// This file contains various trait resolution methods used by codegen. // They all assume regions can be erased and monomorphic types. It // seems likely that they should eventually be merged into more // general routines. use rustc_infer::infer::{DefiningAnchor, TyCtxtInferExt}; use rustc_infer::traits::FulfillmentErrorCode; use rustc_middle::traits::CodegenObligationError; use rustc_middle::ty::{self, TyCtxt}; use rustc_trait_selection::traits::error_reporting::TypeErrCtxtExt; use rustc_trait_selection::traits::{ ImplSource, Obligation, ObligationCause, SelectionContext, TraitEngine, TraitEngineExt, Unimplemented, }; /// Attempts to resolve an obligation to an `ImplSource`. The result is /// a shallow `ImplSource` resolution, meaning that we do not /// (necessarily) resolve all nested obligations on the impl. Note /// that type check should guarantee to us that all nested /// obligations *could be* resolved if we wanted to. /// /// This also expects that `trait_ref` is fully normalized. pub fn codegen_select_candidate<'tcx>( tcx: TyCtxt<'tcx>, (param_env, trait_ref): (ty::ParamEnv<'tcx>, ty::PolyTraitRef<'tcx>), ) -> Result<&'tcx ImplSource<'tcx, ()>, CodegenObligationError> { // We expect the input to be fully normalized. debug_assert_eq!(trait_ref, tcx.normalize_erasing_regions(param_env, trait_ref)); // Do the initial selection for the obligation. This yields the // shallow result we are looking for -- that is, what specific impl. let infcx = tcx .infer_ctxt() .ignoring_regions() .with_opaque_type_inference(DefiningAnchor::Bubble) .build(); //~^ HACK `Bubble` is required for // this test to pass: type-alias-impl-trait/assoc-projection-ice.rs let mut selcx = SelectionContext::new(&infcx); let obligation_cause = ObligationCause::dummy(); let obligation = Obligation::new(tcx, obligation_cause, param_env, trait_ref); let selection = match selcx.select(&obligation) { Ok(Some(selection)) => selection, Ok(None) => return Err(CodegenObligationError::Ambiguity), Err(Unimplemented) => return Err(CodegenObligationError::Unimplemented), Err(e) => { bug!("Encountered error `{:?}` selecting `{:?}` during codegen", e, trait_ref) } }; debug!(?selection); // Currently, we use a fulfillment context to completely resolve // all nested obligations. This is because they can inform the // inference of the impl's type parameters. let mut fulfill_cx = >::new(tcx); let impl_source = selection.map(|predicate| { fulfill_cx.register_predicate_obligation(&infcx, predicate); }); // In principle, we only need to do this so long as `impl_source` // contains unbound type parameters. It could be a slight // optimization to stop iterating early. let errors = fulfill_cx.select_all_or_error(&infcx); if !errors.is_empty() { // `rustc_monomorphize::collector` assumes there are no type errors. // Cycle errors are the only post-monomorphization errors possible; emit them now so // `rustc_ty_utils::resolve_associated_item` doesn't return `None` post-monomorphization. for err in errors { if let FulfillmentErrorCode::CodeCycle(cycle) = err.code { infcx.err_ctxt().report_overflow_obligation_cycle(&cycle); } } return Err(CodegenObligationError::FulfillmentError); } let impl_source = infcx.resolve_vars_if_possible(impl_source); let impl_source = infcx.tcx.erase_regions(impl_source); // Opaque types may have gotten their hidden types constrained, but we can ignore them safely // as they will get constrained elsewhere, too. // (ouz-a) This is required for `type-alias-impl-trait/assoc-projection-ice.rs` to pass let _ = infcx.take_opaque_types(); Ok(&*tcx.arena.alloc(impl_source)) }