//! Code shared by trait and projection goals for candidate assembly. use super::infcx_ext::InferCtxtExt; use super::{CanonicalResponse, Certainty, EvalCtxt, Goal, MaybeCause, QueryResult}; use rustc_hir::def_id::DefId; use rustc_infer::traits::query::NoSolution; use rustc_infer::traits::util::elaborate_predicates; use rustc_middle::ty::TypeFoldable; use rustc_middle::ty::{self, Ty, TyCtxt}; use std::fmt::Debug; /// A candidate is a possible way to prove a goal. /// /// It consists of both the `source`, which describes how that goal would be proven, /// and the `result` when using the given `source`. #[derive(Debug, Clone)] pub(super) struct Candidate<'tcx> { pub(super) source: CandidateSource, pub(super) result: CanonicalResponse<'tcx>, } /// Possible ways the given goal can be proven. #[derive(Debug, Clone, Copy)] pub(super) enum CandidateSource { /// A user written impl. /// /// ## Examples /// /// ```rust /// fn main() { /// let x: Vec = Vec::new(); /// // This uses the impl from the standard library to prove `Vec: Clone`. /// let y = x.clone(); /// } /// ``` Impl(DefId), /// A builtin impl generated by the compiler. When adding a new special /// trait, try to use actual impls whenever possible. Builtin impls should /// only be used in cases where the impl cannot be manually be written. /// /// Notable examples are auto traits, `Sized`, and `DiscriminantKind`. /// For a list of all traits with builtin impls, check out the /// [`EvalCtxt::assemble_builtin_impl_candidates`] method. Not BuiltinImpl, /// An assumption from the environment. /// /// More precicely we've used the `n-th` assumption in the `param_env`. /// /// ## Examples /// /// ```rust /// fn is_clone(x: T) -> (T, T) { /// // This uses the assumption `T: Clone` from the `where`-bounds /// // to prove `T: Clone`. /// (x.clone(), x) /// } /// ``` ParamEnv(usize), /// If the self type is an alias type, e.g. an opaque type or a projection, /// we know the bounds on that alias to hold even without knowing its concrete /// underlying type. /// /// More precisely this candidate is using the `n-th` bound in the `item_bounds` of /// the self type. /// /// ## Examples /// /// ```rust /// trait Trait { /// type Assoc: Clone; /// } /// /// fn foo(x: ::Assoc) { /// // We prove `::Assoc` by looking at the bounds on `Assoc` in /// // in the trait definition. /// let _y = x.clone(); /// } /// ``` AliasBound(usize), } pub(super) trait GoalKind<'tcx>: TypeFoldable<'tcx> + Copy + Eq { fn self_ty(self) -> Ty<'tcx>; fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self; fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId; fn consider_impl_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, impl_def_id: DefId, ) -> QueryResult<'tcx>; fn consider_assumption( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, assumption: ty::Predicate<'tcx>, ) -> QueryResult<'tcx>; fn consider_auto_trait_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_trait_alias_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_sized_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_copy_clone_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_pointer_sized_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_fn_trait_candidates( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, kind: ty::ClosureKind, ) -> QueryResult<'tcx>; fn consider_builtin_tuple_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; } impl<'tcx> EvalCtxt<'_, 'tcx> { pub(super) fn assemble_and_evaluate_candidates>( &mut self, goal: Goal<'tcx, G>, ) -> Vec> { debug_assert_eq!(goal, self.infcx.resolve_vars_if_possible(goal)); // HACK: `_: Trait` is ambiguous, because it may be satisfied via a builtin rule, // object bound, alias bound, etc. We are unable to determine this until we can at // least structually resolve the type one layer. if goal.predicate.self_ty().is_ty_var() { return vec![Candidate { source: CandidateSource::BuiltinImpl, result: self .make_canonical_response(Certainty::Maybe(MaybeCause::Ambiguity)) .unwrap(), }]; } let mut candidates = Vec::new(); self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates); self.assemble_impl_candidates(goal, &mut candidates); self.assemble_builtin_impl_candidates(goal, &mut candidates); self.assemble_param_env_candidates(goal, &mut candidates); self.assemble_alias_bound_candidates(goal, &mut candidates); self.assemble_object_bound_candidates(goal, &mut candidates); candidates } /// If the self type of a goal is a projection, computing the relevant candidates is difficult. /// /// To deal with this, we first try to normalize the self type and add the candidates for the normalized /// self type to the list of candidates in case that succeeds. Note that we can't just eagerly return in /// this case as projections as self types add ` fn assemble_candidates_after_normalizing_self_ty>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); // FIXME: We also have to normalize opaque types, not sure where to best fit that in. let &ty::Alias(ty::Projection, projection_ty) = goal.predicate.self_ty().kind() else { return }; self.infcx.probe(|_| { let normalized_ty = self.infcx.next_ty_infer(); let normalizes_to_goal = goal.with( tcx, ty::Binder::dummy(ty::ProjectionPredicate { projection_ty, term: normalized_ty.into(), }), ); let normalization_certainty = match self.evaluate_goal(normalizes_to_goal) { Ok((_, certainty)) => certainty, Err(NoSolution) => return, }; let normalized_ty = self.infcx.resolve_vars_if_possible(normalized_ty); // NOTE: Alternatively we could call `evaluate_goal` here and only have a `Normalized` candidate. // This doesn't work as long as we use `CandidateSource` in winnowing. let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty)); // FIXME: This is broken if we care about the `usize` of `AliasBound` because the self type // could be normalized to yet another projection with different item bounds. let normalized_candidates = self.assemble_and_evaluate_candidates(goal); for mut normalized_candidate in normalized_candidates { normalized_candidate.result = normalized_candidate.result.unchecked_map(|mut response| { // FIXME: This currently hides overflow in the normalization step of the self type // which is probably wrong. Maybe `unify_and` should actually keep overflow as // we treat it as non-fatal anyways. response.certainty = response.certainty.unify_and(normalization_certainty); response }); candidates.push(normalized_candidate); } }) } fn assemble_impl_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); tcx.for_each_relevant_impl( goal.predicate.trait_def_id(tcx), goal.predicate.self_ty(), |impl_def_id| match G::consider_impl_candidate(self, goal, impl_def_id) { Ok(result) => candidates .push(Candidate { source: CandidateSource::Impl(impl_def_id), result }), Err(NoSolution) => (), }, ); } fn assemble_builtin_impl_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let lang_items = self.tcx().lang_items(); let trait_def_id = goal.predicate.trait_def_id(self.tcx()); let result = if self.tcx().trait_is_auto(trait_def_id) { G::consider_auto_trait_candidate(self, goal) } else if self.tcx().trait_is_alias(trait_def_id) { G::consider_trait_alias_candidate(self, goal) } else if lang_items.sized_trait() == Some(trait_def_id) { G::consider_builtin_sized_candidate(self, goal) } else if lang_items.copy_trait() == Some(trait_def_id) || lang_items.clone_trait() == Some(trait_def_id) { G::consider_builtin_copy_clone_candidate(self, goal) } else if lang_items.pointer_sized() == Some(trait_def_id) { G::consider_builtin_pointer_sized_candidate(self, goal) } else if let Some(kind) = self.tcx().fn_trait_kind_from_def_id(trait_def_id) { G::consider_builtin_fn_trait_candidates(self, goal, kind) } else if lang_items.tuple_trait() == Some(trait_def_id) { G::consider_builtin_tuple_candidate(self, goal) } else { Err(NoSolution) }; match result { Ok(result) => { candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result }) } Err(NoSolution) => (), } } fn assemble_param_env_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { for (i, assumption) in goal.param_env.caller_bounds().iter().enumerate() { match G::consider_assumption(self, goal, assumption) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::ParamEnv(i), result }) } Err(NoSolution) => (), } } } fn assemble_alias_bound_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let alias_ty = match goal.predicate.self_ty().kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Dynamic(..) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(_) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(_) | ty::Error(_) => return, ty::Bound(..) => bug!("unexpected bound type: {goal:?}"), ty::Alias(_, alias_ty) => alias_ty, }; for (i, (assumption, _)) in self .tcx() .bound_explicit_item_bounds(alias_ty.def_id) .subst_iter_copied(self.tcx(), alias_ty.substs) .enumerate() { match G::consider_assumption(self, goal, assumption) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::AliasBound(i), result }) } Err(NoSolution) => (), } } } fn assemble_object_bound_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let self_ty = goal.predicate.self_ty(); let bounds = match *self_ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Alias(..) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(_) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(_) | ty::Error(_) => return, ty::Bound(..) => bug!("unexpected bound type: {goal:?}"), ty::Dynamic(bounds, ..) => bounds, }; let tcx = self.tcx(); for assumption in elaborate_predicates(tcx, bounds.iter().map(|bound| bound.with_self_ty(tcx, self_ty))) { match G::consider_assumption(self, goal, assumption.predicate) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::BuiltinImpl, result }) } Err(NoSolution) => (), } } } }