use rustc_errors::ErrorGuaranteed; use rustc_hir::def_id::{DefId, LocalDefId}; use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::traits::CodegenObligationError; use rustc_middle::ty::subst::SubstsRef; use rustc_middle::ty::{ self, Binder, Instance, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor, }; use rustc_span::{sym, DUMMY_SP}; use rustc_trait_selection::traits; use traits::{translate_substs, Reveal}; use rustc_data_structures::sso::SsoHashSet; use std::collections::btree_map::Entry; use std::collections::BTreeMap; use std::ops::ControlFlow; use tracing::debug; // FIXME(#86795): `BoundVarsCollector` here should **NOT** be used // outside of `resolve_associated_item`. It's just to address #64494, // #83765, and #85848 which are creating bound types/regions that lose // their `Binder` *unintentionally*. // It's ideal to remove `BoundVarsCollector` and just use // `ty::Binder::*` methods but we use this stopgap until we figure out // the "real" fix. struct BoundVarsCollector<'tcx> { binder_index: ty::DebruijnIndex, vars: BTreeMap, // We may encounter the same variable at different levels of binding, so // this can't just be `Ty` visited: SsoHashSet<(ty::DebruijnIndex, Ty<'tcx>)>, } impl<'tcx> BoundVarsCollector<'tcx> { fn new() -> Self { BoundVarsCollector { binder_index: ty::INNERMOST, vars: BTreeMap::new(), visited: SsoHashSet::default(), } } fn into_vars(self, tcx: TyCtxt<'tcx>) -> &'tcx ty::List { let max = self.vars.iter().map(|(k, _)| *k).max().unwrap_or(0); for i in 0..max { if let None = self.vars.get(&i) { panic!("Unknown variable: {:?}", i); } } tcx.mk_bound_variable_kinds(self.vars.into_iter().map(|(_, v)| v)) } } impl<'tcx> TypeVisitor<'tcx> for BoundVarsCollector<'tcx> { type BreakTy = (); fn visit_binder>( &mut self, t: &Binder<'tcx, T>, ) -> ControlFlow { self.binder_index.shift_in(1); let result = t.super_visit_with(self); self.binder_index.shift_out(1); result } fn visit_ty(&mut self, t: Ty<'tcx>) -> ControlFlow { if t.outer_exclusive_binder() < self.binder_index || !self.visited.insert((self.binder_index, t)) { return ControlFlow::CONTINUE; } match *t.kind() { ty::Bound(debruijn, bound_ty) if debruijn == self.binder_index => { match self.vars.entry(bound_ty.var.as_u32()) { Entry::Vacant(entry) => { entry.insert(ty::BoundVariableKind::Ty(bound_ty.kind)); } Entry::Occupied(entry) => match entry.get() { ty::BoundVariableKind::Ty(_) => {} _ => bug!("Conflicting bound vars"), }, } } _ => (), }; t.super_visit_with(self) } fn visit_region(&mut self, r: ty::Region<'tcx>) -> ControlFlow { match *r { ty::ReLateBound(index, br) if index == self.binder_index => { match self.vars.entry(br.var.as_u32()) { Entry::Vacant(entry) => { entry.insert(ty::BoundVariableKind::Region(br.kind)); } Entry::Occupied(entry) => match entry.get() { ty::BoundVariableKind::Region(_) => {} _ => bug!("Conflicting bound vars"), }, } } _ => (), }; r.super_visit_with(self) } } fn resolve_instance<'tcx>( tcx: TyCtxt<'tcx>, key: ty::ParamEnvAnd<'tcx, (DefId, SubstsRef<'tcx>)>, ) -> Result>, ErrorGuaranteed> { let (param_env, (did, substs)) = key.into_parts(); if let Some(did) = did.as_local() { if let Some(param_did) = tcx.opt_const_param_of(did) { return tcx.resolve_instance_of_const_arg(param_env.and((did, param_did, substs))); } } inner_resolve_instance(tcx, param_env.and((ty::WithOptConstParam::unknown(did), substs))) } fn resolve_instance_of_const_arg<'tcx>( tcx: TyCtxt<'tcx>, key: ty::ParamEnvAnd<'tcx, (LocalDefId, DefId, SubstsRef<'tcx>)>, ) -> Result>, ErrorGuaranteed> { let (param_env, (did, const_param_did, substs)) = key.into_parts(); inner_resolve_instance( tcx, param_env.and(( ty::WithOptConstParam { did: did.to_def_id(), const_param_did: Some(const_param_did) }, substs, )), ) } fn inner_resolve_instance<'tcx>( tcx: TyCtxt<'tcx>, key: ty::ParamEnvAnd<'tcx, (ty::WithOptConstParam, SubstsRef<'tcx>)>, ) -> Result>, ErrorGuaranteed> { let (param_env, (def, substs)) = key.into_parts(); let result = if let Some(trait_def_id) = tcx.trait_of_item(def.did) { debug!(" => associated item, attempting to find impl in param_env {:#?}", param_env); resolve_associated_item(tcx, def.did, param_env, trait_def_id, substs) } else { let ty = tcx.type_of(def.def_id_for_type_of()); let item_type = tcx.subst_and_normalize_erasing_regions(substs, param_env, ty); let def = match *item_type.kind() { ty::FnDef(def_id, ..) if tcx.is_intrinsic(def_id) => { debug!(" => intrinsic"); ty::InstanceDef::Intrinsic(def.did) } ty::FnDef(def_id, substs) if Some(def_id) == tcx.lang_items().drop_in_place_fn() => { let ty = substs.type_at(0); if ty.needs_drop(tcx, param_env) { debug!(" => nontrivial drop glue"); match *ty.kind() { ty::Closure(..) | ty::Generator(..) | ty::Tuple(..) | ty::Adt(..) | ty::Dynamic(..) | ty::Array(..) | ty::Slice(..) => {} // Drop shims can only be built from ADTs. _ => return Ok(None), } ty::InstanceDef::DropGlue(def_id, Some(ty)) } else { debug!(" => trivial drop glue"); ty::InstanceDef::DropGlue(def_id, None) } } _ => { debug!(" => free item"); ty::InstanceDef::Item(def) } }; Ok(Some(Instance { def, substs })) }; debug!("inner_resolve_instance: result={:?}", result); result } fn resolve_associated_item<'tcx>( tcx: TyCtxt<'tcx>, trait_item_id: DefId, param_env: ty::ParamEnv<'tcx>, trait_id: DefId, rcvr_substs: SubstsRef<'tcx>, ) -> Result>, ErrorGuaranteed> { debug!(?trait_item_id, ?param_env, ?trait_id, ?rcvr_substs, "resolve_associated_item"); let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_substs); // See FIXME on `BoundVarsCollector`. let mut bound_vars_collector = BoundVarsCollector::new(); trait_ref.visit_with(&mut bound_vars_collector); let trait_binder = ty::Binder::bind_with_vars(trait_ref, bound_vars_collector.into_vars(tcx)); let vtbl = match tcx.codegen_fulfill_obligation((param_env, trait_binder)) { Ok(vtbl) => vtbl, Err(CodegenObligationError::Ambiguity) => { let reported = tcx.sess.delay_span_bug( tcx.def_span(trait_item_id), &format!( "encountered ambiguity selecting `{:?}` during codegen, presuming due to \ overflow or prior type error", trait_binder ), ); return Err(reported); } Err(CodegenObligationError::Unimplemented) => return Ok(None), Err(CodegenObligationError::FulfillmentError) => return Ok(None), }; // Now that we know which impl is being used, we can dispatch to // the actual function: Ok(match vtbl { traits::ImplSource::UserDefined(impl_data) => { debug!( "resolving ImplSource::UserDefined: {:?}, {:?}, {:?}, {:?}", param_env, trait_item_id, rcvr_substs, impl_data ); assert!(!rcvr_substs.needs_infer()); assert!(!trait_ref.needs_infer()); let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap(); let trait_def = tcx.trait_def(trait_def_id); let leaf_def = trait_def .ancestors(tcx, impl_data.impl_def_id)? .leaf_def(tcx, trait_item_id) .unwrap_or_else(|| { bug!("{:?} not found in {:?}", trait_item_id, impl_data.impl_def_id); }); let substs = tcx.infer_ctxt().enter(|infcx| { let param_env = param_env.with_reveal_all_normalized(tcx); let substs = rcvr_substs.rebase_onto(tcx, trait_def_id, impl_data.substs); let substs = translate_substs( &infcx, param_env, impl_data.impl_def_id, substs, leaf_def.defining_node, ); infcx.tcx.erase_regions(substs) }); // Since this is a trait item, we need to see if the item is either a trait default item // or a specialization because we can't resolve those unless we can `Reveal::All`. // NOTE: This should be kept in sync with the similar code in // `rustc_trait_selection::traits::project::assemble_candidates_from_impls()`. let eligible = if leaf_def.is_final() { // Non-specializable items are always projectable. true } else { // Only reveal a specializable default if we're past type-checking // and the obligation is monomorphic, otherwise passes such as // transmute checking and polymorphic MIR optimizations could // get a result which isn't correct for all monomorphizations. if param_env.reveal() == Reveal::All { !trait_ref.still_further_specializable() } else { false } }; if !eligible { return Ok(None); } // If the item does not have a value, then we cannot return an instance. if !leaf_def.item.defaultness(tcx).has_value() { return Ok(None); } let substs = tcx.erase_regions(substs); // Check if we just resolved an associated `const` declaration from // a `trait` to an associated `const` definition in an `impl`, where // the definition in the `impl` has the wrong type (for which an // error has already been/will be emitted elsewhere). // // NB: this may be expensive, we try to skip it in all the cases where // we know the error would've been caught (e.g. in an upstream crate). // // A better approach might be to just introduce a query (returning // `Result<(), ErrorGuaranteed>`) for the check that `rustc_typeck` // performs (i.e. that the definition's type in the `impl` matches // the declaration in the `trait`), so that we can cheaply check // here if it failed, instead of approximating it. if leaf_def.item.kind == ty::AssocKind::Const && trait_item_id != leaf_def.item.def_id && leaf_def.item.def_id.is_local() { let normalized_type_of = |def_id, substs| { tcx.subst_and_normalize_erasing_regions(substs, param_env, tcx.type_of(def_id)) }; let original_ty = normalized_type_of(trait_item_id, rcvr_substs); let resolved_ty = normalized_type_of(leaf_def.item.def_id, substs); if original_ty != resolved_ty { let msg = format!( "Instance::resolve: inconsistent associated `const` type: \ was `{}: {}` but resolved to `{}: {}`", tcx.def_path_str_with_substs(trait_item_id, rcvr_substs), original_ty, tcx.def_path_str_with_substs(leaf_def.item.def_id, substs), resolved_ty, ); let span = tcx.def_span(leaf_def.item.def_id); let reported = tcx.sess.delay_span_bug(span, &msg); return Err(reported); } } Some(ty::Instance::new(leaf_def.item.def_id, substs)) } traits::ImplSource::Generator(generator_data) => Some(Instance { def: ty::InstanceDef::Item(ty::WithOptConstParam::unknown( generator_data.generator_def_id, )), substs: generator_data.substs, }), traits::ImplSource::Closure(closure_data) => { let trait_closure_kind = tcx.fn_trait_kind_from_lang_item(trait_id).unwrap(); Instance::resolve_closure( tcx, closure_data.closure_def_id, closure_data.substs, trait_closure_kind, ) } traits::ImplSource::FnPointer(ref data) => match data.fn_ty.kind() { ty::FnDef(..) | ty::FnPtr(..) => Some(Instance { def: ty::InstanceDef::FnPtrShim(trait_item_id, data.fn_ty), substs: rcvr_substs, }), _ => None, }, traits::ImplSource::Object(ref data) => { if let Some(index) = traits::get_vtable_index_of_object_method(tcx, data, trait_item_id) { Some(Instance { def: ty::InstanceDef::Virtual(trait_item_id, index), substs: rcvr_substs, }) } else { None } } traits::ImplSource::Builtin(..) => { if Some(trait_ref.def_id) == tcx.lang_items().clone_trait() { // FIXME(eddyb) use lang items for methods instead of names. let name = tcx.item_name(trait_item_id); if name == sym::clone { let self_ty = trait_ref.self_ty(); let is_copy = self_ty.is_copy_modulo_regions(tcx.at(DUMMY_SP), param_env); match self_ty.kind() { _ if is_copy => (), ty::Closure(..) | ty::Tuple(..) => {} _ => return Ok(None), }; Some(Instance { def: ty::InstanceDef::CloneShim(trait_item_id, self_ty), substs: rcvr_substs, }) } else { assert_eq!(name, sym::clone_from); // Use the default `fn clone_from` from `trait Clone`. let substs = tcx.erase_regions(rcvr_substs); Some(ty::Instance::new(trait_item_id, substs)) } } else { None } } traits::ImplSource::AutoImpl(..) | traits::ImplSource::Param(..) | traits::ImplSource::TraitAlias(..) | traits::ImplSource::DiscriminantKind(..) | traits::ImplSource::Pointee(..) | traits::ImplSource::TraitUpcasting(_) | traits::ImplSource::ConstDestruct(_) => None, }) } pub fn provide(providers: &mut ty::query::Providers) { *providers = ty::query::Providers { resolve_instance, resolve_instance_of_const_arg, ..*providers }; }