use crate::traits::query::normalize::QueryNormalizeExt; use crate::traits::query::NoSolution; use crate::traits::{Normalized, ObligationCause, ObligationCtxt}; use rustc_data_structures::fx::FxHashSet; use rustc_middle::traits::query::{DropckConstraint, DropckOutlivesResult}; use rustc_middle::ty::{self, EarlyBinder, ParamEnvAnd, Ty, TyCtxt}; use rustc_span::{Span, DUMMY_SP}; /// This returns true if the type `ty` is "trivial" for /// dropck-outlives -- that is, if it doesn't require any types to /// outlive. This is similar but not *quite* the same as the /// `needs_drop` test in the compiler already -- that is, for every /// type T for which this function return true, needs-drop would /// return `false`. But the reverse does not hold: in particular, /// `needs_drop` returns false for `PhantomData`, but it is not /// trivial for dropck-outlives. /// /// Note also that `needs_drop` requires a "global" type (i.e., one /// with erased regions), but this function does not. /// // FIXME(@lcnr): remove this module and move this function somewhere else. pub fn trivial_dropck_outlives<'tcx>(tcx: TyCtxt<'tcx>, ty: Ty<'tcx>) -> bool { match ty.kind() { // None of these types have a destructor and hence they do not // require anything in particular to outlive the dtor's // execution. ty::Infer(ty::FreshIntTy(_)) | ty::Infer(ty::FreshFloatTy(_)) | ty::Bool | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Never | ty::FnDef(..) | ty::FnPtr(_) | ty::Char | ty::CoroutineWitness(..) | ty::RawPtr(_) | ty::Ref(..) | ty::Str | ty::Foreign(..) | ty::Error(_) => true, // [T; N] and [T] have same properties as T. ty::Array(ty, _) | ty::Slice(ty) => trivial_dropck_outlives(tcx, *ty), // (T1..Tn) and closures have same properties as T1..Tn -- // check if *all* of them are trivial. ty::Tuple(tys) => tys.iter().all(|t| trivial_dropck_outlives(tcx, t)), ty::Closure(_, args) => trivial_dropck_outlives(tcx, args.as_closure().tupled_upvars_ty()), ty::Adt(def, _) => { if Some(def.did()) == tcx.lang_items().manually_drop() { // `ManuallyDrop` never has a dtor. true } else { // Other types might. Moreover, PhantomData doesn't // have a dtor, but it is considered to own its // content, so it is non-trivial. Unions can have `impl Drop`, // and hence are non-trivial as well. false } } // The following *might* require a destructor: needs deeper inspection. ty::Dynamic(..) | ty::Alias(..) | ty::Param(_) | ty::Placeholder(..) | ty::Infer(_) | ty::Bound(..) | ty::Coroutine(..) => false, } } pub fn compute_dropck_outlives_inner<'tcx>( ocx: &ObligationCtxt<'_, 'tcx>, goal: ParamEnvAnd<'tcx, Ty<'tcx>>, ) -> Result, NoSolution> { let tcx = ocx.infcx.tcx; let ParamEnvAnd { param_env, value: for_ty } = goal; let mut result = DropckOutlivesResult { kinds: vec![], overflows: vec![] }; // A stack of types left to process. Each round, we pop // something from the stack and invoke // `dtorck_constraint_for_ty_inner`. This may produce new types that // have to be pushed on the stack. This continues until we have explored // all the reachable types from the type `for_ty`. // // Example: Imagine that we have the following code: // // ```rust // struct A { // value: B, // children: Vec, // } // // struct B { // value: u32 // } // // fn f() { // let a: A = ...; // .. // } // here, `a` is dropped // ``` // // at the point where `a` is dropped, we need to figure out // which types inside of `a` contain region data that may be // accessed by any destructors in `a`. We begin by pushing `A` // onto the stack, as that is the type of `a`. We will then // invoke `dtorck_constraint_for_ty_inner` which will expand `A` // into the types of its fields `(B, Vec)`. These will get // pushed onto the stack. Eventually, expanding `Vec` will // lead to us trying to push `A` a second time -- to prevent // infinite recursion, we notice that `A` was already pushed // once and stop. let mut ty_stack = vec![(for_ty, 0)]; // Set used to detect infinite recursion. let mut ty_set = FxHashSet::default(); let cause = ObligationCause::dummy(); let mut constraints = DropckConstraint::empty(); while let Some((ty, depth)) = ty_stack.pop() { debug!( "{} kinds, {} overflows, {} ty_stack", result.kinds.len(), result.overflows.len(), ty_stack.len() ); dtorck_constraint_for_ty_inner(tcx, param_env, DUMMY_SP, depth, ty, &mut constraints)?; // "outlives" represent types/regions that may be touched // by a destructor. result.kinds.append(&mut constraints.outlives); result.overflows.append(&mut constraints.overflows); // If we have even one overflow, we should stop trying to evaluate further -- // chances are, the subsequent overflows for this evaluation won't provide useful // information and will just decrease the speed at which we can emit these errors // (since we'll be printing for just that much longer for the often enormous types // that result here). if !result.overflows.is_empty() { break; } // dtorck types are "types that will get dropped but which // do not themselves define a destructor", more or less. We have // to push them onto the stack to be expanded. for ty in constraints.dtorck_types.drain(..) { let Normalized { value: ty, obligations } = ocx.infcx.at(&cause, param_env).query_normalize(ty)?; ocx.register_obligations(obligations); debug!("dropck_outlives: ty from dtorck_types = {:?}", ty); match ty.kind() { // All parameters live for the duration of the // function. ty::Param(..) => {} // A projection that we couldn't resolve - it // might have a destructor. ty::Alias(..) => { result.kinds.push(ty.into()); } _ => { if ty_set.insert(ty) { ty_stack.push((ty, depth + 1)); } } } } } debug!("dropck_outlives: result = {:#?}", result); Ok(result) } /// Returns a set of constraints that needs to be satisfied in /// order for `ty` to be valid for destruction. #[instrument(level = "debug", skip(tcx, param_env, span, constraints))] pub fn dtorck_constraint_for_ty_inner<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, span: Span, depth: usize, ty: Ty<'tcx>, constraints: &mut DropckConstraint<'tcx>, ) -> Result<(), NoSolution> { if !tcx.recursion_limit().value_within_limit(depth) { constraints.overflows.push(ty); return Ok(()); } if trivial_dropck_outlives(tcx, ty) { return Ok(()); } match ty.kind() { ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str | ty::Never | ty::Foreign(..) | ty::RawPtr(..) | ty::Ref(..) | ty::FnDef(..) | ty::FnPtr(_) | ty::CoroutineWitness(..) => { // these types never have a destructor } ty::Array(ety, _) | ty::Slice(ety) => { // single-element containers, behave like their element rustc_data_structures::stack::ensure_sufficient_stack(|| { dtorck_constraint_for_ty_inner(tcx, param_env, span, depth + 1, *ety, constraints) })?; } ty::Tuple(tys) => rustc_data_structures::stack::ensure_sufficient_stack(|| { for ty in tys.iter() { dtorck_constraint_for_ty_inner(tcx, param_env, span, depth + 1, ty, constraints)?; } Ok::<_, NoSolution>(()) })?, ty::Closure(_, args) => { if !args.as_closure().is_valid() { // By the time this code runs, all type variables ought to // be fully resolved. tcx.sess.span_delayed_bug( span, format!("upvar_tys for closure not found. Expected capture information for closure {ty}",), ); return Err(NoSolution); } rustc_data_structures::stack::ensure_sufficient_stack(|| { for ty in args.as_closure().upvar_tys() { dtorck_constraint_for_ty_inner( tcx, param_env, span, depth + 1, ty, constraints, )?; } Ok::<_, NoSolution>(()) })? } ty::Coroutine(_, args, _movability) => { // rust-lang/rust#49918: types can be constructed, stored // in the interior, and sit idle when coroutine yields // (and is subsequently dropped). // // It would be nice to descend into interior of a // coroutine to determine what effects dropping it might // have (by looking at any drop effects associated with // its interior). // // However, the interior's representation uses things like // CoroutineWitness that explicitly assume they are not // traversed in such a manner. So instead, we will // simplify things for now by treating all coroutines as // if they were like trait objects, where its upvars must // all be alive for the coroutine's (potential) // destructor. // // In particular, skipping over `_interior` is safe // because any side-effects from dropping `_interior` can // only take place through references with lifetimes // derived from lifetimes attached to the upvars and resume // argument, and we *do* incorporate those here. let args = args.as_coroutine(); if !args.is_valid() { // By the time this code runs, all type variables ought to // be fully resolved. tcx.sess.span_delayed_bug( span, format!("upvar_tys for coroutine not found. Expected capture information for coroutine {ty}",), ); return Err(NoSolution); } // While we conservatively assume that all coroutines require drop // to avoid query cycles during MIR building, we can check the actual // witness during borrowck to avoid unnecessary liveness constraints. if args.witness().needs_drop(tcx, tcx.erase_regions(param_env)) { constraints.outlives.extend(args.upvar_tys().iter().map(ty::GenericArg::from)); constraints.outlives.push(args.resume_ty().into()); } } ty::Adt(def, args) => { let DropckConstraint { dtorck_types, outlives, overflows } = tcx.at(span).adt_dtorck_constraint(def.did())?; // FIXME: we can try to recursively `dtorck_constraint_on_ty` // there, but that needs some way to handle cycles. constraints .dtorck_types .extend(dtorck_types.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args))); constraints .outlives .extend(outlives.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args))); constraints .overflows .extend(overflows.iter().map(|t| EarlyBinder::bind(*t).instantiate(tcx, args))); } // Objects must be alive in order for their destructor // to be called. ty::Dynamic(..) => { constraints.outlives.push(ty.into()); } // Types that can't be resolved. Pass them forward. ty::Alias(..) | ty::Param(..) => { constraints.dtorck_types.push(ty); } ty::Placeholder(..) | ty::Bound(..) | ty::Infer(..) | ty::Error(_) => { // By the time this code runs, all type variables ought to // be fully resolved. return Err(NoSolution); } } Ok(()) }