// FIXME: // Alignment of 128 bit types is not currently handled, this will // need to be fixed when PowerPC vector support is added. use crate::abi::call::{ArgAbi, FnAbi, Reg, RegKind, Uniform}; use crate::abi::{Endian, HasDataLayout, TyAbiInterface}; use crate::spec::HasTargetSpec; #[derive(Debug, Clone, Copy, PartialEq)] enum ABI { ELFv1, // original ABI used for powerpc64 (big-endian) ELFv2, // newer ABI used for powerpc64le and musl (both endians) } use ABI::*; fn is_homogeneous_aggregate<'a, Ty, C>( cx: &C, arg: &mut ArgAbi<'a, Ty>, abi: ABI, ) -> Option where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { arg.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()).and_then(|unit| { // ELFv1 only passes one-member aggregates transparently. // ELFv2 passes up to eight uniquely addressable members. if (abi == ELFv1 && arg.layout.size > unit.size) || arg.layout.size > unit.size.checked_mul(8, cx).unwrap() { return None; } let valid_unit = match unit.kind { RegKind::Integer => false, RegKind::Float => true, RegKind::Vector => arg.layout.size.bits() == 128, }; valid_unit.then_some(Uniform { unit, total: arg.layout.size }) }) } fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>, abi: ABI) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if !ret.layout.is_aggregate() { ret.extend_integer_width_to(64); return; } // The ELFv1 ABI doesn't return aggregates in registers if abi == ELFv1 { ret.make_indirect(); return; } if let Some(uniform) = is_homogeneous_aggregate(cx, ret, abi) { ret.cast_to(uniform); return; } let size = ret.layout.size; let bits = size.bits(); if bits <= 128 { let unit = if cx.data_layout().endian == Endian::Big { Reg { kind: RegKind::Integer, size } } else if bits <= 8 { Reg::i8() } else if bits <= 16 { Reg::i16() } else if bits <= 32 { Reg::i32() } else { Reg::i64() }; ret.cast_to(Uniform { unit, total: size }); return; } ret.make_indirect(); } fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>, abi: ABI) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if !arg.layout.is_aggregate() { arg.extend_integer_width_to(64); return; } if let Some(uniform) = is_homogeneous_aggregate(cx, arg, abi) { arg.cast_to(uniform); return; } let size = arg.layout.size; let (unit, total) = if size.bits() <= 64 { // Aggregates smaller than a doubleword should appear in // the least-significant bits of the parameter doubleword. (Reg { kind: RegKind::Integer, size }, size) } else { // Aggregates larger than a doubleword should be padded // at the tail to fill out a whole number of doublewords. let reg_i64 = Reg::i64(); (reg_i64, size.align_to(reg_i64.align(cx))) }; arg.cast_to(Uniform { unit, total }); } pub fn compute_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout + HasTargetSpec, { let abi = if cx.target_spec().env == "musl" { ELFv2 } else { match cx.data_layout().endian { Endian::Big => ELFv1, Endian::Little => ELFv2, } }; if !fn_abi.ret.is_ignore() { classify_ret(cx, &mut fn_abi.ret, abi); } for arg in &mut fn_abi.args { if arg.is_ignore() { continue; } classify_arg(cx, arg, abi); } }