use crate::infer::InferCtxt; use crate::traits::query::type_op::{self, TypeOp, TypeOpOutput}; use crate::traits::query::NoSolution; use crate::traits::ObligationCause; use rustc_data_structures::fx::FxIndexSet; use rustc_middle::ty::{self, ParamEnv, Ty}; use rustc_span::def_id::LocalDefId; pub use rustc_middle::traits::query::OutlivesBound; type Bounds<'a, 'tcx: 'a> = impl Iterator> + 'a; pub trait InferCtxtExt<'a, 'tcx> { fn implied_outlives_bounds( &self, param_env: ty::ParamEnv<'tcx>, body_id: LocalDefId, ty: Ty<'tcx>, ) -> Vec>; fn implied_bounds_tys( &'a self, param_env: ty::ParamEnv<'tcx>, body_id: LocalDefId, tys: FxIndexSet>, ) -> Bounds<'a, 'tcx>; } impl<'a, 'tcx: 'a> InferCtxtExt<'a, 'tcx> for InferCtxt<'tcx> { /// Implied bounds are region relationships that we deduce /// automatically. The idea is that (e.g.) a caller must check that a /// function's argument types are well-formed immediately before /// calling that fn, and hence the *callee* can assume that its /// argument types are well-formed. This may imply certain relationships /// between generic parameters. For example: /// ``` /// fn foo(x: &T) {} /// ``` /// can only be called with a `'a` and `T` such that `&'a T` is WF. /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`. /// /// # Parameters /// /// - `param_env`, the where-clauses in scope /// - `body_id`, the body-id to use when normalizing assoc types. /// Note that this may cause outlives obligations to be injected /// into the inference context with this body-id. /// - `ty`, the type that we are supposed to assume is WF. #[instrument(level = "debug", skip(self, param_env, body_id), ret)] fn implied_outlives_bounds( &self, param_env: ty::ParamEnv<'tcx>, body_id: LocalDefId, ty: Ty<'tcx>, ) -> Vec> { let span = self.tcx.def_span(body_id); let result = param_env .and(type_op::implied_outlives_bounds::ImpliedOutlivesBounds { ty }) .fully_perform(self); let result = match result { Ok(r) => r, Err(NoSolution) => { self.tcx.sess.delay_span_bug( span, "implied_outlives_bounds failed to solve all obligations", ); return vec![]; } }; let TypeOpOutput { output, constraints, .. } = result; if let Some(constraints) = constraints { debug!(?constraints); // Instantiation may have produced new inference variables and constraints on those // variables. Process these constraints. let cause = ObligationCause::misc(span, body_id); let errors = super::fully_solve_obligations( self, constraints.outlives.iter().map(|constraint| { self.query_outlives_constraint_to_obligation( *constraint, cause.clone(), param_env, ) }), ); if !constraints.member_constraints.is_empty() { span_bug!(span, "{:#?}", constraints.member_constraints); } if !errors.is_empty() { self.tcx.sess.delay_span_bug( span, "implied_outlives_bounds failed to solve obligations from instantiation", ); } }; output } fn implied_bounds_tys( &'a self, param_env: ParamEnv<'tcx>, body_id: LocalDefId, tys: FxIndexSet>, ) -> Bounds<'a, 'tcx> { tys.into_iter() .map(move |ty| { let ty = self.resolve_vars_if_possible(ty); self.implied_outlives_bounds(param_env, body_id, ty) }) .flatten() } }