use crate::abi::call::{ArgAbi, Conv, FnAbi, Reg, RegKind, Uniform}; use crate::abi::{HasDataLayout, TyAbiInterface}; use crate::spec::HasTargetSpec; fn is_homogeneous_aggregate<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>) -> Option where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { arg.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()).and_then(|unit| { let size = arg.layout.size; // Ensure we have at most four uniquely addressable members. if size > unit.size.checked_mul(4, cx).unwrap() { return None; } let valid_unit = match unit.kind { RegKind::Integer => false, RegKind::Float => true, RegKind::Vector => size.bits() == 64 || size.bits() == 128, }; valid_unit.then_some(Uniform { unit, total: size }) }) } fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>, vfp: bool) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if !ret.layout.is_aggregate() { ret.extend_integer_width_to(32); return; } if vfp { if let Some(uniform) = is_homogeneous_aggregate(cx, ret) { ret.cast_to(uniform); return; } } let size = ret.layout.size; let bits = size.bits(); if bits <= 32 { ret.cast_to(Uniform { unit: Reg::i32(), total: size }); return; } ret.make_indirect(); } fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, vfp: bool) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if !arg.layout.is_aggregate() { arg.extend_integer_width_to(32); return; } if vfp { if let Some(uniform) = is_homogeneous_aggregate(cx, arg) { arg.cast_to(uniform); return; } } let align = arg.layout.align.abi.bytes(); let total = arg.layout.size; arg.cast_to(Uniform { unit: if align <= 4 { Reg::i32() } else { Reg::i64() }, total }); } pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { // If this is a target with a hard-float ABI, and the function is not explicitly // `extern "aapcs"`, then we must use the VFP registers for homogeneous aggregates. let vfp = cx.target_spec().llvm_target.ends_with("hf") && fn_abi.conv != Conv::ArmAapcs && !fn_abi.c_variadic; if !fn_abi.ret.is_ignore() { classify_ret(cx, &mut fn_abi.ret, vfp); } for arg in &mut fn_abi.args { if arg.is_ignore() { continue; } classify_arg(cx, arg, vfp); } }