use crate::traits::query::evaluate_obligation::InferCtxtExt as _; use crate::traits::{self, TraitEngine, TraitEngineExt}; use rustc_hir::def_id::DefId; use rustc_hir::lang_items::LangItem; use rustc_infer::traits::ObligationCause; use rustc_middle::arena::ArenaAllocatable; use rustc_middle::infer::canonical::{Canonical, CanonicalizedQueryResponse, QueryResponse}; use rustc_middle::traits::query::Fallible; use rustc_middle::ty::subst::SubstsRef; use rustc_middle::ty::ToPredicate; use rustc_middle::ty::{self, Ty, TypeFoldable, TypeVisitable}; use rustc_span::{Span, DUMMY_SP}; use std::fmt::Debug; pub use rustc_infer::infer::*; pub trait InferCtxtExt<'tcx> { fn type_is_copy_modulo_regions( &self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, span: Span, ) -> bool; fn type_is_sized_modulo_regions( &self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, span: Span, ) -> bool; fn partially_normalize_associated_types_in( &self, cause: ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, value: T, ) -> InferOk<'tcx, T> where T: TypeFoldable<'tcx>; /// Check whether a `ty` implements given trait(trait_def_id). /// The inputs are: /// /// - the def-id of the trait /// - the self type /// - the *other* type parameters of the trait, excluding the self-type /// - the parameter environment /// /// Invokes `evaluate_obligation`, so in the event that evaluating /// `Ty: Trait` causes overflow, EvaluatedToRecur (or EvaluatedToUnknown) /// will be returned. fn type_implements_trait( &self, trait_def_id: DefId, ty: Ty<'tcx>, params: SubstsRef<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> traits::EvaluationResult; } impl<'cx, 'tcx> InferCtxtExt<'tcx> for InferCtxt<'cx, 'tcx> { fn type_is_copy_modulo_regions( &self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, span: Span, ) -> bool { let ty = self.resolve_vars_if_possible(ty); if !(param_env, ty).needs_infer() { return ty.is_copy_modulo_regions(self.tcx.at(span), param_env); } let copy_def_id = self.tcx.require_lang_item(LangItem::Copy, None); // This can get called from typeck (by euv), and `moves_by_default` // rightly refuses to work with inference variables, but // moves_by_default has a cache, which we want to use in other // cases. traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, copy_def_id, span) } fn type_is_sized_modulo_regions( &self, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, span: Span, ) -> bool { let lang_item = self.tcx.require_lang_item(LangItem::Sized, None); traits::type_known_to_meet_bound_modulo_regions(self, param_env, ty, lang_item, span) } /// Normalizes associated types in `value`, potentially returning /// new obligations that must further be processed. fn partially_normalize_associated_types_in( &self, cause: ObligationCause<'tcx>, param_env: ty::ParamEnv<'tcx>, value: T, ) -> InferOk<'tcx, T> where T: TypeFoldable<'tcx>, { debug!("partially_normalize_associated_types_in(value={:?})", value); let mut selcx = traits::SelectionContext::new(self); let traits::Normalized { value, obligations } = traits::normalize(&mut selcx, param_env, cause, value); debug!( "partially_normalize_associated_types_in: result={:?} predicates={:?}", value, obligations ); InferOk { value, obligations } } fn type_implements_trait( &self, trait_def_id: DefId, ty: Ty<'tcx>, params: SubstsRef<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> traits::EvaluationResult { debug!( "type_implements_trait: trait_def_id={:?}, type={:?}, params={:?}, param_env={:?}", trait_def_id, ty, params, param_env ); let trait_ref = ty::TraitRef { def_id: trait_def_id, substs: self.tcx.mk_substs_trait(ty, params) }; let obligation = traits::Obligation { cause: traits::ObligationCause::dummy(), param_env, recursion_depth: 0, predicate: ty::Binder::dummy(trait_ref).without_const().to_predicate(self.tcx), }; self.evaluate_obligation(&obligation).unwrap_or(traits::EvaluationResult::EvaluatedToErr) } } pub trait InferCtxtBuilderExt<'tcx> { fn enter_canonical_trait_query( &mut self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible, ) -> Fallible> where K: TypeFoldable<'tcx>, R: Debug + TypeFoldable<'tcx>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>; } impl<'tcx> InferCtxtBuilderExt<'tcx> for InferCtxtBuilder<'tcx> { /// The "main method" for a canonicalized trait query. Given the /// canonical key `canonical_key`, this method will create a new /// inference context, instantiate the key, and run your operation /// `op`. The operation should yield up a result (of type `R`) as /// well as a set of trait obligations that must be fully /// satisfied. These obligations will be processed and the /// canonical result created. /// /// Returns `NoSolution` in the event of any error. /// /// (It might be mildly nicer to implement this on `TyCtxt`, and /// not `InferCtxtBuilder`, but that is a bit tricky right now. /// In part because we would need a `for<'tcx>` sort of /// bound for the closure and in part because it is convenient to /// have `'tcx` be free on this function so that we can talk about /// `K: TypeFoldable<'tcx>`.) fn enter_canonical_trait_query( &mut self, canonical_key: &Canonical<'tcx, K>, operation: impl FnOnce(&InferCtxt<'_, 'tcx>, &mut dyn TraitEngine<'tcx>, K) -> Fallible, ) -> Fallible> where K: TypeFoldable<'tcx>, R: Debug + TypeFoldable<'tcx>, Canonical<'tcx, QueryResponse<'tcx, R>>: ArenaAllocatable<'tcx>, { self.enter_with_canonical( DUMMY_SP, canonical_key, |ref infcx, key, canonical_inference_vars| { let mut fulfill_cx = >::new(infcx.tcx); let value = operation(infcx, &mut *fulfill_cx, key)?; infcx.make_canonicalized_query_response( canonical_inference_vars, value, &mut *fulfill_cx, ) }, ) } }