use crate::abi::call::{ArgAbi, FnAbi, Uniform}; use crate::abi::{HasDataLayout, TyAbiInterface}; fn unwrap_trivial_aggregate<'a, Ty, C>(cx: &C, val: &mut ArgAbi<'a, Ty>) -> bool where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if val.layout.is_aggregate() { if let Some(unit) = val.layout.homogeneous_aggregate(cx).ok().and_then(|ha| ha.unit()) { let size = val.layout.size; if unit.size == size { val.cast_to(Uniform { unit, total: size }); return true; } } } false } fn classify_ret<'a, Ty, C>(cx: &C, ret: &mut ArgAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { ret.extend_integer_width_to(32); if ret.layout.is_aggregate() && !unwrap_trivial_aggregate(cx, ret) { ret.make_indirect(); } } fn classify_arg<'a, Ty, C>(cx: &C, arg: &mut ArgAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { arg.extend_integer_width_to(32); if arg.layout.is_aggregate() && !unwrap_trivial_aggregate(cx, arg) { arg.make_indirect_byval(); } } /// The purpose of this ABI is to match the C ABI (aka clang) exactly. pub fn compute_c_abi_info<'a, Ty, C>(cx: &C, fn_abi: &mut FnAbi<'a, Ty>) where Ty: TyAbiInterface<'a, C> + Copy, C: HasDataLayout, { if !fn_abi.ret.is_ignore() { classify_ret(cx, &mut fn_abi.ret); } for arg in fn_abi.args.iter_mut() { if arg.is_ignore() { continue; } classify_arg(cx, arg); } } /// The purpose of this ABI is for matching the WebAssembly standard. This /// intentionally diverges from the C ABI and is specifically crafted to take /// advantage of LLVM's support of multiple returns in WebAssembly. pub fn compute_wasm_abi_info(fn_abi: &mut FnAbi<'_, Ty>) { if !fn_abi.ret.is_ignore() { classify_ret(&mut fn_abi.ret); } for arg in fn_abi.args.iter_mut() { if arg.is_ignore() { continue; } classify_arg(arg); } fn classify_ret(ret: &mut ArgAbi<'_, Ty>) { ret.extend_integer_width_to(32); } fn classify_arg(arg: &mut ArgAbi<'_, Ty>) { arg.extend_integer_width_to(32); } }