find(|&(_, c)| !f(c)).map_or(s.len() - end, |(i, _)| i); Ok(span.with_hi(span.hi() + BytePos(n as u32))) }) } /// Extends the given `Span` to just before the next occurrence of `c`. pub fn span_extend_to_next_char(&self, sp: Span, c: char, accept_newlines: bool) -> Span { if let Ok(next_source) = self.span_to_next_source(sp) { let next_source = next_source.split(c).next().unwrap_or(""); if !next_source.is_empty() && (accept_newlines || !next_source.contains('\n')) { return sp.with_hi(BytePos(sp.hi().0 + next_source.len() as u32)); } } sp } /// Extends the given `Span` to contain the entire line it is on. pub fn span_extend_to_line(&self, sp: Span) -> Span { self.span_extend_to_prev_char(self.span_extend_to_next_char(sp, '\n', true), '\n', true) } /// Given a `Span`, tries to get a shorter span ending before the first occurrence of `char` /// `c`. pub fn span_until_char(&self, sp: Span, c: char) -> Span { match self.span_to_snippet(sp) { Ok(snippet) => { let snippet = snippet.split(c).next().unwrap_or("").trim_end(); if !snippet.is_empty() && !snippet.contains('\n') { sp.with_hi(BytePos(sp.lo().0 + snippet.len() as u32)) } else { sp } } _ => sp, } } /// Given a 'Span', tries to tell if it's wrapped by "<>" or "()" /// the algorithm searches if the next character is '>' or ')' after skipping white space /// then searches the previous charactoer to match '<' or '(' after skipping white space /// return true if wrapped by '<>' or '()' pub fn span_wrapped_by_angle_or_parentheses(&self, span: Span) -> bool { self.span_to_source(span, |src, start_index, end_index| { if src.get(start_index..end_index).is_none() { return Ok(false); } // test the right side to match '>' after skipping white space let end_src = &src[end_index..]; let mut i = 0; let mut found_right_parentheses = false; let mut found_right_angle = false; while let Some(cc) = end_src.chars().nth(i) { if cc == ' ' { i = i + 1; } else if cc == '>' { // found > in the right; found_right_angle = true; break; } else if cc == ')' { found_right_parentheses = true; break; } else { // failed to find '>' return false immediately return Ok(false); } } // test the left side to match '<' after skipping white space i = start_index; let start_src = &src[0..start_index]; while let Some(cc) = start_src.chars().nth(i) { if cc == ' ' { if i == 0 { return Ok(false); } i = i - 1; } else if cc == '<' { // found < in the left if !found_right_angle { // skip something like "(< )>" return Ok(false); } break; } else if cc == '(' { if !found_right_parentheses { // skip something like "<(>)" return Ok(false); } break; } else { // failed to find '<' return false immediately return Ok(false); } } return Ok(true); }) .map_or(false, |is_accessible| is_accessible) } /// Given a `Span`, tries to get a shorter span ending just after the first occurrence of `char` /// `c`. pub fn span_through_char(&self, sp: Span, c: char) -> Span { if let Ok(snippet) = self.span_to_snippet(sp) { if let Some(offset) = snippet.find(c) { return sp.with_hi(BytePos(sp.lo().0 + (offset + c.len_utf8()) as u32)); } } sp } /// Given a `Span`, gets a new `Span` covering the first token and all its trailing whitespace /// or the original `Span`. /// /// If `sp` points to `"let mut x"`, then a span pointing at `"let "` will be returned. pub fn span_until_non_whitespace(&self, sp: Span) -> Span { let mut whitespace_found = false; self.span_take_while(sp, |c| { if !whitespace_found && c.is_whitespace() { whitespace_found = true; } !whitespace_found || c.is_whitespace() }) } /// Given a `Span`, gets a new `Span` covering the first token without its trailing whitespace /// or the original `Span` in case of error. /// /// If `sp` points to `"let mut x"`, then a span pointing at `"let"` will be returned. pub fn span_until_whitespace(&self, sp: Span) -> Span { self.span_take_while(sp, |c| !c.is_whitespace()) } /// Given a `Span`, gets a shorter one until `predicate` yields `false`. pub fn span_take_while

(&self, sp: Span, predicate: P) -> Span where P: for<'r> FnMut(&'r char) -> bool, { if let Ok(snippet) = self.span_to_snippet(sp) { let offset = snippet.chars().take_while(predicate).map(|c| c.len_utf8()).sum::(); sp.with_hi(BytePos(sp.lo().0 + (offset as u32))) } else { sp } } /// Given a `Span`, return a span ending in the closest `{`. This is useful when you have a /// `Span` enclosing a whole item but we need to point at only the head (usually the first /// line) of that item. /// /// *Only suitable for diagnostics.* pub fn guess_head_span(&self, sp: Span) -> Span { // FIXME: extend the AST items to have a head span, or replace callers with pointing at // the item's ident when appropriate. self.span_until_char(sp, '{') } /// Returns a new span representing just the first character of the given span. pub fn start_point(&self, sp: Span) -> Span { let width = { let sp = sp.data(); let local_begin = self.lookup_byte_offset(sp.lo); let start_index = local_begin.pos.to_usize(); let src = local_begin.sf.external_src.borrow(); let snippet = if let Some(ref src) = local_begin.sf.src { Some(&src[start_index..]) } else if let Some(src) = src.get_source() { Some(&src[start_index..]) } else { None }; match snippet { None => 1, Some(snippet) => match snippet.chars().next() { None => 1, Some(c) => c.len_utf8(), }, } }; sp.with_hi(BytePos(sp.lo().0 + width as u32)) } /// Returns a new span representing just the last character of this span. pub fn end_point(&self, sp: Span) -> Span { let pos = sp.hi().0; let width = self.find_width_of_character_at_span(sp, false); let corrected_end_position = pos.checked_sub(width).unwrap_or(pos); let end_point = BytePos(cmp::max(corrected_end_position, sp.lo().0)); sp.with_lo(end_point) } /// Returns a new span representing the next character after the end-point of this span. /// Special cases: /// - if span is a dummy one, returns the same span /// - if next_point reached the end of source, return a span exceeding the end of source, /// which means sm.span_to_snippet(next_point) will get `Err` /// - respect multi-byte characters pub fn next_point(&self, sp: Span) -> Span { if sp.is_dummy() { return sp; } let start_of_next_point = sp.hi().0; let width = self.find_width_of_character_at_span(sp, true); // If the width is 1, then the next span should only contain the next char besides current ending. // However, in the case of a multibyte character, where the width != 1, the next span should // span multiple bytes to include the whole character. let end_of_next_point = start_of_next_point.checked_add(width).unwrap_or(start_of_next_point); let end_of_next_point = BytePos(cmp::max(start_of_next_point + 1, end_of_next_point)); Span::new(BytePos(start_of_next_point), end_of_next_point, sp.ctxt(), None) } /// Returns a new span to check next none-whitespace character or some specified expected character /// If `expect` is none, the first span of non-whitespace character is returned. /// If `expect` presented, the first span of the character `expect` is returned /// Otherwise, the span reached to limit is returned. pub fn span_look_ahead(&self, span: Span, expect: Option<&str>, limit: Option) -> Span { let mut sp = span; for _ in 0..limit.unwrap_or(100_usize) { sp = self.next_point(sp); if let Ok(ref snippet) = self.span_to_snippet(sp) { if expect.map_or(false, |es| snippet == es) { break; } if expect.is_none() && snippet.chars().any(|c| !c.is_whitespace()) { break; } } } sp } /// Finds the width of the character, either before or after the end of provided span, /// depending on the `forwards` parameter. #[instrument(skip(self, sp))] fn find_width_of_character_at_span(&self, sp: Span, forwards: bool) -> u32 { let sp = sp.data(); if sp.lo == sp.hi && !forwards { debug!("early return empty span"); return 1; } let local_begin = self.lookup_byte_offset(sp.lo); let local_end = self.lookup_byte_offset(sp.hi); debug!("local_begin=`{:?}`, local_end=`{:?}`", local_begin, local_end); if local_begin.sf.start_pos != local_end.sf.start_pos { debug!("begin and end are in different files"); return 1; } let start_index = local_begin.pos.to_usize(); let end_index = local_end.pos.to_usize(); debug!("start_index=`{:?}`, end_index=`{:?}`", start_index, end_index); // Disregard indexes that are at the start or end of their spans, they can't fit bigger // characters. if (!forwards && end_index == usize::MIN) || (forwards && start_index == usize::MAX) { debug!("start or end of span, cannot be multibyte"); return 1; } let source_len = (local_begin.sf.end_pos - local_begin.sf.start_pos).to_usize(); debug!("source_len=`{:?}`", source_len); // Ensure indexes are also not malformed. if start_index > end_index || end_index > source_len - 1 { debug!("source indexes are malformed"); return 1; } let src = local_begin.sf.external_src.borrow(); let snippet = if let Some(src) = &local_begin.sf.src { src } else if let Some(src) = src.get_source() { src } else { return 1; }; if forwards { (snippet.ceil_char_boundary(end_index + 1) - end_index) as u32 } else { (end_index - snippet.floor_char_boundary(end_index - 1)) as u32 } } pub fn get_source_file(&self, filename: &FileName) -> Option> { // Remap filename before lookup let filename = self.path_mapping().map_filename_prefix(filename).0; for sf in self.files.borrow().source_files.iter() { if filename == sf.name { return Some(sf.clone()); } } None } /// For a global `BytePos`, computes the local offset within the containing `SourceFile`. pub fn lookup_byte_offset(&self, bpos: BytePos) -> SourceFileAndBytePos { let idx = self.lookup_source_file_idx(bpos); let sf = (*self.files.borrow().source_files)[idx].clone(); let offset = bpos - sf.start_pos; SourceFileAndBytePos { sf, pos: offset } } /// Returns the index of the [`SourceFile`] (in `self.files`) that contains `pos`. /// This index is guaranteed to be valid for the lifetime of this `SourceMap`, /// since `source_files` is a `MonotonicVec` pub fn lookup_source_file_idx(&self, pos: BytePos) -> usize { self.files .borrow() .source_files .binary_search_by_key(&pos, |key| key.start_pos) .unwrap_or_else(|p| p - 1) } pub fn count_lines(&self) -> usize { self.files().iter().fold(0, |a, f| a + f.count_lines()) } pub fn ensure_source_file_source_present(&self, source_file: Lrc) -> bool { source_file.add_external_src(|| { let FileName::Real(ref name) = source_file.name else { return None; }; let local_path: Cow<'_, Path> = match name { RealFileName::LocalPath(local_path) => local_path.into(), RealFileName::Remapped { local_path: Some(local_path), .. } => local_path.into(), RealFileName::Remapped { local_path: None, virtual_name } => { // The compiler produces better error messages if the sources of dependencies // are available. Attempt to undo any path mapping so we can find remapped // dependencies. // We can only use the heuristic because `add_external_src` checks the file // content hash. self.path_mapping.reverse_map_prefix_heuristically(virtual_name)?.into() } }; self.file_loader.read_file(&local_path).ok() }) } pub fn is_imported(&self, sp: Span) -> bool { let source_file_index = self.lookup_source_file_idx(sp.lo()); let source_file = &self.files()[source_file_index]; source_file.is_imported() } /// Gets the span of a statement. If the statement is a macro expansion, the /// span in the context of the block span is found. The trailing semicolon is included /// on a best-effort basis. pub fn stmt_span(&self, stmt_span: Span, block_span: Span) -> Span { if !stmt_span.from_expansion() { return stmt_span; } let mac_call = original_sp(stmt_span, block_span); self.mac_call_stmt_semi_span(mac_call).map_or(mac_call, |s| mac_call.with_hi(s.hi())) } /// Tries to find the span of the semicolon of a macro call statement. /// The input must be the *call site* span of a statement from macro expansion. /// ```ignore (illustrative) /// // v output /// mac!(); /// // ^^^^^^ input /// ``` pub fn mac_call_stmt_semi_span(&self, mac_call: Span) -> Option { let span = self.span_extend_while(mac_call, char::is_whitespace).ok()?; let span = span.shrink_to_hi().with_hi(BytePos(span.hi().0.checked_add(1)?)); if self.span_to_snippet(span).as_deref() != Ok(";") { return None; } Some(span) } } #[derive(Clone)] pub struct FilePathMapping { mapping: Vec<(PathBuf, PathBuf)>, filename_display_for_diagnostics: FileNameDisplayPreference, } impl FilePathMapping { pub fn empty() -> FilePathMapping { FilePathMapping::new(Vec::new()) } pub fn new(mapping: Vec<(PathBuf, PathBuf)>) -> FilePathMapping { let filename_display_for_diagnostics = if mapping.is_empty() { FileNameDisplayPreference::Local } else { FileNameDisplayPreference::Remapped }; FilePathMapping { mapping, filename_display_for_diagnostics } } /// Applies any path prefix substitution as defined by the mapping. /// The return value is the remapped path and a boolean indicating whether /// the path was affected by the mapping. pub fn map_prefix<'a>(&'a self, path: impl Into>) -> (Cow<'a, Path>, bool) { let path = path.into(); if path.as_os_str().is_empty() { // Exit early if the path is empty and therefore there's nothing to remap. // This is mostly to reduce spam for `RUSTC_LOG=[remap_path_prefix]`. return (path, false); } return remap_path_prefix(&self.mapping, path); #[instrument(level = "debug", skip(mapping), ret)] fn remap_path_prefix<'a>( mapping: &'a [(PathBuf, PathBuf)], path: Cow<'a, Path>, ) -> (Cow<'a, Path>, bool) { // NOTE: We are iterating over the mapping entries from last to first // because entries specified later on the command line should // take precedence. for (from, to) in mapping.iter().rev() { debug!("Trying to apply {from:?} => {to:?}"); if let Ok(rest) = path.strip_prefix(from) { let remapped = if rest.as_os_str().is_empty() { // This is subtle, joining an empty path onto e.g. `foo/bar` will // result in `foo/bar/`, that is, there'll be an additional directory // separator at the end. This can lead to duplicated directory separators // in remapped paths down the line. // So, if we have an exact match, we just return that without a call // to `Path::join()`. to.into() } else { to.join(rest).into() }; debug!("Match - remapped"); return (remapped, true); } else { debug!("No match - prefix {from:?} does not match"); } } debug!("not remapped"); (path, false) } } fn map_filename_prefix(&self, file: &FileName) -> (FileName, bool) { match file { FileName::Real(realfile) if let RealFileName::LocalPath(local_path) = realfile => { let (mapped_path, mapped) = self.map_prefix(local_path); let realfile = if mapped { RealFileName::Remapped { local_path: Some(local_path.clone()), virtual_name: mapped_path.into_owned(), } } else { realfile.clone() }; (FileName::Real(realfile), mapped) } FileName::Real(_) => unreachable!("attempted to remap an already remapped filename"), other => (other.clone(), false), } } /// Expand a relative path to an absolute path with remapping taken into account. /// Use this when absolute paths are required (e.g. debuginfo or crate metadata). /// /// The resulting `RealFileName` will have its `local_path` portion erased if /// possible (i.e. if there's also a remapped path). pub fn to_embeddable_absolute_path( &self, file_path: RealFileName, working_directory: &RealFileName, ) -> RealFileName { match file_path { // Anything that's already remapped we don't modify, except for erasing // the `local_path` portion. RealFileName::Remapped { local_path: _, virtual_name } => { RealFileName::Remapped { // We do not want any local path to be exported into metadata local_path: None, // We use the remapped name verbatim, even if it looks like a relative // path. The assumption is that the user doesn't want us to further // process paths that have gone through remapping. virtual_name, } } RealFileName::LocalPath(unmapped_file_path) => { // If no remapping has been applied yet, try to do so let (new_path, was_remapped) = self.map_prefix(unmapped_file_path); if was_remapped { // It was remapped, so don't modify further return RealFileName::Remapped { local_path: None, virtual_name: new_path.into_owned(), }; } if new_path.is_absolute() { // No remapping has applied to this path and it is absolute, // so the working directory cannot influence it either, so // we are done. return RealFileName::LocalPath(new_path.into_owned()); } debug_assert!(new_path.is_relative()); let unmapped_file_path_rel = new_path; match working_directory { RealFileName::LocalPath(unmapped_working_dir_abs) => { let file_path_abs = unmapped_working_dir_abs.join(unmapped_file_path_rel); // Although neither `working_directory` nor the file name were subject // to path remapping, the concatenation between the two may be. Hence // we need to do a remapping here. let (file_path_abs, was_remapped) = self.map_prefix(file_path_abs); if was_remapped { RealFileName::Remapped { // Erase the actual path local_path: None, virtual_name: file_path_abs.into_owned(), } } else { // No kind of remapping applied to this path, so // we leave it as it is. RealFileName::LocalPath(file_path_abs.into_owned()) } } RealFileName::Remapped { local_path: _, virtual_name: remapped_working_dir_abs, } => { // If working_directory has been remapped, then we emit // Remapped variant as the expanded path won't be valid RealFileName::Remapped { local_path: None, virtual_name: Path::new(remapped_working_dir_abs) .join(unmapped_file_path_rel), } } } } } } /// Attempts to (heuristically) reverse a prefix mapping. /// /// Returns [`Some`] if there is exactly one mapping where the "to" part is /// a prefix of `path` and has at least one non-empty /// [`Normal`](path::Component::Normal) component. The component /// restriction exists to avoid reverse mapping overly generic paths like /// `/` or `.`). /// /// This is a heuristic and not guaranteed to return the actual original /// path! Do not rely on the result unless you have other means to verify /// that the mapping is correct (e.g. by checking the file content hash). #[instrument(level = "debug", skip(self), ret)] fn reverse_map_prefix_heuristically(&self, path: &Path) -> Option { let mut found = None; for (from, to) in self.mapping.iter() { let has_normal_component = to.components().any(|c| match c { path::Component::Normal(s) => !s.is_empty(), _ => false, }); if !has_normal_component { continue; } let Ok(rest) = path.strip_prefix(to) else { continue; }; if found.is_some() { return None; } found = Some(from.join(rest)); } found } }