use crate::infer::InferCtxt; use crate::traits::{ObligationCause, ObligationCtxt}; use rustc_data_structures::fx::FxIndexSet; use rustc_infer::infer::resolve::OpportunisticRegionResolver; use rustc_infer::infer::InferOk; use rustc_middle::infer::canonical::{OriginalQueryValues, QueryRegionConstraints}; use rustc_middle::ty::{self, ParamEnv, Ty, TypeFolder, TypeVisitableExt}; use rustc_span::def_id::LocalDefId; pub use rustc_middle::traits::query::OutlivesBound; pub type Bounds<'a, 'tcx: 'a> = impl Iterator> + 'a; pub trait InferCtxtExt<'a, 'tcx> { fn implied_outlives_bounds( &self, param_env: ty::ParamEnv<'tcx>, body_id: LocalDefId, ty: Ty<'tcx>, ) -> Vec>; fn implied_bounds_tys( &'a self, param_env: ty::ParamEnv<'tcx>, body_id: LocalDefId, tys: FxIndexSet>, ) -> Bounds<'a, 'tcx>; } impl<'a, 'tcx: 'a> InferCtxtExt<'a, 'tcx> for InferCtxt<'tcx> { /// Implied bounds are region relationships that we deduce /// automatically. The idea is that (e.g.) a caller must check that a /// function's argument types are well-formed immediately before /// calling that fn, and hence the *callee* can assume that its /// argument types are well-formed. This may imply certain relationships /// between generic parameters. For example: /// ``` /// fn foo(x: &T) {} /// ``` /// can only be called with a `'a` and `T` such that `&'a T` is WF. /// For `&'a T` to be WF, `T: 'a` must hold. So we can assume `T: 'a`. /// /// # Parameters /// /// - `param_env`, the where-clauses in scope /// - `body_id`, the body-id to use when normalizing assoc types. /// Note that this may cause outlives obligations to be injected /// into the inference context with this body-id. /// - `ty`, the type that we are supposed to assume is WF. #[instrument(level = "debug", skip(self, param_env, body_id), ret)] fn implied_outlives_bounds( &self, param_env: ty::ParamEnv<'tcx>, body_id: LocalDefId, ty: Ty<'tcx>, ) -> Vec> { let ty = self.resolve_vars_if_possible(ty); let ty = OpportunisticRegionResolver::new(self).fold_ty(ty); // We do not expect existential variables in implied bounds. // We may however encounter unconstrained lifetime variables // in very rare cases. // // See `ui/implied-bounds/implied-bounds-unconstrained-2.rs` for // an example. assert!(!ty.has_non_region_infer()); let mut canonical_var_values = OriginalQueryValues::default(); let canonical_ty = self.canonicalize_query_keep_static(param_env.and(ty), &mut canonical_var_values); let Ok(canonical_result) = self.tcx.implied_outlives_bounds(canonical_ty) else { return vec![]; }; let mut constraints = QueryRegionConstraints::default(); let Ok(InferOk { value, obligations }) = self .instantiate_nll_query_response_and_region_obligations( &ObligationCause::dummy(), param_env, &canonical_var_values, canonical_result, &mut constraints, ) else { return vec![]; }; assert_eq!(&obligations, &[]); if !constraints.is_empty() { let span = self.tcx.def_span(body_id); debug!(?constraints); if !constraints.member_constraints.is_empty() { span_bug!(span, "{:#?}", constraints.member_constraints); } // Instantiation may have produced new inference variables and constraints on those // variables. Process these constraints. let ocx = ObligationCtxt::new(self); let cause = ObligationCause::misc(span, body_id); for &constraint in &constraints.outlives { ocx.register_obligation(self.query_outlives_constraint_to_obligation( constraint, cause.clone(), param_env, )); } let errors = ocx.select_all_or_error(); if !errors.is_empty() { self.tcx.sess.delay_span_bug( span, "implied_outlives_bounds failed to solve obligations from instantiation", ); } }; value } fn implied_bounds_tys( &'a self, param_env: ParamEnv<'tcx>, body_id: LocalDefId, tys: FxIndexSet>, ) -> Bounds<'a, 'tcx> { tys.into_iter().flat_map(move |ty| self.implied_outlives_bounds(param_env, body_id, ty)) } }