use rustc_errors::ErrorGuaranteed; use rustc_hir::def::DefKind; use rustc_hir::def_id::DefId; use rustc_infer::infer::TyCtxtInferExt; use rustc_middle::query::Providers; use rustc_middle::traits::{BuiltinImplSource, CodegenObligationError}; use rustc_middle::ty::GenericArgsRef; use rustc_middle::ty::{self, Instance, TyCtxt, TypeVisitableExt}; use rustc_span::sym; use rustc_trait_selection::traits; use traits::{translate_args, Reveal}; use crate::errors::UnexpectedFnPtrAssociatedItem; fn resolve_instance<'tcx>( tcx: TyCtxt<'tcx>, key: ty::ParamEnvAnd<'tcx, (DefId, GenericArgsRef<'tcx>)>, ) -> Result>, ErrorGuaranteed> { let (param_env, (def_id, args)) = key.into_parts(); let result = if let Some(trait_def_id) = tcx.trait_of_item(def_id) { debug!(" => associated item, attempting to find impl in param_env {:#?}", param_env); resolve_associated_item( tcx, def_id, param_env, trait_def_id, tcx.normalize_erasing_regions(param_env, args), ) } else { let def = if matches!(tcx.def_kind(def_id), DefKind::Fn) && tcx.is_intrinsic(def_id) { debug!(" => intrinsic"); ty::InstanceDef::Intrinsic(def_id) } else if Some(def_id) == tcx.lang_items().drop_in_place_fn() { let ty = args.type_at(0); if ty.needs_drop(tcx, param_env) { debug!(" => nontrivial drop glue"); match *ty.kind() { ty::Closure(..) | ty::Generator(..) | ty::Tuple(..) | ty::Adt(..) | ty::Dynamic(..) | ty::Array(..) | ty::Slice(..) => {} // Drop shims can only be built from ADTs. _ => return Ok(None), } ty::InstanceDef::DropGlue(def_id, Some(ty)) } else { debug!(" => trivial drop glue"); ty::InstanceDef::DropGlue(def_id, None) } } else { debug!(" => free item"); // FIXME(effects): we may want to erase the effect param if that is present on this item. ty::InstanceDef::Item(def_id) }; Ok(Some(Instance { def, args })) }; debug!("inner_resolve_instance: result={:?}", result); result } fn resolve_associated_item<'tcx>( tcx: TyCtxt<'tcx>, trait_item_id: DefId, param_env: ty::ParamEnv<'tcx>, trait_id: DefId, rcvr_args: GenericArgsRef<'tcx>, ) -> Result>, ErrorGuaranteed> { debug!(?trait_item_id, ?param_env, ?trait_id, ?rcvr_args, "resolve_associated_item"); let trait_ref = ty::TraitRef::from_method(tcx, trait_id, rcvr_args); let vtbl = match tcx.codegen_select_candidate((param_env, trait_ref)) { Ok(vtbl) => vtbl, Err(CodegenObligationError::Ambiguity) => { let reported = tcx.sess.delay_span_bug( tcx.def_span(trait_item_id), format!( "encountered ambiguity selecting `{trait_ref:?}` during codegen, presuming due to \ overflow or prior type error", ), ); return Err(reported); } Err(CodegenObligationError::Unimplemented) => return Ok(None), Err(CodegenObligationError::FulfillmentError) => return Ok(None), }; // Now that we know which impl is being used, we can dispatch to // the actual function: Ok(match vtbl { traits::ImplSource::UserDefined(impl_data) => { debug!( "resolving ImplSource::UserDefined: {:?}, {:?}, {:?}, {:?}", param_env, trait_item_id, rcvr_args, impl_data ); assert!(!rcvr_args.has_infer()); assert!(!trait_ref.has_infer()); let trait_def_id = tcx.trait_id_of_impl(impl_data.impl_def_id).unwrap(); let trait_def = tcx.trait_def(trait_def_id); let leaf_def = trait_def .ancestors(tcx, impl_data.impl_def_id)? .leaf_def(tcx, trait_item_id) .unwrap_or_else(|| { bug!("{:?} not found in {:?}", trait_item_id, impl_data.impl_def_id); }); let infcx = tcx.infer_ctxt().build(); let param_env = param_env.with_reveal_all_normalized(tcx); let args = rcvr_args.rebase_onto(tcx, trait_def_id, impl_data.args); let args = translate_args( &infcx, param_env, impl_data.impl_def_id, args, leaf_def.defining_node, ); let args = infcx.tcx.erase_regions(args); // Since this is a trait item, we need to see if the item is either a trait default item // or a specialization because we can't resolve those unless we can `Reveal::All`. // NOTE: This should be kept in sync with the similar code in // `rustc_trait_selection::traits::project::assemble_candidates_from_impls()`. let eligible = if leaf_def.is_final() { // Non-specializable items are always projectable. true } else { // Only reveal a specializable default if we're past type-checking // and the obligation is monomorphic, otherwise passes such as // transmute checking and polymorphic MIR optimizations could // get a result which isn't correct for all monomorphizations. if param_env.reveal() == Reveal::All { !trait_ref.still_further_specializable() } else { false } }; if !eligible { return Ok(None); } // HACK: We may have overlapping `dyn Trait` built-in impls and // user-provided blanket impls. Detect that case here, and return // ambiguity. // // This should not affect totally monomorphized contexts, only // resolve calls that happen polymorphically, such as the mir-inliner // and const-prop (and also some lints). let self_ty = rcvr_args.type_at(0); if !self_ty.is_known_rigid() { let predicates = tcx .predicates_of(impl_data.impl_def_id) .instantiate(tcx, impl_data.args) .predicates; let sized_def_id = tcx.lang_items().sized_trait(); // If we find a `Self: Sized` bound on the item, then we know // that `dyn Trait` can certainly never apply here. if !predicates.into_iter().filter_map(ty::Clause::as_trait_clause).any(|clause| { Some(clause.def_id()) == sized_def_id && clause.skip_binder().self_ty() == self_ty }) { return Ok(None); } } // Any final impl is required to define all associated items. if !leaf_def.item.defaultness(tcx).has_value() { let guard = tcx.sess.delay_span_bug( tcx.def_span(leaf_def.item.def_id), "missing value for assoc item in impl", ); return Err(guard); } let args = tcx.erase_regions(args); // Check if we just resolved an associated `const` declaration from // a `trait` to an associated `const` definition in an `impl`, where // the definition in the `impl` has the wrong type (for which an // error has already been/will be emitted elsewhere). if leaf_def.item.kind == ty::AssocKind::Const && trait_item_id != leaf_def.item.def_id && let Some(leaf_def_item) = leaf_def.item.def_id.as_local() { tcx.compare_impl_const(( leaf_def_item, trait_item_id, ))?; } Some(ty::Instance::new(leaf_def.item.def_id, args)) } traits::ImplSource::Builtin(BuiltinImplSource::Object { vtable_base }, _) => { traits::get_vtable_index_of_object_method(tcx, *vtable_base, trait_item_id).map( |index| Instance { def: ty::InstanceDef::Virtual(trait_item_id, index), args: rcvr_args, }, ) } traits::ImplSource::Builtin(BuiltinImplSource::Misc, _) => { let lang_items = tcx.lang_items(); if Some(trait_ref.def_id) == lang_items.clone_trait() { // FIXME(eddyb) use lang items for methods instead of names. let name = tcx.item_name(trait_item_id); if name == sym::clone { let self_ty = trait_ref.self_ty(); let is_copy = self_ty.is_copy_modulo_regions(tcx, param_env); match self_ty.kind() { _ if is_copy => (), ty::Generator(..) | ty::GeneratorWitness(..) | ty::Closure(..) | ty::Tuple(..) => {} _ => return Ok(None), }; Some(Instance { def: ty::InstanceDef::CloneShim(trait_item_id, self_ty), args: rcvr_args, }) } else { assert_eq!(name, sym::clone_from); // Use the default `fn clone_from` from `trait Clone`. let args = tcx.erase_regions(rcvr_args); Some(ty::Instance::new(trait_item_id, args)) } } else if Some(trait_ref.def_id) == lang_items.fn_ptr_trait() { if lang_items.fn_ptr_addr() == Some(trait_item_id) { let self_ty = trait_ref.self_ty(); if !matches!(self_ty.kind(), ty::FnPtr(..)) { return Ok(None); } Some(Instance { def: ty::InstanceDef::FnPtrAddrShim(trait_item_id, self_ty), args: rcvr_args, }) } else { tcx.sess.emit_fatal(UnexpectedFnPtrAssociatedItem { span: tcx.def_span(trait_item_id), }) } } else if Some(trait_ref.def_id) == lang_items.future_trait() { let ty::Generator(generator_def_id, args, _) = *rcvr_args.type_at(0).kind() else { bug!() }; if Some(trait_item_id) == tcx.lang_items().future_poll_fn() { // `Future::poll` is generated by the compiler. Some(Instance { def: ty::InstanceDef::Item(generator_def_id), args: args }) } else { // All other methods are default methods of the `Future` trait. // (this assumes that `ImplSource::Builtin` is only used for methods on `Future`) debug_assert!(tcx.defaultness(trait_item_id).has_value()); Some(Instance::new(trait_item_id, rcvr_args)) } } else if Some(trait_ref.def_id) == lang_items.gen_trait() { let ty::Generator(generator_def_id, args, _) = *rcvr_args.type_at(0).kind() else { bug!() }; if cfg!(debug_assertions) && tcx.item_name(trait_item_id) != sym::resume { // For compiler developers who'd like to add new items to `Generator`, // you either need to generate a shim body, or perhaps return // `InstanceDef::Item` pointing to a trait default method body if // it is given a default implementation by the trait. span_bug!( tcx.def_span(generator_def_id), "no definition for `{trait_ref}::{}` for built-in generator type", tcx.item_name(trait_item_id) ) } Some(Instance { def: ty::InstanceDef::Item(generator_def_id), args }) } else if tcx.fn_trait_kind_from_def_id(trait_ref.def_id).is_some() { // FIXME: This doesn't check for malformed libcore that defines, e.g., // `trait Fn { fn call_once(&self) { .. } }`. This is mostly for extension // methods. if cfg!(debug_assertions) && ![sym::call, sym::call_mut, sym::call_once] .contains(&tcx.item_name(trait_item_id)) { // For compiler developers who'd like to add new items to `Fn`/`FnMut`/`FnOnce`, // you either need to generate a shim body, or perhaps return // `InstanceDef::Item` pointing to a trait default method body if // it is given a default implementation by the trait. bug!( "no definition for `{trait_ref}::{}` for built-in callable type", tcx.item_name(trait_item_id) ) } match *rcvr_args.type_at(0).kind() { ty::Closure(closure_def_id, args) => { let trait_closure_kind = tcx.fn_trait_kind_from_def_id(trait_id).unwrap(); Instance::resolve_closure(tcx, closure_def_id, args, trait_closure_kind) } ty::FnDef(..) | ty::FnPtr(..) => Some(Instance { def: ty::InstanceDef::FnPtrShim(trait_item_id, rcvr_args.type_at(0)), args: rcvr_args, }), _ => bug!( "no built-in definition for `{trait_ref}::{}` for non-fn type", tcx.item_name(trait_item_id) ), } } else { None } } traits::ImplSource::Param(..) | traits::ImplSource::Builtin(BuiltinImplSource::TraitUpcasting { .. }, _) | traits::ImplSource::Builtin(BuiltinImplSource::TupleUnsizing, _) => None, }) } pub fn provide(providers: &mut Providers) { *providers = Providers { resolve_instance, ..*providers }; }