use rustc_errors::ErrorGuaranteed; use rustc_hir::def::DefKind; use rustc_hir::def_id::LocalDefId; use rustc_index::vec::IndexVec; use rustc_middle::mir::interpret::{LitToConstError, LitToConstInput}; use rustc_middle::ty::abstract_const::{CastKind, Node, NodeId}; use rustc_middle::ty::{self, TyCtxt, TypeVisitable}; use rustc_middle::{mir, thir}; use rustc_span::Span; use rustc_target::abi::VariantIdx; use std::iter; use crate::errors::{GenericConstantTooComplex, GenericConstantTooComplexSub}; /// Destructures array, ADT or tuple constants into the constants /// of their fields. pub(crate) fn destructure_const<'tcx>( tcx: TyCtxt<'tcx>, const_: ty::Const<'tcx>, ) -> ty::DestructuredConst<'tcx> { let ty::ConstKind::Value(valtree) = const_.kind() else { bug!("cannot destructure constant {:?}", const_) }; let branches = match valtree { ty::ValTree::Branch(b) => b, _ => bug!("cannot destructure constant {:?}", const_), }; let (fields, variant) = match const_.ty().kind() { ty::Array(inner_ty, _) | ty::Slice(inner_ty) => { // construct the consts for the elements of the array/slice let field_consts = branches .iter() .map(|b| tcx.mk_const(ty::ConstS { kind: ty::ConstKind::Value(*b), ty: *inner_ty })) .collect::>(); debug!(?field_consts); (field_consts, None) } ty::Adt(def, _) if def.variants().is_empty() => bug!("unreachable"), ty::Adt(def, substs) => { let (variant_idx, branches) = if def.is_enum() { let (head, rest) = branches.split_first().unwrap(); (VariantIdx::from_u32(head.unwrap_leaf().try_to_u32().unwrap()), rest) } else { (VariantIdx::from_u32(0), branches) }; let fields = &def.variant(variant_idx).fields; let mut field_consts = Vec::with_capacity(fields.len()); for (field, field_valtree) in iter::zip(fields, branches) { let field_ty = field.ty(tcx, substs); let field_const = tcx.mk_const(ty::ConstS { kind: ty::ConstKind::Value(*field_valtree), ty: field_ty, }); field_consts.push(field_const); } debug!(?field_consts); (field_consts, Some(variant_idx)) } ty::Tuple(elem_tys) => { let fields = iter::zip(*elem_tys, branches) .map(|(elem_ty, elem_valtree)| { tcx.mk_const(ty::ConstS { kind: ty::ConstKind::Value(*elem_valtree), ty: elem_ty, }) }) .collect::>(); (fields, None) } _ => bug!("cannot destructure constant {:?}", const_), }; let fields = tcx.arena.alloc_from_iter(fields.into_iter()); ty::DestructuredConst { variant, fields } } pub struct AbstractConstBuilder<'a, 'tcx> { tcx: TyCtxt<'tcx>, body_id: thir::ExprId, body: &'a thir::Thir<'tcx>, /// The current WIP node tree. nodes: IndexVec>, } impl<'a, 'tcx> AbstractConstBuilder<'a, 'tcx> { fn root_span(&self) -> Span { self.body.exprs[self.body_id].span } fn error(&mut self, sub: GenericConstantTooComplexSub) -> Result { let reported = self.tcx.sess.emit_err(GenericConstantTooComplex { span: self.root_span(), maybe_supported: None, sub, }); Err(reported) } fn maybe_supported_error( &mut self, sub: GenericConstantTooComplexSub, ) -> Result { let reported = self.tcx.sess.emit_err(GenericConstantTooComplex { span: self.root_span(), maybe_supported: Some(()), sub, }); Err(reported) } #[instrument(skip(tcx, body, body_id), level = "debug")] pub fn new( tcx: TyCtxt<'tcx>, (body, body_id): (&'a thir::Thir<'tcx>, thir::ExprId), ) -> Result>, ErrorGuaranteed> { let builder = AbstractConstBuilder { tcx, body_id, body, nodes: IndexVec::new() }; struct IsThirPolymorphic<'a, 'tcx> { is_poly: bool, thir: &'a thir::Thir<'tcx>, } use crate::rustc_middle::thir::visit::Visitor; use thir::visit; impl<'a, 'tcx> IsThirPolymorphic<'a, 'tcx> { fn expr_is_poly(&mut self, expr: &thir::Expr<'tcx>) -> bool { if expr.ty.has_non_region_param() { return true; } match expr.kind { thir::ExprKind::NamedConst { substs, .. } => substs.has_non_region_param(), thir::ExprKind::ConstParam { .. } => true, thir::ExprKind::Repeat { value, count } => { self.visit_expr(&self.thir()[value]); count.has_non_region_param() } _ => false, } } fn pat_is_poly(&mut self, pat: &thir::Pat<'tcx>) -> bool { if pat.ty.has_non_region_param() { return true; } match pat.kind { thir::PatKind::Constant { value } => value.has_non_region_param(), thir::PatKind::Range(box thir::PatRange { lo, hi, .. }) => { lo.has_non_region_param() || hi.has_non_region_param() } _ => false, } } } impl<'a, 'tcx> visit::Visitor<'a, 'tcx> for IsThirPolymorphic<'a, 'tcx> { fn thir(&self) -> &'a thir::Thir<'tcx> { &self.thir } #[instrument(skip(self), level = "debug")] fn visit_expr(&mut self, expr: &thir::Expr<'tcx>) { self.is_poly |= self.expr_is_poly(expr); if !self.is_poly { visit::walk_expr(self, expr) } } #[instrument(skip(self), level = "debug")] fn visit_pat(&mut self, pat: &thir::Pat<'tcx>) { self.is_poly |= self.pat_is_poly(pat); if !self.is_poly { visit::walk_pat(self, pat); } } } let mut is_poly_vis = IsThirPolymorphic { is_poly: false, thir: body }; visit::walk_expr(&mut is_poly_vis, &body[body_id]); debug!("AbstractConstBuilder: is_poly={}", is_poly_vis.is_poly); if !is_poly_vis.is_poly { return Ok(None); } Ok(Some(builder)) } /// We do not allow all binary operations in abstract consts, so filter disallowed ones. fn check_binop(op: mir::BinOp) -> bool { use mir::BinOp::*; match op { Add | Sub | Mul | Div | Rem | BitXor | BitAnd | BitOr | Shl | Shr | Eq | Lt | Le | Ne | Ge | Gt => true, Offset => false, } } /// While we currently allow all unary operations, we still want to explicitly guard against /// future changes here. fn check_unop(op: mir::UnOp) -> bool { use mir::UnOp::*; match op { Not | Neg => true, } } /// Builds the abstract const by walking the thir and bailing out when /// encountering an unsupported operation. pub fn build(mut self) -> Result<&'tcx [Node<'tcx>], ErrorGuaranteed> { debug!("AbstractConstBuilder::build: body={:?}", &*self.body); self.recurse_build(self.body_id)?; Ok(self.tcx.arena.alloc_from_iter(self.nodes.into_iter())) } fn recurse_build(&mut self, node: thir::ExprId) -> Result { use thir::ExprKind; let node = &self.body.exprs[node]; Ok(match &node.kind { // I dont know if handling of these 3 is correct &ExprKind::Scope { value, .. } => self.recurse_build(value)?, &ExprKind::PlaceTypeAscription { source, .. } | &ExprKind::ValueTypeAscription { source, .. } => self.recurse_build(source)?, &ExprKind::Literal { lit, neg } => { let sp = node.span; let constant = match self.tcx.at(sp).lit_to_const(LitToConstInput { lit: &lit.node, ty: node.ty, neg, }) { Ok(c) => c, Err(LitToConstError::Reported) => self.tcx.const_error(node.ty), Err(LitToConstError::TypeError) => { bug!("encountered type error in lit_to_const") } }; self.nodes.push(Node::Leaf(constant)) } &ExprKind::NonHirLiteral { lit, user_ty: _ } => { let val = ty::ValTree::from_scalar_int(lit); self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty))) } &ExprKind::ZstLiteral { user_ty: _ } => { let val = ty::ValTree::zst(); self.nodes.push(Node::Leaf(ty::Const::from_value(self.tcx, val, node.ty))) } &ExprKind::NamedConst { def_id, substs, user_ty: _ } => { let uneval = ty::UnevaluatedConst::new(ty::WithOptConstParam::unknown(def_id), substs); let constant = self .tcx .mk_const(ty::ConstS { kind: ty::ConstKind::Unevaluated(uneval), ty: node.ty }); self.nodes.push(Node::Leaf(constant)) } ExprKind::ConstParam { param, .. } => { let const_param = self .tcx .mk_const(ty::ConstS { kind: ty::ConstKind::Param(*param), ty: node.ty }); self.nodes.push(Node::Leaf(const_param)) } ExprKind::Call { fun, args, .. } => { let fun = self.recurse_build(*fun)?; let mut new_args = Vec::::with_capacity(args.len()); for &id in args.iter() { new_args.push(self.recurse_build(id)?); } let new_args = self.tcx.arena.alloc_slice(&new_args); self.nodes.push(Node::FunctionCall(fun, new_args)) } &ExprKind::Binary { op, lhs, rhs } if Self::check_binop(op) => { let lhs = self.recurse_build(lhs)?; let rhs = self.recurse_build(rhs)?; self.nodes.push(Node::Binop(op, lhs, rhs)) } &ExprKind::Unary { op, arg } if Self::check_unop(op) => { let arg = self.recurse_build(arg)?; self.nodes.push(Node::UnaryOp(op, arg)) } // This is necessary so that the following compiles: // // ``` // fn foo(a: [(); N + 1]) { // bar::<{ N + 1 }>(); // } // ``` ExprKind::Block { block } => { if let thir::Block { stmts: box [], expr: Some(e), .. } = &self.body.blocks[*block] { self.recurse_build(*e)? } else { self.maybe_supported_error(GenericConstantTooComplexSub::BlockNotSupported( node.span, ))? } } // `ExprKind::Use` happens when a `hir::ExprKind::Cast` is a // "coercion cast" i.e. using a coercion or is a no-op. // This is important so that `N as usize as usize` doesnt unify with `N as usize`. (untested) &ExprKind::Use { source } => { let arg = self.recurse_build(source)?; self.nodes.push(Node::Cast(CastKind::Use, arg, node.ty)) } &ExprKind::Cast { source } => { let arg = self.recurse_build(source)?; self.nodes.push(Node::Cast(CastKind::As, arg, node.ty)) } ExprKind::Borrow { arg, .. } => { let arg_node = &self.body.exprs[*arg]; // Skip reborrows for now until we allow Deref/Borrow/AddressOf // expressions. // FIXME(generic_const_exprs): Verify/explain why this is sound if let ExprKind::Deref { arg } = arg_node.kind { self.recurse_build(arg)? } else { self.maybe_supported_error(GenericConstantTooComplexSub::BorrowNotSupported( node.span, ))? } } // FIXME(generic_const_exprs): We may want to support these. ExprKind::AddressOf { .. } | ExprKind::Deref { .. } => self.maybe_supported_error( GenericConstantTooComplexSub::AddressAndDerefNotSupported(node.span), )?, ExprKind::Repeat { .. } | ExprKind::Array { .. } => self.maybe_supported_error( GenericConstantTooComplexSub::ArrayNotSupported(node.span), )?, ExprKind::NeverToAny { .. } => self.maybe_supported_error( GenericConstantTooComplexSub::NeverToAnyNotSupported(node.span), )?, ExprKind::Tuple { .. } => self.maybe_supported_error( GenericConstantTooComplexSub::TupleNotSupported(node.span), )?, ExprKind::Index { .. } => self.maybe_supported_error( GenericConstantTooComplexSub::IndexNotSupported(node.span), )?, ExprKind::Field { .. } => self.maybe_supported_error( GenericConstantTooComplexSub::FieldNotSupported(node.span), )?, ExprKind::ConstBlock { .. } => self.maybe_supported_error( GenericConstantTooComplexSub::ConstBlockNotSupported(node.span), )?, ExprKind::Adt(_) => self .maybe_supported_error(GenericConstantTooComplexSub::AdtNotSupported(node.span))?, // dont know if this is correct ExprKind::Pointer { .. } => { self.error(GenericConstantTooComplexSub::PointerNotSupported(node.span))? } ExprKind::Yield { .. } => { self.error(GenericConstantTooComplexSub::YieldNotSupported(node.span))? } ExprKind::Continue { .. } | ExprKind::Break { .. } | ExprKind::Loop { .. } => { self.error(GenericConstantTooComplexSub::LoopNotSupported(node.span))? } ExprKind::Box { .. } => { self.error(GenericConstantTooComplexSub::BoxNotSupported(node.span))? } ExprKind::Unary { .. } => unreachable!(), // we handle valid unary/binary ops above ExprKind::Binary { .. } => { self.error(GenericConstantTooComplexSub::BinaryNotSupported(node.span))? } ExprKind::LogicalOp { .. } => { self.error(GenericConstantTooComplexSub::LogicalOpNotSupported(node.span))? } ExprKind::Assign { .. } | ExprKind::AssignOp { .. } => { self.error(GenericConstantTooComplexSub::AssignNotSupported(node.span))? } ExprKind::Closure { .. } | ExprKind::Return { .. } => { self.error(GenericConstantTooComplexSub::ClosureAndReturnNotSupported(node.span))? } // let expressions imply control flow ExprKind::Match { .. } | ExprKind::If { .. } | ExprKind::Let { .. } => { self.error(GenericConstantTooComplexSub::ControlFlowNotSupported(node.span))? } ExprKind::InlineAsm { .. } => { self.error(GenericConstantTooComplexSub::InlineAsmNotSupported(node.span))? } // we dont permit let stmts so `VarRef` and `UpvarRef` cant happen ExprKind::VarRef { .. } | ExprKind::UpvarRef { .. } | ExprKind::StaticRef { .. } | ExprKind::ThreadLocalRef(_) => { self.error(GenericConstantTooComplexSub::OperationNotSupported(node.span))? } }) } } /// Builds an abstract const, do not use this directly, but use `AbstractConst::new` instead. pub fn thir_abstract_const<'tcx>( tcx: TyCtxt<'tcx>, def: ty::WithOptConstParam, ) -> Result]>, ErrorGuaranteed> { if tcx.features().generic_const_exprs { match tcx.def_kind(def.did) { // FIXME(generic_const_exprs): We currently only do this for anonymous constants, // meaning that we do not look into associated constants. I(@lcnr) am not yet sure whether // we want to look into them or treat them as opaque projections. // // Right now we do neither of that and simply always fail to unify them. DefKind::AnonConst | DefKind::InlineConst => (), _ => return Ok(None), } let body = tcx.thir_body(def)?; AbstractConstBuilder::new(tcx, (&*body.0.borrow(), body.1))? .map(AbstractConstBuilder::build) .transpose() } else { Ok(None) } } pub fn provide(providers: &mut ty::query::Providers) { *providers = ty::query::Providers { destructure_const, thir_abstract_const: |tcx, def_id| { let def_id = def_id.expect_local(); if let Some(def) = ty::WithOptConstParam::try_lookup(def_id, tcx) { tcx.thir_abstract_const_of_const_arg(def) } else { thir_abstract_const(tcx, ty::WithOptConstParam::unknown(def_id)) } }, thir_abstract_const_of_const_arg: |tcx, (did, param_did)| { thir_abstract_const( tcx, ty::WithOptConstParam { did, const_param_did: Some(param_did) }, ) }, ..*providers }; }