//! Code shared by trait and projection goals for candidate assembly. use super::{EvalCtxt, SolverMode}; use crate::traits::coherence; use rustc_hir::def_id::DefId; use rustc_infer::traits::query::NoSolution; use rustc_infer::traits::Reveal; use rustc_middle::traits::solve::inspect::ProbeKind; use rustc_middle::traits::solve::{ CandidateSource, CanonicalResponse, Certainty, Goal, QueryResult, }; use rustc_middle::traits::BuiltinImplSource; use rustc_middle::ty::fast_reject::{SimplifiedType, TreatParams}; use rustc_middle::ty::{self, Ty, TyCtxt}; use rustc_middle::ty::{fast_reject, TypeFoldable}; use rustc_middle::ty::{ToPredicate, TypeVisitableExt}; use rustc_span::ErrorGuaranteed; use std::fmt::Debug; pub(super) mod structural_traits; /// A candidate is a possible way to prove a goal. /// /// It consists of both the `source`, which describes how that goal would be proven, /// and the `result` when using the given `source`. #[derive(Debug, Clone)] pub(super) struct Candidate<'tcx> { pub(super) source: CandidateSource, pub(super) result: CanonicalResponse<'tcx>, } /// Methods used to assemble candidates for either trait or projection goals. pub(super) trait GoalKind<'tcx>: TypeFoldable> + Copy + Eq + std::fmt::Display { fn self_ty(self) -> Ty<'tcx>; fn trait_ref(self, tcx: TyCtxt<'tcx>) -> ty::TraitRef<'tcx>; fn with_self_ty(self, tcx: TyCtxt<'tcx>, self_ty: Ty<'tcx>) -> Self; fn trait_def_id(self, tcx: TyCtxt<'tcx>) -> DefId; /// Try equating an assumption predicate against a goal's predicate. If it /// holds, then execute the `then` callback, which should do any additional /// work, then produce a response (typically by executing /// [`EvalCtxt::evaluate_added_goals_and_make_canonical_response`]). fn probe_and_match_goal_against_assumption( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, assumption: ty::Clause<'tcx>, then: impl FnOnce(&mut EvalCtxt<'_, 'tcx>) -> QueryResult<'tcx>, ) -> QueryResult<'tcx>; /// Consider a clause, which consists of a "assumption" and some "requirements", /// to satisfy a goal. If the requirements hold, then attempt to satisfy our /// goal by equating it with the assumption. fn consider_implied_clause( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, assumption: ty::Clause<'tcx>, requirements: impl IntoIterator>>, ) -> QueryResult<'tcx> { Self::probe_and_match_goal_against_assumption(ecx, goal, assumption, |ecx| { ecx.add_goals(requirements); ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) }) } /// Consider a bound originating from the item bounds of an alias. For this we /// require that the well-formed requirements of the self type of the goal /// are "satisfied from the param-env". /// See [`EvalCtxt::validate_alias_bound_self_from_param_env`]. fn consider_alias_bound_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, assumption: ty::Clause<'tcx>, ) -> QueryResult<'tcx> { Self::probe_and_match_goal_against_assumption(ecx, goal, assumption, |ecx| { ecx.validate_alias_bound_self_from_param_env(goal) }) } /// Consider a clause specifically for a `dyn Trait` self type. This requires /// additionally checking all of the supertraits and object bounds to hold, /// since they're not implied by the well-formedness of the object type. fn consider_object_bound_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, assumption: ty::Clause<'tcx>, ) -> QueryResult<'tcx> { Self::probe_and_match_goal_against_assumption(ecx, goal, assumption, |ecx| { let tcx = ecx.tcx(); let ty::Dynamic(bounds, _, _) = *goal.predicate.self_ty().kind() else { bug!("expected object type in `consider_object_bound_candidate`"); }; ecx.add_goals(structural_traits::predicates_for_object_candidate( &ecx, goal.param_env, goal.predicate.trait_ref(tcx), bounds, )); ecx.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) }) } fn consider_impl_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, impl_def_id: DefId, ) -> QueryResult<'tcx>; /// If the predicate contained an error, we want to avoid emitting unnecessary trait /// errors but still want to emit errors for other trait goals. We have some special /// handling for this case. /// /// Trait goals always hold while projection goals never do. This is a bit arbitrary /// but prevents incorrect normalization while hiding any trait errors. fn consider_error_guaranteed_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, guar: ErrorGuaranteed, ) -> QueryResult<'tcx>; /// A type implements an `auto trait` if its components do as well. /// /// These components are given by built-in rules from /// [`structural_traits::instantiate_constituent_tys_for_auto_trait`]. fn consider_auto_trait_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A trait alias holds if the RHS traits and `where` clauses hold. fn consider_trait_alias_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A type is `Copy` or `Clone` if its components are `Sized`. /// /// These components are given by built-in rules from /// [`structural_traits::instantiate_constituent_tys_for_sized_trait`]. fn consider_builtin_sized_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A type is `Copy` or `Clone` if its components are `Copy` or `Clone`. /// /// These components are given by built-in rules from /// [`structural_traits::instantiate_constituent_tys_for_copy_clone_trait`]. fn consider_builtin_copy_clone_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A type is `PointerLike` if we can compute its layout, and that layout /// matches the layout of `usize`. fn consider_builtin_pointer_like_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A type is a `FnPtr` if it is of `FnPtr` type. fn consider_builtin_fn_ptr_trait_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A callable type (a closure, fn def, or fn ptr) is known to implement the `Fn` /// family of traits where `A` is given by the signature of the type. fn consider_builtin_fn_trait_candidates( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, kind: ty::ClosureKind, ) -> QueryResult<'tcx>; /// `Tuple` is implemented if the `Self` type is a tuple. fn consider_builtin_tuple_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// `Pointee` is always implemented. /// /// See the projection implementation for the `Metadata` types for all of /// the built-in types. For structs, the metadata type is given by the struct /// tail. fn consider_builtin_pointee_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A generator (that comes from an `async` desugaring) is known to implement /// `Future`, where `O` is given by the generator's return type /// that was computed during type-checking. fn consider_builtin_future_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// A generator (that doesn't come from an `async` desugaring) is known to /// implement `Generator`, given the resume, yield, /// and return types of the generator computed during type-checking. fn consider_builtin_generator_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_discriminant_kind_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_destruct_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; fn consider_builtin_transmute_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; /// Consider (possibly several) candidates to upcast or unsize a type to another /// type, excluding the coercion of a sized type into a `dyn Trait`. /// /// We return the `BuiltinImplSource` for each candidate as it is needed /// for unsize coercion in hir typeck and because it is difficult to /// otherwise recompute this for codegen. This is a bit of a mess but the /// easiest way to maintain the existing behavior for now. fn consider_structural_builtin_unsize_candidates( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> Vec<(CanonicalResponse<'tcx>, BuiltinImplSource)>; /// Consider the `Unsize` candidate corresponding to coercing a sized type /// into a `dyn Trait`. /// /// This is computed separately from the rest of the `Unsize` candidates /// since it is only done once per self type, and not once per /// *normalization step* (in `assemble_candidates_via_self_ty`). fn consider_unsize_to_dyn_candidate( ecx: &mut EvalCtxt<'_, 'tcx>, goal: Goal<'tcx, Self>, ) -> QueryResult<'tcx>; } impl<'tcx> EvalCtxt<'_, 'tcx> { pub(super) fn assemble_and_evaluate_candidates>( &mut self, goal: Goal<'tcx, G>, ) -> Vec> { debug_assert_eq!(goal, self.resolve_vars_if_possible(goal)); if let Some(ambig) = self.assemble_self_ty_infer_ambiguity_response(goal) { return ambig; } let mut candidates = self.assemble_candidates_via_self_ty(goal, 0); self.assemble_unsize_to_dyn_candidate(goal, &mut candidates); self.assemble_blanket_impl_candidates(goal, &mut candidates); self.assemble_param_env_candidates(goal, &mut candidates); self.assemble_coherence_unknowable_candidates(goal, &mut candidates); candidates } /// `?0: Trait` is ambiguous, because it may be satisfied via a builtin rule, /// object bound, alias bound, etc. We are unable to determine this until we can at /// least structurally resolve the type one layer. /// /// It would also require us to consider all impls of the trait, which is both pretty /// bad for perf and would also constrain the self type if there is just a single impl. fn assemble_self_ty_infer_ambiguity_response>( &mut self, goal: Goal<'tcx, G>, ) -> Option>> { goal.predicate.self_ty().is_ty_var().then(|| { vec![Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), result: self .evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) .unwrap(), }] }) } /// Assemble candidates which apply to the self type. This only looks at candidate which /// apply to the specific self type and ignores all others. /// /// Returns `None` if the self type is still ambiguous. fn assemble_candidates_via_self_ty>( &mut self, goal: Goal<'tcx, G>, num_steps: usize, ) -> Vec> { debug_assert_eq!(goal, self.resolve_vars_if_possible(goal)); if let Some(ambig) = self.assemble_self_ty_infer_ambiguity_response(goal) { return ambig; } let mut candidates = Vec::new(); self.assemble_non_blanket_impl_candidates(goal, &mut candidates); self.assemble_builtin_impl_candidates(goal, &mut candidates); self.assemble_alias_bound_candidates(goal, &mut candidates); self.assemble_object_bound_candidates(goal, &mut candidates); self.assemble_candidates_after_normalizing_self_ty(goal, &mut candidates, num_steps); candidates } /// If the self type of a goal is an alias we first try to normalize the self type /// and compute the candidates for the normalized self type in case that succeeds. /// /// These candidates are used in addition to the ones with the alias as a self type. /// We do this to simplify both builtin candidates and for better performance. /// /// We generate the builtin candidates on the fly by looking at the self type, e.g. /// add `FnPtr` candidates if the self type is a function pointer. Handling builtin /// candidates while the self type is still an alias seems difficult. This is similar /// to `try_structurally_resolve_type` during hir typeck (FIXME once implemented). /// /// Looking at all impls for some trait goal is prohibitively expensive. We therefore /// only look at implementations with a matching self type. Because of this function, /// we can avoid looking at all existing impls if the self type is an alias. #[instrument(level = "debug", skip_all)] fn assemble_candidates_after_normalizing_self_ty>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, num_steps: usize, ) { let tcx = self.tcx(); let &ty::Alias(_, projection_ty) = goal.predicate.self_ty().kind() else { return }; candidates.extend(self.probe(|_| ProbeKind::NormalizedSelfTyAssembly).enter(|ecx| { if num_steps < ecx.local_overflow_limit() { let normalized_ty = ecx.next_ty_infer(); let normalizes_to_goal = goal.with( tcx, ty::ProjectionPredicate { projection_ty, term: normalized_ty.into() }, ); ecx.add_goal(normalizes_to_goal); if let Err(NoSolution) = ecx.try_evaluate_added_goals() { debug!("self type normalization failed"); return vec![]; } let normalized_ty = ecx.resolve_vars_if_possible(normalized_ty); debug!(?normalized_ty, "self type normalized"); // NOTE: Alternatively we could call `evaluate_goal` here and only // have a `Normalized` candidate. This doesn't work as long as we // use `CandidateSource` in winnowing. let goal = goal.with(tcx, goal.predicate.with_self_ty(tcx, normalized_ty)); ecx.assemble_candidates_via_self_ty(goal, num_steps + 1) } else { match ecx.evaluate_added_goals_and_make_canonical_response(Certainty::OVERFLOW) { Ok(result) => vec![Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), result, }], Err(NoSolution) => vec![], } } })); } #[instrument(level = "debug", skip_all)] fn assemble_non_blanket_impl_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); let self_ty = goal.predicate.self_ty(); let trait_impls = tcx.trait_impls_of(goal.predicate.trait_def_id(tcx)); let mut consider_impls_for_simplified_type = |simp| { if let Some(impls_for_type) = trait_impls.non_blanket_impls().get(&simp) { for &impl_def_id in impls_for_type { match G::consider_impl_candidate(self, goal, impl_def_id) { Ok(result) => candidates .push(Candidate { source: CandidateSource::Impl(impl_def_id), result }), Err(NoSolution) => (), } } } }; match self_ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Dynamic(_, _, _) | ty::Closure(_, _) | ty::Generator(_, _, _) | ty::Never | ty::Tuple(_) => { let simp = fast_reject::simplify_type(tcx, self_ty, TreatParams::ForLookup).unwrap(); consider_impls_for_simplified_type(simp); } // HACK: For integer and float variables we have to manually look at all impls // which have some integer or float as a self type. ty::Infer(ty::IntVar(_)) => { use ty::IntTy::*; use ty::UintTy::*; // This causes a compiler error if any new integer kinds are added. let (I8 | I16 | I32 | I64 | I128 | Isize): ty::IntTy; let (U8 | U16 | U32 | U64 | U128 | Usize): ty::UintTy; let possible_integers = [ // signed integers SimplifiedType::Int(I8), SimplifiedType::Int(I16), SimplifiedType::Int(I32), SimplifiedType::Int(I64), SimplifiedType::Int(I128), SimplifiedType::Int(Isize), // unsigned integers SimplifiedType::Uint(U8), SimplifiedType::Uint(U16), SimplifiedType::Uint(U32), SimplifiedType::Uint(U64), SimplifiedType::Uint(U128), SimplifiedType::Uint(Usize), ]; for simp in possible_integers { consider_impls_for_simplified_type(simp); } } ty::Infer(ty::FloatVar(_)) => { // This causes a compiler error if any new float kinds are added. let (ty::FloatTy::F32 | ty::FloatTy::F64); let possible_floats = [ SimplifiedType::Float(ty::FloatTy::F32), SimplifiedType::Float(ty::FloatTy::F64), ]; for simp in possible_floats { consider_impls_for_simplified_type(simp); } } // The only traits applying to aliases and placeholders are blanket impls. // // Impls which apply to an alias after normalization are handled by // `assemble_candidates_after_normalizing_self_ty`. ty::Alias(_, _) | ty::Placeholder(..) | ty::Error(_) => (), // FIXME: These should ideally not exist as a self type. It would be nice for // the builtin auto trait impls of generators to instead directly recurse // into the witness. ty::GeneratorWitness(..) => (), // These variants should not exist as a self type. ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Param(_) | ty::Bound(_, _) => bug!("unexpected self type: {self_ty}"), } } fn assemble_unsize_to_dyn_candidate>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); if tcx.lang_items().unsize_trait() == Some(goal.predicate.trait_def_id(tcx)) { match G::consider_unsize_to_dyn_candidate(self, goal) { Ok(result) => candidates.push(Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), result, }), Err(NoSolution) => (), } } } fn assemble_blanket_impl_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); let trait_impls = tcx.trait_impls_of(goal.predicate.trait_def_id(tcx)); for &impl_def_id in trait_impls.blanket_impls() { match G::consider_impl_candidate(self, goal, impl_def_id) { Ok(result) => candidates .push(Candidate { source: CandidateSource::Impl(impl_def_id), result }), Err(NoSolution) => (), } } } #[instrument(level = "debug", skip_all)] fn assemble_builtin_impl_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); let lang_items = tcx.lang_items(); let trait_def_id = goal.predicate.trait_def_id(tcx); // N.B. When assembling built-in candidates for lang items that are also // `auto` traits, then the auto trait candidate that is assembled in // `consider_auto_trait_candidate` MUST be disqualified to remain sound. // // Instead of adding the logic here, it's a better idea to add it in // `EvalCtxt::disqualify_auto_trait_candidate_due_to_possible_impl` in // `solve::trait_goals` instead. let result = if let Err(guar) = goal.predicate.error_reported() { G::consider_error_guaranteed_candidate(self, guar) } else if tcx.trait_is_auto(trait_def_id) { G::consider_auto_trait_candidate(self, goal) } else if tcx.trait_is_alias(trait_def_id) { G::consider_trait_alias_candidate(self, goal) } else if lang_items.sized_trait() == Some(trait_def_id) { G::consider_builtin_sized_candidate(self, goal) } else if lang_items.copy_trait() == Some(trait_def_id) || lang_items.clone_trait() == Some(trait_def_id) { G::consider_builtin_copy_clone_candidate(self, goal) } else if lang_items.pointer_like() == Some(trait_def_id) { G::consider_builtin_pointer_like_candidate(self, goal) } else if lang_items.fn_ptr_trait() == Some(trait_def_id) { G::consider_builtin_fn_ptr_trait_candidate(self, goal) } else if let Some(kind) = self.tcx().fn_trait_kind_from_def_id(trait_def_id) { G::consider_builtin_fn_trait_candidates(self, goal, kind) } else if lang_items.tuple_trait() == Some(trait_def_id) { G::consider_builtin_tuple_candidate(self, goal) } else if lang_items.pointee_trait() == Some(trait_def_id) { G::consider_builtin_pointee_candidate(self, goal) } else if lang_items.future_trait() == Some(trait_def_id) { G::consider_builtin_future_candidate(self, goal) } else if lang_items.gen_trait() == Some(trait_def_id) { G::consider_builtin_generator_candidate(self, goal) } else if lang_items.discriminant_kind_trait() == Some(trait_def_id) { G::consider_builtin_discriminant_kind_candidate(self, goal) } else if lang_items.destruct_trait() == Some(trait_def_id) { G::consider_builtin_destruct_candidate(self, goal) } else if lang_items.transmute_trait() == Some(trait_def_id) { G::consider_builtin_transmute_candidate(self, goal) } else { Err(NoSolution) }; match result { Ok(result) => candidates.push(Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), result, }), Err(NoSolution) => (), } // There may be multiple unsize candidates for a trait with several supertraits: // `trait Foo: Bar + Bar` and `dyn Foo: Unsize>` if lang_items.unsize_trait() == Some(trait_def_id) { for (result, source) in G::consider_structural_builtin_unsize_candidates(self, goal) { candidates.push(Candidate { source: CandidateSource::BuiltinImpl(source), result }); } } } #[instrument(level = "debug", skip_all)] fn assemble_param_env_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { for (i, assumption) in goal.param_env.caller_bounds().iter().enumerate() { match G::consider_implied_clause(self, goal, assumption, []) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::ParamEnv(i), result }) } Err(NoSolution) => (), } } } #[instrument(level = "debug", skip_all)] fn assemble_alias_bound_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let alias_ty = match goal.predicate.self_ty().kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Dynamic(..) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Alias(ty::Inherent, _) | ty::Alias(ty::Weak, _) | ty::Error(_) => return, ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"), // Excluding IATs and type aliases here as they don't have meaningful item bounds. ty::Alias(ty::Projection | ty::Opaque, alias_ty) => alias_ty, }; for assumption in self.tcx().item_bounds(alias_ty.def_id).instantiate(self.tcx(), alias_ty.args) { match G::consider_alias_bound_candidate(self, goal, assumption) { Ok(result) => { candidates.push(Candidate { source: CandidateSource::AliasBound, result }) } Err(NoSolution) => (), } } } /// Check that we are allowed to use an alias bound originating from the self /// type of this goal. This means something different depending on the self type's /// alias kind. /// /// * Projection: Given a goal with a self type such as `::Assoc`, /// we require that the bound `Ty: Trait` can be proven using either a nested alias /// bound candidate, or a param-env candidate. /// /// * Opaque: The param-env must be in `Reveal::UserFacing` mode. Otherwise, /// the goal should be proven by using the hidden type instead. #[instrument(level = "debug", skip(self), ret)] pub(super) fn validate_alias_bound_self_from_param_env>( &mut self, goal: Goal<'tcx, G>, ) -> QueryResult<'tcx> { match *goal.predicate.self_ty().kind() { ty::Alias(ty::Projection, projection_ty) => { let mut param_env_candidates = vec![]; let self_trait_ref = projection_ty.trait_ref(self.tcx()); if self_trait_ref.self_ty().is_ty_var() { return self .evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS); } let trait_goal: Goal<'_, ty::TraitPredicate<'tcx>> = goal.with( self.tcx(), ty::TraitPredicate { trait_ref: self_trait_ref, polarity: ty::ImplPolarity::Positive, }, ); self.assemble_param_env_candidates(trait_goal, &mut param_env_candidates); // FIXME: We probably need some sort of recursion depth check here. // Can't come up with an example yet, though, and the worst case // we can have is a compiler stack overflow... self.assemble_alias_bound_candidates(trait_goal, &mut param_env_candidates); // FIXME: We must also consider alias-bound candidates for a peculiar // class of built-in candidates that I'll call "defaulted" built-ins. // // For example, we always know that `T: Pointee` is implemented, but // we do not always know what `::Metadata` actually is, // similar to if we had a user-defined impl with a `default type ...`. // For these traits, since we're not able to always normalize their // associated types to a concrete type, we must consider their alias bounds // instead, so we can prove bounds such as `::Metadata: Copy`. self.assemble_alias_bound_candidates_for_builtin_impl_default_items( trait_goal, &mut param_env_candidates, ); self.merge_candidates(param_env_candidates) } ty::Alias(ty::Opaque, _opaque_ty) => match goal.param_env.reveal() { Reveal::UserFacing => { self.evaluate_added_goals_and_make_canonical_response(Certainty::Yes) } Reveal::All => return Err(NoSolution), }, _ => bug!("only expected to be called on alias tys"), } } /// Assemble a subset of builtin impl candidates for a class of candidates called /// "defaulted" built-in traits. /// /// For example, we always know that `T: Pointee` is implemented, but we do not /// always know what `::Metadata` actually is! See the comment in /// [`EvalCtxt::validate_alias_bound_self_from_param_env`] for more detail. #[instrument(level = "debug", skip_all)] fn assemble_alias_bound_candidates_for_builtin_impl_default_items>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let lang_items = self.tcx().lang_items(); let trait_def_id = goal.predicate.trait_def_id(self.tcx()); // You probably shouldn't add anything to this list unless you // know what you're doing. let result = if lang_items.pointee_trait() == Some(trait_def_id) { G::consider_builtin_pointee_candidate(self, goal) } else if lang_items.discriminant_kind_trait() == Some(trait_def_id) { G::consider_builtin_discriminant_kind_candidate(self, goal) } else { Err(NoSolution) }; match result { Ok(result) => candidates.push(Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), result, }), Err(NoSolution) => (), } } #[instrument(level = "debug", skip_all)] fn assemble_object_bound_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); if !tcx.trait_def(goal.predicate.trait_def_id(tcx)).implement_via_object { return; } let self_ty = goal.predicate.self_ty(); let bounds = match *self_ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Adt(_, _) | ty::Foreign(_) | ty::Str | ty::Array(_, _) | ty::Slice(_) | ty::RawPtr(_) | ty::Ref(_, _, _) | ty::FnDef(_, _) | ty::FnPtr(_) | ty::Alias(..) | ty::Closure(..) | ty::Generator(..) | ty::GeneratorWitness(..) | ty::Never | ty::Tuple(_) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(ty::IntVar(_) | ty::FloatVar(_)) | ty::Error(_) => return, ty::Infer(ty::TyVar(_) | ty::FreshTy(_) | ty::FreshIntTy(_) | ty::FreshFloatTy(_)) | ty::Bound(..) => bug!("unexpected self type for `{goal:?}`"), ty::Dynamic(bounds, ..) => bounds, }; // Do not consider built-in object impls for non-object-safe types. if bounds.principal_def_id().is_some_and(|def_id| !tcx.check_is_object_safe(def_id)) { return; } // Consider all of the auto-trait and projection bounds, which don't // need to be recorded as a `BuiltinImplSource::Object` since they don't // really have a vtable base... for bound in bounds { match bound.skip_binder() { ty::ExistentialPredicate::Trait(_) => { // Skip principal } ty::ExistentialPredicate::Projection(_) | ty::ExistentialPredicate::AutoTrait(_) => { match G::consider_object_bound_candidate( self, goal, bound.with_self_ty(tcx, self_ty), ) { Ok(result) => candidates.push(Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), result, }), Err(NoSolution) => (), } } } } // FIXME: We only need to do *any* of this if we're considering a trait goal, // since we don't need to look at any supertrait or anything if we are doing // a projection goal. if let Some(principal) = bounds.principal() { let principal_trait_ref = principal.with_self_ty(tcx, self_ty); self.walk_vtable(principal_trait_ref, |ecx, assumption, vtable_base, _| { match G::consider_object_bound_candidate(ecx, goal, assumption.to_predicate(tcx)) { Ok(result) => candidates.push(Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Object { vtable_base, }), result, }), Err(NoSolution) => (), } }); } } #[instrument(level = "debug", skip_all)] fn assemble_coherence_unknowable_candidates>( &mut self, goal: Goal<'tcx, G>, candidates: &mut Vec>, ) { let tcx = self.tcx(); match self.solver_mode() { SolverMode::Normal => return, SolverMode::Coherence => {} }; let result = self.probe_misc_candidate("coherence unknowable").enter(|ecx| { let trait_ref = goal.predicate.trait_ref(tcx); #[derive(Debug)] enum FailureKind { Overflow, NoSolution(NoSolution), } let lazily_normalize_ty = |ty| match ecx.try_normalize_ty(goal.param_env, ty) { Ok(Some(ty)) => Ok(ty), Ok(None) => Err(FailureKind::Overflow), Err(e) => Err(FailureKind::NoSolution(e)), }; match coherence::trait_ref_is_knowable(tcx, trait_ref, lazily_normalize_ty) { Err(FailureKind::Overflow) => { ecx.evaluate_added_goals_and_make_canonical_response(Certainty::OVERFLOW) } Err(FailureKind::NoSolution(NoSolution)) | Ok(Ok(())) => Err(NoSolution), Ok(Err(_)) => { ecx.evaluate_added_goals_and_make_canonical_response(Certainty::AMBIGUOUS) } } }); match result { Ok(result) => candidates.push(Candidate { source: CandidateSource::BuiltinImpl(BuiltinImplSource::Misc), result, }), Err(NoSolution) => {} } } /// If there are multiple ways to prove a trait or projection goal, we have /// to somehow try to merge the candidates into one. If that fails, we return /// ambiguity. #[instrument(level = "debug", skip(self), ret)] pub(super) fn merge_candidates( &mut self, mut candidates: Vec>, ) -> QueryResult<'tcx> { // First try merging all candidates. This is complete and fully sound. let responses = candidates.iter().map(|c| c.result).collect::>(); if let Some(result) = self.try_merge_responses(&responses) { return Ok(result); } // We then check whether we should prioritize `ParamEnv` candidates. // // Doing so is incomplete and would therefore be unsound during coherence. match self.solver_mode() { SolverMode::Coherence => (), // Prioritize `ParamEnv` candidates only if they do not guide inference. // // This is still incomplete as we may add incorrect region bounds. SolverMode::Normal => { let param_env_responses = candidates .iter() .filter(|c| { matches!( c.source, CandidateSource::ParamEnv(_) | CandidateSource::AliasBound ) }) .map(|c| c.result) .collect::>(); if let Some(result) = self.try_merge_responses(¶m_env_responses) { // We strongly prefer alias and param-env bounds here, even if they affect inference. // See https://github.com/rust-lang/trait-system-refactor-initiative/issues/11. return Ok(result); } } } self.flounder(&responses) } }