//! See Rustc Dev Guide chapters on [trait-resolution] and [trait-specialization] for more info on //! how this works. //! //! [trait-resolution]: https://rustc-dev-guide.rust-lang.org/traits/resolution.html //! [trait-specialization]: https://rustc-dev-guide.rust-lang.org/traits/specialization.html use crate::infer::outlives::env::OutlivesEnvironment; use crate::infer::{CombinedSnapshot, InferOk}; use crate::traits::outlives_bounds::InferCtxtExt as _; use crate::traits::select::IntercrateAmbiguityCause; use crate::traits::util::impl_subject_and_oblig; use crate::traits::SkipLeakCheck; use crate::traits::{ self, Obligation, ObligationCause, ObligationCtxt, PredicateObligation, PredicateObligations, SelectionContext, }; use rustc_data_structures::fx::FxIndexSet; use rustc_errors::Diagnostic; use rustc_hir::def_id::{DefId, CRATE_DEF_ID, LOCAL_CRATE}; use rustc_hir::CRATE_HIR_ID; use rustc_infer::infer::{DefiningAnchor, InferCtxt, TyCtxtInferExt}; use rustc_infer::traits::util; use rustc_middle::traits::specialization_graph::OverlapMode; use rustc_middle::ty::fast_reject::{DeepRejectCtxt, TreatParams}; use rustc_middle::ty::visit::TypeVisitable; use rustc_middle::ty::{self, ImplSubject, Ty, TyCtxt, TypeVisitor}; use rustc_span::symbol::sym; use rustc_span::DUMMY_SP; use std::fmt::Debug; use std::iter; use std::ops::ControlFlow; use super::NormalizeExt; /// Whether we do the orphan check relative to this crate or /// to some remote crate. #[derive(Copy, Clone, Debug)] enum InCrate { Local, Remote, } #[derive(Debug, Copy, Clone)] pub enum Conflict { Upstream, Downstream, } pub struct OverlapResult<'tcx> { pub impl_header: ty::ImplHeader<'tcx>, pub intercrate_ambiguity_causes: FxIndexSet, /// `true` if the overlap might've been permitted before the shift /// to universes. pub involves_placeholder: bool, } pub fn add_placeholder_note(err: &mut Diagnostic) { err.note( "this behavior recently changed as a result of a bug fix; \ see rust-lang/rust#56105 for details", ); } /// If there are types that satisfy both impls, returns `Some` /// with a suitably-freshened `ImplHeader` with those types /// substituted. Otherwise, returns `None`. #[instrument(skip(tcx, skip_leak_check), level = "debug")] pub fn overlapping_impls( tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId, skip_leak_check: SkipLeakCheck, overlap_mode: OverlapMode, ) -> Option> { // Before doing expensive operations like entering an inference context, do // a quick check via fast_reject to tell if the impl headers could possibly // unify. let drcx = DeepRejectCtxt { treat_obligation_params: TreatParams::AsInfer }; let impl1_ref = tcx.impl_trait_ref(impl1_def_id); let impl2_ref = tcx.impl_trait_ref(impl2_def_id); let may_overlap = match (impl1_ref, impl2_ref) { (Some(a), Some(b)) => iter::zip(a.skip_binder().substs, b.skip_binder().substs) .all(|(arg1, arg2)| drcx.generic_args_may_unify(arg1, arg2)), (None, None) => { let self_ty1 = tcx.type_of(impl1_def_id); let self_ty2 = tcx.type_of(impl2_def_id); drcx.types_may_unify(self_ty1, self_ty2) } _ => bug!("unexpected impls: {impl1_def_id:?} {impl2_def_id:?}"), }; if !may_overlap { // Some types involved are definitely different, so the impls couldn't possibly overlap. debug!("overlapping_impls: fast_reject early-exit"); return None; } let infcx = tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bubble).intercrate().build(); let selcx = &mut SelectionContext::new(&infcx); let overlaps = overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).is_some(); if !overlaps { return None; } // In the case where we detect an error, run the check again, but // this time tracking intercrate ambiguity causes for better // diagnostics. (These take time and can lead to false errors.) let infcx = tcx.infer_ctxt().with_opaque_type_inference(DefiningAnchor::Bubble).intercrate().build(); let selcx = &mut SelectionContext::new(&infcx); selcx.enable_tracking_intercrate_ambiguity_causes(); Some(overlap(selcx, skip_leak_check, impl1_def_id, impl2_def_id, overlap_mode).unwrap()) } fn with_fresh_ty_vars<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, param_env: ty::ParamEnv<'tcx>, impl_def_id: DefId, ) -> ty::ImplHeader<'tcx> { let tcx = selcx.tcx(); let impl_substs = selcx.infcx.fresh_substs_for_item(DUMMY_SP, impl_def_id); let header = ty::ImplHeader { impl_def_id, self_ty: tcx.bound_type_of(impl_def_id).subst(tcx, impl_substs), trait_ref: tcx.impl_trait_ref(impl_def_id).map(|i| i.subst(tcx, impl_substs)), predicates: tcx.predicates_of(impl_def_id).instantiate(tcx, impl_substs).predicates, }; let InferOk { value: mut header, obligations } = selcx.infcx.at(&ObligationCause::dummy(), param_env).normalize(header); header.predicates.extend(obligations.into_iter().map(|o| o.predicate)); header } /// Can both impl `a` and impl `b` be satisfied by a common type (including /// where-clauses)? If so, returns an `ImplHeader` that unifies the two impls. fn overlap<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, skip_leak_check: SkipLeakCheck, impl1_def_id: DefId, impl2_def_id: DefId, overlap_mode: OverlapMode, ) -> Option> { debug!( "overlap(impl1_def_id={:?}, impl2_def_id={:?}, overlap_mode={:?})", impl1_def_id, impl2_def_id, overlap_mode ); selcx.infcx.probe_maybe_skip_leak_check(skip_leak_check.is_yes(), |snapshot| { overlap_within_probe(selcx, impl1_def_id, impl2_def_id, overlap_mode, snapshot) }) } fn overlap_within_probe<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, impl1_def_id: DefId, impl2_def_id: DefId, overlap_mode: OverlapMode, snapshot: &CombinedSnapshot<'tcx>, ) -> Option> { let infcx = selcx.infcx; if overlap_mode.use_negative_impl() { if negative_impl(infcx.tcx, impl1_def_id, impl2_def_id) || negative_impl(infcx.tcx, impl2_def_id, impl1_def_id) { return None; } } // For the purposes of this check, we don't bring any placeholder // types into scope; instead, we replace the generic types with // fresh type variables, and hence we do our evaluations in an // empty environment. let param_env = ty::ParamEnv::empty(); let impl1_header = with_fresh_ty_vars(selcx, param_env, impl1_def_id); let impl2_header = with_fresh_ty_vars(selcx, param_env, impl2_def_id); let obligations = equate_impl_headers(selcx, &impl1_header, &impl2_header)?; debug!("overlap: unification check succeeded"); if overlap_mode.use_implicit_negative() { if implicit_negative(selcx, param_env, &impl1_header, impl2_header, obligations) { return None; } } // We disable the leak when creating the `snapshot` by using // `infcx.probe_maybe_disable_leak_check`. if infcx.leak_check(true, snapshot).is_err() { debug!("overlap: leak check failed"); return None; } let intercrate_ambiguity_causes = selcx.take_intercrate_ambiguity_causes(); debug!("overlap: intercrate_ambiguity_causes={:#?}", intercrate_ambiguity_causes); let involves_placeholder = matches!(selcx.infcx.region_constraints_added_in_snapshot(snapshot), Some(true)); let impl_header = selcx.infcx.resolve_vars_if_possible(impl1_header); Some(OverlapResult { impl_header, intercrate_ambiguity_causes, involves_placeholder }) } fn equate_impl_headers<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, impl1_header: &ty::ImplHeader<'tcx>, impl2_header: &ty::ImplHeader<'tcx>, ) -> Option> { // Do `a` and `b` unify? If not, no overlap. debug!("equate_impl_headers(impl1_header={:?}, impl2_header={:?}", impl1_header, impl2_header); selcx .infcx .at(&ObligationCause::dummy(), ty::ParamEnv::empty()) .eq_impl_headers(impl1_header, impl2_header) .map(|infer_ok| infer_ok.obligations) .ok() } /// Given impl1 and impl2 check if both impls can be satisfied by a common type (including /// where-clauses) If so, return false, otherwise return true, they are disjoint. fn implicit_negative<'cx, 'tcx>( selcx: &mut SelectionContext<'cx, 'tcx>, param_env: ty::ParamEnv<'tcx>, impl1_header: &ty::ImplHeader<'tcx>, impl2_header: ty::ImplHeader<'tcx>, obligations: PredicateObligations<'tcx>, ) -> bool { // There's no overlap if obligations are unsatisfiable or if the obligation negated is // satisfied. // // For example, given these two impl headers: // // `impl<'a> From<&'a str> for Box` // `impl From for Box where E: Error` // // So we have: // // `Box: From<&'?a str>` // `Box: From` // // After equating the two headers: // // `Box = Box` // So, `?E = &'?a str` and then given the where clause `&'?a str: Error`. // // If the obligation `&'?a str: Error` holds, it means that there's overlap. If that doesn't // hold we need to check if `&'?a str: !Error` holds, if doesn't hold there's overlap because // at some point an impl for `&'?a str: Error` could be added. debug!( "implicit_negative(impl1_header={:?}, impl2_header={:?}, obligations={:?})", impl1_header, impl2_header, obligations ); let infcx = selcx.infcx; let opt_failing_obligation = impl1_header .predicates .iter() .copied() .chain(impl2_header.predicates) .map(|p| infcx.resolve_vars_if_possible(p)) .map(|p| Obligation { cause: ObligationCause::dummy(), param_env, recursion_depth: 0, predicate: p, }) .chain(obligations) .find(|o| !selcx.predicate_may_hold_fatal(o)); if let Some(failing_obligation) = opt_failing_obligation { debug!("overlap: obligation unsatisfiable {:?}", failing_obligation); true } else { false } } /// Given impl1 and impl2 check if both impls are never satisfied by a common type (including /// where-clauses) If so, return true, they are disjoint and false otherwise. fn negative_impl(tcx: TyCtxt<'_>, impl1_def_id: DefId, impl2_def_id: DefId) -> bool { debug!("negative_impl(impl1_def_id={:?}, impl2_def_id={:?})", impl1_def_id, impl2_def_id); // Create an infcx, taking the predicates of impl1 as assumptions: let infcx = tcx.infer_ctxt().build(); // create a parameter environment corresponding to a (placeholder) instantiation of impl1 let impl_env = tcx.param_env(impl1_def_id); let subject1 = match traits::fully_normalize( &infcx, ObligationCause::dummy(), impl_env, tcx.impl_subject(impl1_def_id), ) { Ok(s) => s, Err(err) => { tcx.sess.delay_span_bug( tcx.def_span(impl1_def_id), format!("failed to fully normalize {:?}: {:?}", impl1_def_id, err), ); return false; } }; // Attempt to prove that impl2 applies, given all of the above. let selcx = &mut SelectionContext::new(&infcx); let impl2_substs = infcx.fresh_substs_for_item(DUMMY_SP, impl2_def_id); let (subject2, obligations) = impl_subject_and_oblig(selcx, impl_env, impl2_def_id, impl2_substs); !equate(&infcx, impl_env, subject1, subject2, obligations, impl1_def_id) } fn equate<'tcx>( infcx: &InferCtxt<'tcx>, impl_env: ty::ParamEnv<'tcx>, subject1: ImplSubject<'tcx>, subject2: ImplSubject<'tcx>, obligations: impl Iterator>, body_def_id: DefId, ) -> bool { // do the impls unify? If not, not disjoint. let Ok(InferOk { obligations: more_obligations, .. }) = infcx.at(&ObligationCause::dummy(), impl_env).eq(subject1, subject2) else { debug!("explicit_disjoint: {:?} does not unify with {:?}", subject1, subject2); return true; }; let opt_failing_obligation = obligations .into_iter() .chain(more_obligations) .find(|o| negative_impl_exists(infcx, o, body_def_id)); if let Some(failing_obligation) = opt_failing_obligation { debug!("overlap: obligation unsatisfiable {:?}", failing_obligation); false } else { true } } /// Try to prove that a negative impl exist for the given obligation and its super predicates. #[instrument(level = "debug", skip(infcx))] fn negative_impl_exists<'tcx>( infcx: &InferCtxt<'tcx>, o: &PredicateObligation<'tcx>, body_def_id: DefId, ) -> bool { if resolve_negative_obligation(infcx.fork(), o, body_def_id) { return true; } // Try to prove a negative obligation exists for super predicates for o in util::elaborate_predicates(infcx.tcx, iter::once(o.predicate)) { if resolve_negative_obligation(infcx.fork(), &o, body_def_id) { return true; } } false } #[instrument(level = "debug", skip(infcx))] fn resolve_negative_obligation<'tcx>( infcx: InferCtxt<'tcx>, o: &PredicateObligation<'tcx>, body_def_id: DefId, ) -> bool { let tcx = infcx.tcx; let Some(o) = o.flip_polarity(tcx) else { return false; }; let param_env = o.param_env; if !super::fully_solve_obligation(&infcx, o).is_empty() { return false; } let (body_id, body_def_id) = if let Some(body_def_id) = body_def_id.as_local() { (tcx.hir().local_def_id_to_hir_id(body_def_id), body_def_id) } else { (CRATE_HIR_ID, CRATE_DEF_ID) }; let ocx = ObligationCtxt::new(&infcx); let wf_tys = ocx.assumed_wf_types(param_env, DUMMY_SP, body_def_id); let outlives_env = OutlivesEnvironment::with_bounds( param_env, Some(&infcx), infcx.implied_bounds_tys(param_env, body_id, wf_tys), ); infcx.process_registered_region_obligations(outlives_env.region_bound_pairs(), param_env); infcx.resolve_regions(&outlives_env).is_empty() } #[instrument(level = "debug", skip(tcx), ret)] pub fn trait_ref_is_knowable<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> Result<(), Conflict> { if orphan_check_trait_ref(trait_ref, InCrate::Remote).is_ok() { // A downstream or cousin crate is allowed to implement some // substitution of this trait-ref. return Err(Conflict::Downstream); } if trait_ref_is_local_or_fundamental(tcx, trait_ref) { // This is a local or fundamental trait, so future-compatibility // is no concern. We know that downstream/cousin crates are not // allowed to implement a substitution of this trait ref, which // means impls could only come from dependencies of this crate, // which we already know about. return Ok(()); } // This is a remote non-fundamental trait, so if another crate // can be the "final owner" of a substitution of this trait-ref, // they are allowed to implement it future-compatibly. // // However, if we are a final owner, then nobody else can be, // and if we are an intermediate owner, then we don't care // about future-compatibility, which means that we're OK if // we are an owner. if orphan_check_trait_ref(trait_ref, InCrate::Local).is_ok() { Ok(()) } else { Err(Conflict::Upstream) } } pub fn trait_ref_is_local_or_fundamental<'tcx>( tcx: TyCtxt<'tcx>, trait_ref: ty::TraitRef<'tcx>, ) -> bool { trait_ref.def_id.krate == LOCAL_CRATE || tcx.has_attr(trait_ref.def_id, sym::fundamental) } #[derive(Debug)] pub enum OrphanCheckErr<'tcx> { NonLocalInputType(Vec<(Ty<'tcx>, bool /* Is this the first input type? */)>), UncoveredTy(Ty<'tcx>, Option>), } /// Checks the coherence orphan rules. `impl_def_id` should be the /// `DefId` of a trait impl. To pass, either the trait must be local, or else /// two conditions must be satisfied: /// /// 1. All type parameters in `Self` must be "covered" by some local type constructor. /// 2. Some local type must appear in `Self`. #[instrument(level = "debug", skip(tcx), ret)] pub fn orphan_check(tcx: TyCtxt<'_>, impl_def_id: DefId) -> Result<(), OrphanCheckErr<'_>> { // We only except this routine to be invoked on implementations // of a trait, not inherent implementations. let trait_ref = tcx.impl_trait_ref(impl_def_id).unwrap().subst_identity(); debug!(?trait_ref); // If the *trait* is local to the crate, ok. if trait_ref.def_id.is_local() { debug!("trait {:?} is local to current crate", trait_ref.def_id); return Ok(()); } orphan_check_trait_ref(trait_ref, InCrate::Local) } /// Checks whether a trait-ref is potentially implementable by a crate. /// /// The current rule is that a trait-ref orphan checks in a crate C: /// /// 1. Order the parameters in the trait-ref in subst order - Self first, /// others linearly (e.g., `>` is U < V < W). /// 2. Of these type parameters, there is at least one type parameter /// in which, walking the type as a tree, you can reach a type local /// to C where all types in-between are fundamental types. Call the /// first such parameter the "local key parameter". /// - e.g., `Box` is OK, because you can visit LocalType /// going through `Box`, which is fundamental. /// - similarly, `FundamentalPair, Box>` is OK for /// the same reason. /// - but (knowing that `Vec` is non-fundamental, and assuming it's /// not local), `Vec` is bad, because `Vec<->` is between /// the local type and the type parameter. /// 3. Before this local type, no generic type parameter of the impl must /// be reachable through fundamental types. /// - e.g. `impl Trait for Vec` is fine, as `Vec` is not fundamental. /// - while `impl Trait for Box` results in an error, as `T` is /// reachable through the fundamental type `Box`. /// 4. Every type in the local key parameter not known in C, going /// through the parameter's type tree, must appear only as a subtree of /// a type local to C, with only fundamental types between the type /// local to C and the local key parameter. /// - e.g., `Vec>>` (or equivalently `Box>>`) /// is bad, because the only local type with `T` as a subtree is /// `LocalType`, and `Vec<->` is between it and the type parameter. /// - similarly, `FundamentalPair, T>` is bad, because /// the second occurrence of `T` is not a subtree of *any* local type. /// - however, `LocalType>` is OK, because `T` is a subtree of /// `LocalType>`, which is local and has no types between it and /// the type parameter. /// /// The orphan rules actually serve several different purposes: /// /// 1. They enable link-safety - i.e., 2 mutually-unknowing crates (where /// every type local to one crate is unknown in the other) can't implement /// the same trait-ref. This follows because it can be seen that no such /// type can orphan-check in 2 such crates. /// /// To check that a local impl follows the orphan rules, we check it in /// InCrate::Local mode, using type parameters for the "generic" types. /// /// 2. They ground negative reasoning for coherence. If a user wants to /// write both a conditional blanket impl and a specific impl, we need to /// make sure they do not overlap. For example, if we write /// ```ignore (illustrative) /// impl IntoIterator for Vec /// impl IntoIterator for T /// ``` /// We need to be able to prove that `Vec<$0>: !Iterator` for every type $0. /// We can observe that this holds in the current crate, but we need to make /// sure this will also hold in all unknown crates (both "independent" crates, /// which we need for link-safety, and also child crates, because we don't want /// child crates to get error for impl conflicts in a *dependency*). /// /// For that, we only allow negative reasoning if, for every assignment to the /// inference variables, every unknown crate would get an orphan error if they /// try to implement this trait-ref. To check for this, we use InCrate::Remote /// mode. That is sound because we already know all the impls from known crates. /// /// 3. For non-`#[fundamental]` traits, they guarantee that parent crates can /// add "non-blanket" impls without breaking negative reasoning in dependent /// crates. This is the "rebalancing coherence" (RFC 1023) restriction. /// /// For that, we only a allow crate to perform negative reasoning on /// non-local-non-`#[fundamental]` only if there's a local key parameter as per (2). /// /// Because we never perform negative reasoning generically (coherence does /// not involve type parameters), this can be interpreted as doing the full /// orphan check (using InCrate::Local mode), substituting non-local known /// types for all inference variables. /// /// This allows for crates to future-compatibly add impls as long as they /// can't apply to types with a key parameter in a child crate - applying /// the rules, this basically means that every type parameter in the impl /// must appear behind a non-fundamental type (because this is not a /// type-system requirement, crate owners might also go for "semantic /// future-compatibility" involving things such as sealed traits, but /// the above requirement is sufficient, and is necessary in "open world" /// cases). /// /// Note that this function is never called for types that have both type /// parameters and inference variables. #[instrument(level = "trace", ret)] fn orphan_check_trait_ref<'tcx>( trait_ref: ty::TraitRef<'tcx>, in_crate: InCrate, ) -> Result<(), OrphanCheckErr<'tcx>> { if trait_ref.needs_infer() && trait_ref.needs_subst() { bug!( "can't orphan check a trait ref with both params and inference variables {:?}", trait_ref ); } let mut checker = OrphanChecker::new(in_crate); match trait_ref.visit_with(&mut checker) { ControlFlow::Continue(()) => Err(OrphanCheckErr::NonLocalInputType(checker.non_local_tys)), ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(ty)) => { // Does there exist some local type after the `ParamTy`. checker.search_first_local_ty = true; if let Some(OrphanCheckEarlyExit::LocalTy(local_ty)) = trait_ref.visit_with(&mut checker).break_value() { Err(OrphanCheckErr::UncoveredTy(ty, Some(local_ty))) } else { Err(OrphanCheckErr::UncoveredTy(ty, None)) } } ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(_)) => Ok(()), } } struct OrphanChecker<'tcx> { in_crate: InCrate, in_self_ty: bool, /// Ignore orphan check failures and exclusively search for the first /// local type. search_first_local_ty: bool, non_local_tys: Vec<(Ty<'tcx>, bool)>, } impl<'tcx> OrphanChecker<'tcx> { fn new(in_crate: InCrate) -> Self { OrphanChecker { in_crate, in_self_ty: true, search_first_local_ty: false, non_local_tys: Vec::new(), } } fn found_non_local_ty(&mut self, t: Ty<'tcx>) -> ControlFlow> { self.non_local_tys.push((t, self.in_self_ty)); ControlFlow::Continue(()) } fn found_param_ty(&mut self, t: Ty<'tcx>) -> ControlFlow> { if self.search_first_local_ty { ControlFlow::Continue(()) } else { ControlFlow::Break(OrphanCheckEarlyExit::ParamTy(t)) } } fn def_id_is_local(&mut self, def_id: DefId) -> bool { match self.in_crate { InCrate::Local => def_id.is_local(), InCrate::Remote => false, } } } enum OrphanCheckEarlyExit<'tcx> { ParamTy(Ty<'tcx>), LocalTy(Ty<'tcx>), } impl<'tcx> TypeVisitor<'tcx> for OrphanChecker<'tcx> { type BreakTy = OrphanCheckEarlyExit<'tcx>; fn visit_region(&mut self, _r: ty::Region<'tcx>) -> ControlFlow { ControlFlow::Continue(()) } fn visit_ty(&mut self, ty: Ty<'tcx>) -> ControlFlow { let result = match *ty.kind() { ty::Bool | ty::Char | ty::Int(..) | ty::Uint(..) | ty::Float(..) | ty::Str | ty::FnDef(..) | ty::FnPtr(_) | ty::Array(..) | ty::Slice(..) | ty::RawPtr(..) | ty::Never | ty::Tuple(..) | ty::Alias(ty::Projection, ..) => self.found_non_local_ty(ty), ty::Param(..) => self.found_param_ty(ty), ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) => match self.in_crate { InCrate::Local => self.found_non_local_ty(ty), // The inference variable might be unified with a local // type in that remote crate. InCrate::Remote => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), }, // For fundamental types, we just look inside of them. ty::Ref(_, ty, _) => ty.visit_with(self), ty::Adt(def, substs) => { if self.def_id_is_local(def.did()) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else if def.is_fundamental() { substs.visit_with(self) } else { self.found_non_local_ty(ty) } } ty::Foreign(def_id) => { if self.def_id_is_local(def_id) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else { self.found_non_local_ty(ty) } } ty::Dynamic(tt, ..) => { let principal = tt.principal().map(|p| p.def_id()); if principal.map_or(false, |p| self.def_id_is_local(p)) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else { self.found_non_local_ty(ty) } } ty::Error(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), ty::Closure(did, ..) | ty::Generator(did, ..) => { if self.def_id_is_local(did) { ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)) } else { self.found_non_local_ty(ty) } } // This should only be created when checking whether we have to check whether some // auto trait impl applies. There will never be multiple impls, so we can just // act as if it were a local type here. ty::GeneratorWitness(_) => ControlFlow::Break(OrphanCheckEarlyExit::LocalTy(ty)), ty::Alias(ty::Opaque, ..) => { // This merits some explanation. // Normally, opaque types are not involved when performing // coherence checking, since it is illegal to directly // implement a trait on an opaque type. However, we might // end up looking at an opaque type during coherence checking // if an opaque type gets used within another type (e.g. as // the type of a field) when checking for auto trait or `Sized` // impls. This requires us to decide whether or not an opaque // type should be considered 'local' or not. // // We choose to treat all opaque types as non-local, even // those that appear within the same crate. This seems // somewhat surprising at first, but makes sense when // you consider that opaque types are supposed to hide // the underlying type *within the same crate*. When an // opaque type is used from outside the module // where it is declared, it should be impossible to observe // anything about it other than the traits that it implements. // // The alternative would be to look at the underlying type // to determine whether or not the opaque type itself should // be considered local. However, this could make it a breaking change // to switch the underlying ('defining') type from a local type // to a remote type. This would violate the rule that opaque // types should be completely opaque apart from the traits // that they implement, so we don't use this behavior. self.found_non_local_ty(ty) } }; // A bit of a hack, the `OrphanChecker` is only used to visit a `TraitRef`, so // the first type we visit is always the self type. self.in_self_ty = false; result } /// All possible values for a constant parameter already exist /// in the crate defining the trait, so they are always non-local[^1]. /// /// Because there's no way to have an impl where the first local /// generic argument is a constant, we also don't have to fail /// the orphan check when encountering a parameter or a generic constant. /// /// This means that we can completely ignore constants during the orphan check. /// /// See `tests/ui/coherence/const-generics-orphan-check-ok.rs` for examples. /// /// [^1]: This might not hold for function pointers or trait objects in the future. /// As these should be quite rare as const arguments and especially rare as impl /// parameters, allowing uncovered const parameters in impls seems more useful /// than allowing `impl Trait for i32` to compile. fn visit_const(&mut self, _c: ty::Const<'tcx>) -> ControlFlow { ControlFlow::Continue(()) } }