use rustc_hir as hir; use rustc_index::bit_set::BitSet; use rustc_index::vec::{Idx, IndexVec}; use rustc_middle::mir::{GeneratorLayout, GeneratorSavedLocal}; use rustc_middle::ty::layout::{ IntegerExt, LayoutCx, LayoutError, LayoutOf, TyAndLayout, MAX_SIMD_LANES, }; use rustc_middle::ty::{ self, subst::SubstsRef, EarlyBinder, ReprOptions, Ty, TyCtxt, TypeVisitable, }; use rustc_session::{DataTypeKind, FieldInfo, SizeKind, VariantInfo}; use rustc_span::symbol::Symbol; use rustc_span::DUMMY_SP; use rustc_target::abi::*; use std::cmp::{self, Ordering}; use std::iter; use std::num::NonZeroUsize; use std::ops::Bound; use rand::{seq::SliceRandom, SeedableRng}; use rand_xoshiro::Xoshiro128StarStar; use crate::layout_sanity_check::sanity_check_layout; pub fn provide(providers: &mut ty::query::Providers) { *providers = ty::query::Providers { layout_of, ..*providers }; } #[instrument(skip(tcx, query), level = "debug")] fn layout_of<'tcx>( tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, ) -> Result, LayoutError<'tcx>> { let (param_env, ty) = query.into_parts(); debug!(?ty); let param_env = param_env.with_reveal_all_normalized(tcx); let unnormalized_ty = ty; // FIXME: We might want to have two different versions of `layout_of`: // One that can be called after typecheck has completed and can use // `normalize_erasing_regions` here and another one that can be called // before typecheck has completed and uses `try_normalize_erasing_regions`. let ty = match tcx.try_normalize_erasing_regions(param_env, ty) { Ok(t) => t, Err(normalization_error) => { return Err(LayoutError::NormalizationFailure(ty, normalization_error)); } }; if ty != unnormalized_ty { // Ensure this layout is also cached for the normalized type. return tcx.layout_of(param_env.and(ty)); } let cx = LayoutCx { tcx, param_env }; let layout = layout_of_uncached(&cx, ty)?; let layout = TyAndLayout { ty, layout }; record_layout_for_printing(&cx, layout); sanity_check_layout(&cx, &layout); Ok(layout) } #[derive(Copy, Clone, Debug)] enum StructKind { /// A tuple, closure, or univariant which cannot be coerced to unsized. AlwaysSized, /// A univariant, the last field of which may be coerced to unsized. MaybeUnsized, /// A univariant, but with a prefix of an arbitrary size & alignment (e.g., enum tag). Prefixed(Size, Align), } // Invert a bijective mapping, i.e. `invert(map)[y] = x` if `map[x] = y`. // This is used to go between `memory_index` (source field order to memory order) // and `inverse_memory_index` (memory order to source field order). // See also `FieldsShape::Arbitrary::memory_index` for more details. // FIXME(eddyb) build a better abstraction for permutations, if possible. fn invert_mapping(map: &[u32]) -> Vec { let mut inverse = vec![0; map.len()]; for i in 0..map.len() { inverse[map[i] as usize] = i as u32; } inverse } fn scalar_pair<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, a: Scalar, b: Scalar) -> LayoutS<'tcx> { let dl = cx.data_layout(); let b_align = b.align(dl); let align = a.align(dl).max(b_align).max(dl.aggregate_align); let b_offset = a.size(dl).align_to(b_align.abi); let size = (b_offset + b.size(dl)).align_to(align.abi); // HACK(nox): We iter on `b` and then `a` because `max_by_key` // returns the last maximum. let largest_niche = Niche::from_scalar(dl, b_offset, b) .into_iter() .chain(Niche::from_scalar(dl, Size::ZERO, a)) .max_by_key(|niche| niche.available(dl)); LayoutS { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO, b_offset], memory_index: vec![0, 1], }, abi: Abi::ScalarPair(a, b), largest_niche, align, size, } } fn univariant_uninterned<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, ty: Ty<'tcx>, fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind: StructKind, ) -> Result, LayoutError<'tcx>> { let dl = cx.data_layout(); let pack = repr.pack; if pack.is_some() && repr.align.is_some() { cx.tcx.sess.delay_span_bug(DUMMY_SP, "struct cannot be packed and aligned"); return Err(LayoutError::Unknown(ty)); } let mut align = if pack.is_some() { dl.i8_align } else { dl.aggregate_align }; let mut inverse_memory_index: Vec = (0..fields.len() as u32).collect(); let optimize = !repr.inhibit_struct_field_reordering_opt(); if optimize { let end = if let StructKind::MaybeUnsized = kind { fields.len() - 1 } else { fields.len() }; let optimizing = &mut inverse_memory_index[..end]; let field_align = |f: &TyAndLayout<'_>| { if let Some(pack) = pack { f.align.abi.min(pack) } else { f.align.abi } }; // If `-Z randomize-layout` was enabled for the type definition we can shuffle // the field ordering to try and catch some code making assumptions about layouts // we don't guarantee if repr.can_randomize_type_layout() { // `ReprOptions.layout_seed` is a deterministic seed that we can use to // randomize field ordering with let mut rng = Xoshiro128StarStar::seed_from_u64(repr.field_shuffle_seed); // Shuffle the ordering of the fields optimizing.shuffle(&mut rng); // Otherwise we just leave things alone and actually optimize the type's fields } else { match kind { StructKind::AlwaysSized | StructKind::MaybeUnsized => { optimizing.sort_by_key(|&x| { // Place ZSTs first to avoid "interesting offsets", // especially with only one or two non-ZST fields. let f = &fields[x as usize]; (!f.is_zst(), cmp::Reverse(field_align(f))) }); } StructKind::Prefixed(..) => { // Sort in ascending alignment so that the layout stays optimal // regardless of the prefix optimizing.sort_by_key(|&x| field_align(&fields[x as usize])); } } // FIXME(Kixiron): We can always shuffle fields within a given alignment class // regardless of the status of `-Z randomize-layout` } } // inverse_memory_index holds field indices by increasing memory offset. // That is, if field 5 has offset 0, the first element of inverse_memory_index is 5. // We now write field offsets to the corresponding offset slot; // field 5 with offset 0 puts 0 in offsets[5]. // At the bottom of this function, we invert `inverse_memory_index` to // produce `memory_index` (see `invert_mapping`). let mut sized = true; let mut offsets = vec![Size::ZERO; fields.len()]; let mut offset = Size::ZERO; let mut largest_niche = None; let mut largest_niche_available = 0; if let StructKind::Prefixed(prefix_size, prefix_align) = kind { let prefix_align = if let Some(pack) = pack { prefix_align.min(pack) } else { prefix_align }; align = align.max(AbiAndPrefAlign::new(prefix_align)); offset = prefix_size.align_to(prefix_align); } for &i in &inverse_memory_index { let field = fields[i as usize]; if !sized { cx.tcx.sess.delay_span_bug( DUMMY_SP, &format!( "univariant: field #{} of `{}` comes after unsized field", offsets.len(), ty ), ); } if field.is_unsized() { sized = false; } // Invariant: offset < dl.obj_size_bound() <= 1<<61 let field_align = if let Some(pack) = pack { field.align.min(AbiAndPrefAlign::new(pack)) } else { field.align }; offset = offset.align_to(field_align.abi); align = align.max(field_align); debug!("univariant offset: {:?} field: {:#?}", offset, field); offsets[i as usize] = offset; if let Some(mut niche) = field.largest_niche { let available = niche.available(dl); if available > largest_niche_available { largest_niche_available = available; niche.offset += offset; largest_niche = Some(niche); } } offset = offset.checked_add(field.size, dl).ok_or(LayoutError::SizeOverflow(ty))?; } if let Some(repr_align) = repr.align { align = align.max(AbiAndPrefAlign::new(repr_align)); } debug!("univariant min_size: {:?}", offset); let min_size = offset; // As stated above, inverse_memory_index holds field indices by increasing offset. // This makes it an already-sorted view of the offsets vec. // To invert it, consider: // If field 5 has offset 0, offsets[0] is 5, and memory_index[5] should be 0. // Field 5 would be the first element, so memory_index is i: // Note: if we didn't optimize, it's already right. let memory_index = if optimize { invert_mapping(&inverse_memory_index) } else { inverse_memory_index }; let size = min_size.align_to(align.abi); let mut abi = Abi::Aggregate { sized }; // Unpack newtype ABIs and find scalar pairs. if sized && size.bytes() > 0 { // All other fields must be ZSTs. let mut non_zst_fields = fields.iter().enumerate().filter(|&(_, f)| !f.is_zst()); match (non_zst_fields.next(), non_zst_fields.next(), non_zst_fields.next()) { // We have exactly one non-ZST field. (Some((i, field)), None, None) => { // Field fills the struct and it has a scalar or scalar pair ABI. if offsets[i].bytes() == 0 && align.abi == field.align.abi && size == field.size { match field.abi { // For plain scalars, or vectors of them, we can't unpack // newtypes for `#[repr(C)]`, as that affects C ABIs. Abi::Scalar(_) | Abi::Vector { .. } if optimize => { abi = field.abi; } // But scalar pairs are Rust-specific and get // treated as aggregates by C ABIs anyway. Abi::ScalarPair(..) => { abi = field.abi; } _ => {} } } } // Two non-ZST fields, and they're both scalars. (Some((i, a)), Some((j, b)), None) => { match (a.abi, b.abi) { (Abi::Scalar(a), Abi::Scalar(b)) => { // Order by the memory placement, not source order. let ((i, a), (j, b)) = if offsets[i] < offsets[j] { ((i, a), (j, b)) } else { ((j, b), (i, a)) }; let pair = scalar_pair(cx, a, b); let pair_offsets = match pair.fields { FieldsShape::Arbitrary { ref offsets, ref memory_index } => { assert_eq!(memory_index, &[0, 1]); offsets } _ => bug!(), }; if offsets[i] == pair_offsets[0] && offsets[j] == pair_offsets[1] && align == pair.align && size == pair.size { // We can use `ScalarPair` only when it matches our // already computed layout (including `#[repr(C)]`). abi = pair.abi; } } _ => {} } } _ => {} } } if fields.iter().any(|f| f.abi.is_uninhabited()) { abi = Abi::Uninhabited; } Ok(LayoutS { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Arbitrary { offsets, memory_index }, abi, largest_niche, align, size, }) } fn layout_of_uncached<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, ty: Ty<'tcx>, ) -> Result, LayoutError<'tcx>> { let tcx = cx.tcx; let param_env = cx.param_env; let dl = cx.data_layout(); let scalar_unit = |value: Primitive| { let size = value.size(dl); assert!(size.bits() <= 128); Scalar::Initialized { value, valid_range: WrappingRange::full(size) } }; let scalar = |value: Primitive| tcx.intern_layout(LayoutS::scalar(cx, scalar_unit(value))); let univariant = |fields: &[TyAndLayout<'_>], repr: &ReprOptions, kind| { Ok(tcx.intern_layout(univariant_uninterned(cx, ty, fields, repr, kind)?)) }; debug_assert!(!ty.has_non_region_infer()); Ok(match *ty.kind() { // Basic scalars. ty::Bool => tcx.intern_layout(LayoutS::scalar( cx, Scalar::Initialized { value: Int(I8, false), valid_range: WrappingRange { start: 0, end: 1 }, }, )), ty::Char => tcx.intern_layout(LayoutS::scalar( cx, Scalar::Initialized { value: Int(I32, false), valid_range: WrappingRange { start: 0, end: 0x10FFFF }, }, )), ty::Int(ity) => scalar(Int(Integer::from_int_ty(dl, ity), true)), ty::Uint(ity) => scalar(Int(Integer::from_uint_ty(dl, ity), false)), ty::Float(fty) => scalar(match fty { ty::FloatTy::F32 => F32, ty::FloatTy::F64 => F64, }), ty::FnPtr(_) => { let mut ptr = scalar_unit(Pointer); ptr.valid_range_mut().start = 1; tcx.intern_layout(LayoutS::scalar(cx, ptr)) } // The never type. ty::Never => tcx.intern_layout(LayoutS { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Primitive, abi: Abi::Uninhabited, largest_niche: None, align: dl.i8_align, size: Size::ZERO, }), // Potentially-wide pointers. ty::Ref(_, pointee, _) | ty::RawPtr(ty::TypeAndMut { ty: pointee, .. }) => { let mut data_ptr = scalar_unit(Pointer); if !ty.is_unsafe_ptr() { data_ptr.valid_range_mut().start = 1; } let pointee = tcx.normalize_erasing_regions(param_env, pointee); if pointee.is_sized(tcx, param_env) { return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr))); } let unsized_part = tcx.struct_tail_erasing_lifetimes(pointee, param_env); let metadata = match unsized_part.kind() { ty::Foreign(..) => { return Ok(tcx.intern_layout(LayoutS::scalar(cx, data_ptr))); } ty::Slice(_) | ty::Str => scalar_unit(Int(dl.ptr_sized_integer(), false)), ty::Dynamic(..) => { let mut vtable = scalar_unit(Pointer); vtable.valid_range_mut().start = 1; vtable } _ => return Err(LayoutError::Unknown(unsized_part)), }; // Effectively a (ptr, meta) tuple. tcx.intern_layout(scalar_pair(cx, data_ptr, metadata)) } ty::Dynamic(_, _, ty::DynStar) => { let mut data = scalar_unit(Int(dl.ptr_sized_integer(), false)); data.valid_range_mut().start = 0; let mut vtable = scalar_unit(Pointer); vtable.valid_range_mut().start = 1; tcx.intern_layout(scalar_pair(cx, data, vtable)) } // Arrays and slices. ty::Array(element, mut count) => { if count.has_projections() { count = tcx.normalize_erasing_regions(param_env, count); if count.has_projections() { return Err(LayoutError::Unknown(ty)); } } let count = count.try_eval_usize(tcx, param_env).ok_or(LayoutError::Unknown(ty))?; let element = cx.layout_of(element)?; let size = element.size.checked_mul(count, dl).ok_or(LayoutError::SizeOverflow(ty))?; let abi = if count != 0 && tcx.conservative_is_privately_uninhabited(param_env.and(ty)) { Abi::Uninhabited } else { Abi::Aggregate { sized: true } }; let largest_niche = if count != 0 { element.largest_niche } else { None }; tcx.intern_layout(LayoutS { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Array { stride: element.size, count }, abi, largest_niche, align: element.align, size, }) } ty::Slice(element) => { let element = cx.layout_of(element)?; tcx.intern_layout(LayoutS { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Array { stride: element.size, count: 0 }, abi: Abi::Aggregate { sized: false }, largest_niche: None, align: element.align, size: Size::ZERO, }) } ty::Str => tcx.intern_layout(LayoutS { variants: Variants::Single { index: VariantIdx::new(0) }, fields: FieldsShape::Array { stride: Size::from_bytes(1), count: 0 }, abi: Abi::Aggregate { sized: false }, largest_niche: None, align: dl.i8_align, size: Size::ZERO, }), // Odd unit types. ty::FnDef(..) => univariant(&[], &ReprOptions::default(), StructKind::AlwaysSized)?, ty::Dynamic(_, _, ty::Dyn) | ty::Foreign(..) => { let mut unit = univariant_uninterned( cx, ty, &[], &ReprOptions::default(), StructKind::AlwaysSized, )?; match unit.abi { Abi::Aggregate { ref mut sized } => *sized = false, _ => bug!(), } tcx.intern_layout(unit) } ty::Generator(def_id, substs, _) => generator_layout(cx, ty, def_id, substs)?, ty::Closure(_, ref substs) => { let tys = substs.as_closure().upvar_tys(); univariant( &tys.map(|ty| cx.layout_of(ty)).collect::, _>>()?, &ReprOptions::default(), StructKind::AlwaysSized, )? } ty::Tuple(tys) => { let kind = if tys.len() == 0 { StructKind::AlwaysSized } else { StructKind::MaybeUnsized }; univariant( &tys.iter().map(|k| cx.layout_of(k)).collect::, _>>()?, &ReprOptions::default(), kind, )? } // SIMD vector types. ty::Adt(def, substs) if def.repr().simd() => { if !def.is_struct() { // Should have yielded E0517 by now. tcx.sess.delay_span_bug( DUMMY_SP, "#[repr(simd)] was applied to an ADT that is not a struct", ); return Err(LayoutError::Unknown(ty)); } // Supported SIMD vectors are homogeneous ADTs with at least one field: // // * #[repr(simd)] struct S(T, T, T, T); // * #[repr(simd)] struct S { x: T, y: T, z: T, w: T } // * #[repr(simd)] struct S([T; 4]) // // where T is a primitive scalar (integer/float/pointer). // SIMD vectors with zero fields are not supported. // (should be caught by typeck) if def.non_enum_variant().fields.is_empty() { tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); } // Type of the first ADT field: let f0_ty = def.non_enum_variant().fields[0].ty(tcx, substs); // Heterogeneous SIMD vectors are not supported: // (should be caught by typeck) for fi in &def.non_enum_variant().fields { if fi.ty(tcx, substs) != f0_ty { tcx.sess.fatal(&format!("monomorphising heterogeneous SIMD type `{}`", ty)); } } // The element type and number of elements of the SIMD vector // are obtained from: // // * the element type and length of the single array field, if // the first field is of array type, or // // * the homogeneous field type and the number of fields. let (e_ty, e_len, is_array) = if let ty::Array(e_ty, _) = f0_ty.kind() { // First ADT field is an array: // SIMD vectors with multiple array fields are not supported: // (should be caught by typeck) if def.non_enum_variant().fields.len() != 1 { tcx.sess.fatal(&format!( "monomorphising SIMD type `{}` with more than one array field", ty )); } // Extract the number of elements from the layout of the array field: let FieldsShape::Array { count, .. } = cx.layout_of(f0_ty)?.layout.fields() else { return Err(LayoutError::Unknown(ty)); }; (*e_ty, *count, true) } else { // First ADT field is not an array: (f0_ty, def.non_enum_variant().fields.len() as _, false) }; // SIMD vectors of zero length are not supported. // Additionally, lengths are capped at 2^16 as a fixed maximum backends must // support. // // Can't be caught in typeck if the array length is generic. if e_len == 0 { tcx.sess.fatal(&format!("monomorphising SIMD type `{}` of zero length", ty)); } else if e_len > MAX_SIMD_LANES { tcx.sess.fatal(&format!( "monomorphising SIMD type `{}` of length greater than {}", ty, MAX_SIMD_LANES, )); } // Compute the ABI of the element type: let e_ly = cx.layout_of(e_ty)?; let Abi::Scalar(e_abi) = e_ly.abi else { // This error isn't caught in typeck, e.g., if // the element type of the vector is generic. tcx.sess.fatal(&format!( "monomorphising SIMD type `{}` with a non-primitive-scalar \ (integer/float/pointer) element type `{}`", ty, e_ty )) }; // Compute the size and alignment of the vector: let size = e_ly.size.checked_mul(e_len, dl).ok_or(LayoutError::SizeOverflow(ty))?; let align = dl.vector_align(size); let size = size.align_to(align.abi); // Compute the placement of the vector fields: let fields = if is_array { FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] } } else { FieldsShape::Array { stride: e_ly.size, count: e_len } }; tcx.intern_layout(LayoutS { variants: Variants::Single { index: VariantIdx::new(0) }, fields, abi: Abi::Vector { element: e_abi, count: e_len }, largest_niche: e_ly.largest_niche, size, align, }) } // ADTs. ty::Adt(def, substs) => { // Cache the field layouts. let variants = def .variants() .iter() .map(|v| { v.fields .iter() .map(|field| cx.layout_of(field.ty(tcx, substs))) .collect::, _>>() }) .collect::, _>>()?; if def.is_union() { if def.repr().pack.is_some() && def.repr().align.is_some() { cx.tcx.sess.delay_span_bug( tcx.def_span(def.did()), "union cannot be packed and aligned", ); return Err(LayoutError::Unknown(ty)); } let mut align = if def.repr().pack.is_some() { dl.i8_align } else { dl.aggregate_align }; if let Some(repr_align) = def.repr().align { align = align.max(AbiAndPrefAlign::new(repr_align)); } let optimize = !def.repr().inhibit_union_abi_opt(); let mut size = Size::ZERO; let mut abi = Abi::Aggregate { sized: true }; let index = VariantIdx::new(0); for field in &variants[index] { assert!(!field.is_unsized()); align = align.max(field.align); // If all non-ZST fields have the same ABI, forward this ABI if optimize && !field.is_zst() { // Discard valid range information and allow undef let field_abi = match field.abi { Abi::Scalar(x) => Abi::Scalar(x.to_union()), Abi::ScalarPair(x, y) => Abi::ScalarPair(x.to_union(), y.to_union()), Abi::Vector { element: x, count } => { Abi::Vector { element: x.to_union(), count } } Abi::Uninhabited | Abi::Aggregate { .. } => { Abi::Aggregate { sized: true } } }; if size == Size::ZERO { // first non ZST: initialize 'abi' abi = field_abi; } else if abi != field_abi { // different fields have different ABI: reset to Aggregate abi = Abi::Aggregate { sized: true }; } } size = cmp::max(size, field.size); } if let Some(pack) = def.repr().pack { align = align.min(AbiAndPrefAlign::new(pack)); } return Ok(tcx.intern_layout(LayoutS { variants: Variants::Single { index }, fields: FieldsShape::Union( NonZeroUsize::new(variants[index].len()).ok_or(LayoutError::Unknown(ty))?, ), abi, largest_niche: None, align, size: size.align_to(align.abi), })); } // A variant is absent if it's uninhabited and only has ZST fields. // Present uninhabited variants only require space for their fields, // but *not* an encoding of the discriminant (e.g., a tag value). // See issue #49298 for more details on the need to leave space // for non-ZST uninhabited data (mostly partial initialization). let absent = |fields: &[TyAndLayout<'_>]| { let uninhabited = fields.iter().any(|f| f.abi.is_uninhabited()); let is_zst = fields.iter().all(|f| f.is_zst()); uninhabited && is_zst }; let (present_first, present_second) = { let mut present_variants = variants .iter_enumerated() .filter_map(|(i, v)| if absent(v) { None } else { Some(i) }); (present_variants.next(), present_variants.next()) }; let present_first = match present_first { Some(present_first) => present_first, // Uninhabited because it has no variants, or only absent ones. None if def.is_enum() => { return Ok(tcx.layout_of(param_env.and(tcx.types.never))?.layout); } // If it's a struct, still compute a layout so that we can still compute the // field offsets. None => VariantIdx::new(0), }; let is_struct = !def.is_enum() || // Only one variant is present. (present_second.is_none() && // Representation optimizations are allowed. !def.repr().inhibit_enum_layout_opt()); if is_struct { // Struct, or univariant enum equivalent to a struct. // (Typechecking will reject discriminant-sizing attrs.) let v = present_first; let kind = if def.is_enum() || variants[v].is_empty() { StructKind::AlwaysSized } else { let param_env = tcx.param_env(def.did()); let last_field = def.variant(v).fields.last().unwrap(); let always_sized = tcx.type_of(last_field.did).is_sized(tcx, param_env); if !always_sized { StructKind::MaybeUnsized } else { StructKind::AlwaysSized } }; let mut st = univariant_uninterned(cx, ty, &variants[v], &def.repr(), kind)?; st.variants = Variants::Single { index: v }; if def.is_unsafe_cell() { let hide_niches = |scalar: &mut _| match scalar { Scalar::Initialized { value, valid_range } => { *valid_range = WrappingRange::full(value.size(dl)) } // Already doesn't have any niches Scalar::Union { .. } => {} }; match &mut st.abi { Abi::Uninhabited => {} Abi::Scalar(scalar) => hide_niches(scalar), Abi::ScalarPair(a, b) => { hide_niches(a); hide_niches(b); } Abi::Vector { element, count: _ } => hide_niches(element), Abi::Aggregate { sized: _ } => {} } st.largest_niche = None; return Ok(tcx.intern_layout(st)); } let (start, end) = cx.tcx.layout_scalar_valid_range(def.did()); match st.abi { Abi::Scalar(ref mut scalar) | Abi::ScalarPair(ref mut scalar, _) => { // the asserts ensure that we are not using the // `#[rustc_layout_scalar_valid_range(n)]` // attribute to widen the range of anything as that would probably // result in UB somewhere // FIXME(eddyb) the asserts are probably not needed, // as larger validity ranges would result in missed // optimizations, *not* wrongly assuming the inner // value is valid. e.g. unions enlarge validity ranges, // because the values may be uninitialized. if let Bound::Included(start) = start { // FIXME(eddyb) this might be incorrect - it doesn't // account for wrap-around (end < start) ranges. let valid_range = scalar.valid_range_mut(); assert!(valid_range.start <= start); valid_range.start = start; } if let Bound::Included(end) = end { // FIXME(eddyb) this might be incorrect - it doesn't // account for wrap-around (end < start) ranges. let valid_range = scalar.valid_range_mut(); assert!(valid_range.end >= end); valid_range.end = end; } // Update `largest_niche` if we have introduced a larger niche. let niche = Niche::from_scalar(dl, Size::ZERO, *scalar); if let Some(niche) = niche { match st.largest_niche { Some(largest_niche) => { // Replace the existing niche even if they're equal, // because this one is at a lower offset. if largest_niche.available(dl) <= niche.available(dl) { st.largest_niche = Some(niche); } } None => st.largest_niche = Some(niche), } } } _ => assert!( start == Bound::Unbounded && end == Bound::Unbounded, "nonscalar layout for layout_scalar_valid_range type {:?}: {:#?}", def, st, ), } return Ok(tcx.intern_layout(st)); } // At this point, we have handled all unions and // structs. (We have also handled univariant enums // that allow representation optimization.) assert!(def.is_enum()); // Until we've decided whether to use the tagged or // niche filling LayoutS, we don't want to intern the // variant layouts, so we can't store them in the // overall LayoutS. Store the overall LayoutS // and the variant LayoutSs here until then. struct TmpLayout<'tcx> { layout: LayoutS<'tcx>, variants: IndexVec>, } let calculate_niche_filling_layout = || -> Result>, LayoutError<'tcx>> { // The current code for niche-filling relies on variant indices // instead of actual discriminants, so enums with // explicit discriminants (RFC #2363) would misbehave. if def.repr().inhibit_enum_layout_opt() || def .variants() .iter_enumerated() .any(|(i, v)| v.discr != ty::VariantDiscr::Relative(i.as_u32())) { return Ok(None); } if variants.len() < 2 { return Ok(None); } let mut align = dl.aggregate_align; let mut variant_layouts = variants .iter_enumerated() .map(|(j, v)| { let mut st = univariant_uninterned( cx, ty, v, &def.repr(), StructKind::AlwaysSized, )?; st.variants = Variants::Single { index: j }; align = align.max(st.align); Ok(st) }) .collect::, _>>()?; let largest_variant_index = match variant_layouts .iter_enumerated() .max_by_key(|(_i, layout)| layout.size.bytes()) .map(|(i, _layout)| i) { None => return Ok(None), Some(i) => i, }; let all_indices = VariantIdx::new(0)..=VariantIdx::new(variants.len() - 1); let needs_disc = |index: VariantIdx| { index != largest_variant_index && !absent(&variants[index]) }; let niche_variants = all_indices.clone().find(|v| needs_disc(*v)).unwrap() ..=all_indices.rev().find(|v| needs_disc(*v)).unwrap(); let count = niche_variants.size_hint().1.unwrap() as u128; // Find the field with the largest niche let (field_index, niche, (niche_start, niche_scalar)) = match variants [largest_variant_index] .iter() .enumerate() .filter_map(|(j, field)| Some((j, field.largest_niche?))) .max_by_key(|(_, niche)| niche.available(dl)) .and_then(|(j, niche)| Some((j, niche, niche.reserve(cx, count)?))) { None => return Ok(None), Some(x) => x, }; let niche_offset = niche.offset + variant_layouts[largest_variant_index].fields.offset(field_index); let niche_size = niche.value.size(dl); let size = variant_layouts[largest_variant_index].size.align_to(align.abi); let all_variants_fit = variant_layouts.iter_enumerated_mut().all(|(i, layout)| { if i == largest_variant_index { return true; } layout.largest_niche = None; if layout.size <= niche_offset { // This variant will fit before the niche. return true; } // Determine if it'll fit after the niche. let this_align = layout.align.abi; let this_offset = (niche_offset + niche_size).align_to(this_align); if this_offset + layout.size > size { return false; } // It'll fit, but we need to make some adjustments. match layout.fields { FieldsShape::Arbitrary { ref mut offsets, .. } => { for (j, offset) in offsets.iter_mut().enumerate() { if !variants[i][j].is_zst() { *offset += this_offset; } } } _ => { panic!("Layout of fields should be Arbitrary for variants") } } // It can't be a Scalar or ScalarPair because the offset isn't 0. if !layout.abi.is_uninhabited() { layout.abi = Abi::Aggregate { sized: true }; } layout.size += this_offset; true }); if !all_variants_fit { return Ok(None); } let largest_niche = Niche::from_scalar(dl, niche_offset, niche_scalar); let others_zst = variant_layouts .iter_enumerated() .all(|(i, layout)| i == largest_variant_index || layout.size == Size::ZERO); let same_size = size == variant_layouts[largest_variant_index].size; let same_align = align == variant_layouts[largest_variant_index].align; let abi = if variant_layouts.iter().all(|v| v.abi.is_uninhabited()) { Abi::Uninhabited } else if same_size && same_align && others_zst { match variant_layouts[largest_variant_index].abi { // When the total alignment and size match, we can use the // same ABI as the scalar variant with the reserved niche. Abi::Scalar(_) => Abi::Scalar(niche_scalar), Abi::ScalarPair(first, second) => { // Only the niche is guaranteed to be initialised, // so use union layouts for the other primitive. if niche_offset == Size::ZERO { Abi::ScalarPair(niche_scalar, second.to_union()) } else { Abi::ScalarPair(first.to_union(), niche_scalar) } } _ => Abi::Aggregate { sized: true }, } } else { Abi::Aggregate { sized: true } }; let layout = LayoutS { variants: Variants::Multiple { tag: niche_scalar, tag_encoding: TagEncoding::Niche { untagged_variant: largest_variant_index, niche_variants, niche_start, }, tag_field: 0, variants: IndexVec::new(), }, fields: FieldsShape::Arbitrary { offsets: vec![niche_offset], memory_index: vec![0], }, abi, largest_niche, size, align, }; Ok(Some(TmpLayout { layout, variants: variant_layouts })) }; let niche_filling_layout = calculate_niche_filling_layout()?; let (mut min, mut max) = (i128::MAX, i128::MIN); let discr_type = def.repr().discr_type(); let bits = Integer::from_attr(cx, discr_type).size().bits(); for (i, discr) in def.discriminants(tcx) { if variants[i].iter().any(|f| f.abi.is_uninhabited()) { continue; } let mut x = discr.val as i128; if discr_type.is_signed() { // sign extend the raw representation to be an i128 x = (x << (128 - bits)) >> (128 - bits); } if x < min { min = x; } if x > max { max = x; } } // We might have no inhabited variants, so pretend there's at least one. if (min, max) == (i128::MAX, i128::MIN) { min = 0; max = 0; } assert!(min <= max, "discriminant range is {}...{}", min, max); let (min_ity, signed) = Integer::repr_discr(tcx, ty, &def.repr(), min, max); let mut align = dl.aggregate_align; let mut size = Size::ZERO; // We're interested in the smallest alignment, so start large. let mut start_align = Align::from_bytes(256).unwrap(); assert_eq!(Integer::for_align(dl, start_align), None); // repr(C) on an enum tells us to make a (tag, union) layout, // so we need to grow the prefix alignment to be at least // the alignment of the union. (This value is used both for // determining the alignment of the overall enum, and the // determining the alignment of the payload after the tag.) let mut prefix_align = min_ity.align(dl).abi; if def.repr().c() { for fields in &variants { for field in fields { prefix_align = prefix_align.max(field.align.abi); } } } // Create the set of structs that represent each variant. let mut layout_variants = variants .iter_enumerated() .map(|(i, field_layouts)| { let mut st = univariant_uninterned( cx, ty, &field_layouts, &def.repr(), StructKind::Prefixed(min_ity.size(), prefix_align), )?; st.variants = Variants::Single { index: i }; // Find the first field we can't move later // to make room for a larger discriminant. for field in st.fields.index_by_increasing_offset().map(|j| field_layouts[j]) { if !field.is_zst() || field.align.abi.bytes() != 1 { start_align = start_align.min(field.align.abi); break; } } size = cmp::max(size, st.size); align = align.max(st.align); Ok(st) }) .collect::, _>>()?; // Align the maximum variant size to the largest alignment. size = size.align_to(align.abi); if size.bytes() >= dl.obj_size_bound() { return Err(LayoutError::SizeOverflow(ty)); } let typeck_ity = Integer::from_attr(dl, def.repr().discr_type()); if typeck_ity < min_ity { // It is a bug if Layout decided on a greater discriminant size than typeck for // some reason at this point (based on values discriminant can take on). Mostly // because this discriminant will be loaded, and then stored into variable of // type calculated by typeck. Consider such case (a bug): typeck decided on // byte-sized discriminant, but layout thinks we need a 16-bit to store all // discriminant values. That would be a bug, because then, in codegen, in order // to store this 16-bit discriminant into 8-bit sized temporary some of the // space necessary to represent would have to be discarded (or layout is wrong // on thinking it needs 16 bits) bug!( "layout decided on a larger discriminant type ({:?}) than typeck ({:?})", min_ity, typeck_ity ); // However, it is fine to make discr type however large (as an optimisation) // after this point – we’ll just truncate the value we load in codegen. } // Check to see if we should use a different type for the // discriminant. We can safely use a type with the same size // as the alignment of the first field of each variant. // We increase the size of the discriminant to avoid LLVM copying // padding when it doesn't need to. This normally causes unaligned // load/stores and excessive memcpy/memset operations. By using a // bigger integer size, LLVM can be sure about its contents and // won't be so conservative. // Use the initial field alignment let mut ity = if def.repr().c() || def.repr().int.is_some() { min_ity } else { Integer::for_align(dl, start_align).unwrap_or(min_ity) }; // If the alignment is not larger than the chosen discriminant size, // don't use the alignment as the final size. if ity <= min_ity { ity = min_ity; } else { // Patch up the variants' first few fields. let old_ity_size = min_ity.size(); let new_ity_size = ity.size(); for variant in &mut layout_variants { match variant.fields { FieldsShape::Arbitrary { ref mut offsets, .. } => { for i in offsets { if *i <= old_ity_size { assert_eq!(*i, old_ity_size); *i = new_ity_size; } } // We might be making the struct larger. if variant.size <= old_ity_size { variant.size = new_ity_size; } } _ => bug!(), } } } let tag_mask = ity.size().unsigned_int_max(); let tag = Scalar::Initialized { value: Int(ity, signed), valid_range: WrappingRange { start: (min as u128 & tag_mask), end: (max as u128 & tag_mask), }, }; let mut abi = Abi::Aggregate { sized: true }; if layout_variants.iter().all(|v| v.abi.is_uninhabited()) { abi = Abi::Uninhabited; } else if tag.size(dl) == size { // Make sure we only use scalar layout when the enum is entirely its // own tag (i.e. it has no padding nor any non-ZST variant fields). abi = Abi::Scalar(tag); } else { // Try to use a ScalarPair for all tagged enums. let mut common_prim = None; let mut common_prim_initialized_in_all_variants = true; for (field_layouts, layout_variant) in iter::zip(&variants, &layout_variants) { let FieldsShape::Arbitrary { ref offsets, .. } = layout_variant.fields else { bug!(); }; let mut fields = iter::zip(field_layouts, offsets).filter(|p| !p.0.is_zst()); let (field, offset) = match (fields.next(), fields.next()) { (None, None) => { common_prim_initialized_in_all_variants = false; continue; } (Some(pair), None) => pair, _ => { common_prim = None; break; } }; let prim = match field.abi { Abi::Scalar(scalar) => { common_prim_initialized_in_all_variants &= matches!(scalar, Scalar::Initialized { .. }); scalar.primitive() } _ => { common_prim = None; break; } }; if let Some(pair) = common_prim { // This is pretty conservative. We could go fancier // by conflating things like i32 and u32, or even // realising that (u8, u8) could just cohabit with // u16 or even u32. if pair != (prim, offset) { common_prim = None; break; } } else { common_prim = Some((prim, offset)); } } if let Some((prim, offset)) = common_prim { let prim_scalar = if common_prim_initialized_in_all_variants { scalar_unit(prim) } else { // Common prim might be uninit. Scalar::Union { value: prim } }; let pair = scalar_pair(cx, tag, prim_scalar); let pair_offsets = match pair.fields { FieldsShape::Arbitrary { ref offsets, ref memory_index } => { assert_eq!(memory_index, &[0, 1]); offsets } _ => bug!(), }; if pair_offsets[0] == Size::ZERO && pair_offsets[1] == *offset && align == pair.align && size == pair.size { // We can use `ScalarPair` only when it matches our // already computed layout (including `#[repr(C)]`). abi = pair.abi; } } } // If we pick a "clever" (by-value) ABI, we might have to adjust the ABI of the // variants to ensure they are consistent. This is because a downcast is // semantically a NOP, and thus should not affect layout. if matches!(abi, Abi::Scalar(..) | Abi::ScalarPair(..)) { for variant in &mut layout_variants { // We only do this for variants with fields; the others are not accessed anyway. // Also do not overwrite any already existing "clever" ABIs. if variant.fields.count() > 0 && matches!(variant.abi, Abi::Aggregate { .. }) { variant.abi = abi; // Also need to bump up the size and alignment, so that the entire value fits in here. variant.size = cmp::max(variant.size, size); variant.align.abi = cmp::max(variant.align.abi, align.abi); } } } let largest_niche = Niche::from_scalar(dl, Size::ZERO, tag); let tagged_layout = LayoutS { variants: Variants::Multiple { tag, tag_encoding: TagEncoding::Direct, tag_field: 0, variants: IndexVec::new(), }, fields: FieldsShape::Arbitrary { offsets: vec![Size::ZERO], memory_index: vec![0] }, largest_niche, abi, align, size, }; let tagged_layout = TmpLayout { layout: tagged_layout, variants: layout_variants }; let mut best_layout = match (tagged_layout, niche_filling_layout) { (tl, Some(nl)) => { // Pick the smaller layout; otherwise, // pick the layout with the larger niche; otherwise, // pick tagged as it has simpler codegen. use Ordering::*; let niche_size = |tmp_l: &TmpLayout<'_>| { tmp_l.layout.largest_niche.map_or(0, |n| n.available(dl)) }; match ( tl.layout.size.cmp(&nl.layout.size), niche_size(&tl).cmp(&niche_size(&nl)), ) { (Greater, _) => nl, (Equal, Less) => nl, _ => tl, } } (tl, None) => tl, }; // Now we can intern the variant layouts and store them in the enum layout. best_layout.layout.variants = match best_layout.layout.variants { Variants::Multiple { tag, tag_encoding, tag_field, .. } => Variants::Multiple { tag, tag_encoding, tag_field, variants: best_layout .variants .into_iter() .map(|layout| tcx.intern_layout(layout)) .collect(), }, _ => bug!(), }; tcx.intern_layout(best_layout.layout) } // Types with no meaningful known layout. ty::Projection(_) | ty::Opaque(..) => { // NOTE(eddyb) `layout_of` query should've normalized these away, // if that was possible, so there's no reason to try again here. return Err(LayoutError::Unknown(ty)); } ty::Placeholder(..) | ty::GeneratorWitness(..) | ty::Infer(_) => { bug!("Layout::compute: unexpected type `{}`", ty) } ty::Bound(..) | ty::Param(_) | ty::Error(_) => { return Err(LayoutError::Unknown(ty)); } }) } /// Overlap eligibility and variant assignment for each GeneratorSavedLocal. #[derive(Clone, Debug, PartialEq)] enum SavedLocalEligibility { Unassigned, Assigned(VariantIdx), // FIXME: Use newtype_index so we aren't wasting bytes Ineligible(Option), } // When laying out generators, we divide our saved local fields into two // categories: overlap-eligible and overlap-ineligible. // // Those fields which are ineligible for overlap go in a "prefix" at the // beginning of the layout, and always have space reserved for them. // // Overlap-eligible fields are only assigned to one variant, so we lay // those fields out for each variant and put them right after the // prefix. // // Finally, in the layout details, we point to the fields from the // variants they are assigned to. It is possible for some fields to be // included in multiple variants. No field ever "moves around" in the // layout; its offset is always the same. // // Also included in the layout are the upvars and the discriminant. // These are included as fields on the "outer" layout; they are not part // of any variant. /// Compute the eligibility and assignment of each local. fn generator_saved_local_eligibility<'tcx>( info: &GeneratorLayout<'tcx>, ) -> (BitSet, IndexVec) { use SavedLocalEligibility::*; let mut assignments: IndexVec = IndexVec::from_elem_n(Unassigned, info.field_tys.len()); // The saved locals not eligible for overlap. These will get // "promoted" to the prefix of our generator. let mut ineligible_locals = BitSet::new_empty(info.field_tys.len()); // Figure out which of our saved locals are fields in only // one variant. The rest are deemed ineligible for overlap. for (variant_index, fields) in info.variant_fields.iter_enumerated() { for local in fields { match assignments[*local] { Unassigned => { assignments[*local] = Assigned(variant_index); } Assigned(idx) => { // We've already seen this local at another suspension // point, so it is no longer a candidate. trace!( "removing local {:?} in >1 variant ({:?}, {:?})", local, variant_index, idx ); ineligible_locals.insert(*local); assignments[*local] = Ineligible(None); } Ineligible(_) => {} } } } // Next, check every pair of eligible locals to see if they // conflict. for local_a in info.storage_conflicts.rows() { let conflicts_a = info.storage_conflicts.count(local_a); if ineligible_locals.contains(local_a) { continue; } for local_b in info.storage_conflicts.iter(local_a) { // local_a and local_b are storage live at the same time, therefore they // cannot overlap in the generator layout. The only way to guarantee // this is if they are in the same variant, or one is ineligible // (which means it is stored in every variant). if ineligible_locals.contains(local_b) || assignments[local_a] == assignments[local_b] { continue; } // If they conflict, we will choose one to make ineligible. // This is not always optimal; it's just a greedy heuristic that // seems to produce good results most of the time. let conflicts_b = info.storage_conflicts.count(local_b); let (remove, other) = if conflicts_a > conflicts_b { (local_a, local_b) } else { (local_b, local_a) }; ineligible_locals.insert(remove); assignments[remove] = Ineligible(None); trace!("removing local {:?} due to conflict with {:?}", remove, other); } } // Count the number of variants in use. If only one of them, then it is // impossible to overlap any locals in our layout. In this case it's // always better to make the remaining locals ineligible, so we can // lay them out with the other locals in the prefix and eliminate // unnecessary padding bytes. { let mut used_variants = BitSet::new_empty(info.variant_fields.len()); for assignment in &assignments { if let Assigned(idx) = assignment { used_variants.insert(*idx); } } if used_variants.count() < 2 { for assignment in assignments.iter_mut() { *assignment = Ineligible(None); } ineligible_locals.insert_all(); } } // Write down the order of our locals that will be promoted to the prefix. { for (idx, local) in ineligible_locals.iter().enumerate() { assignments[local] = Ineligible(Some(idx as u32)); } } debug!("generator saved local assignments: {:?}", assignments); (ineligible_locals, assignments) } /// Compute the full generator layout. fn generator_layout<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, ty: Ty<'tcx>, def_id: hir::def_id::DefId, substs: SubstsRef<'tcx>, ) -> Result, LayoutError<'tcx>> { use SavedLocalEligibility::*; let tcx = cx.tcx; let subst_field = |ty: Ty<'tcx>| EarlyBinder(ty).subst(tcx, substs); let Some(info) = tcx.generator_layout(def_id) else { return Err(LayoutError::Unknown(ty)); }; let (ineligible_locals, assignments) = generator_saved_local_eligibility(&info); // Build a prefix layout, including "promoting" all ineligible // locals as part of the prefix. We compute the layout of all of // these fields at once to get optimal packing. let tag_index = substs.as_generator().prefix_tys().count(); // `info.variant_fields` already accounts for the reserved variants, so no need to add them. let max_discr = (info.variant_fields.len() - 1) as u128; let discr_int = Integer::fit_unsigned(max_discr); let discr_int_ty = discr_int.to_ty(tcx, false); let tag = Scalar::Initialized { value: Primitive::Int(discr_int, false), valid_range: WrappingRange { start: 0, end: max_discr }, }; let tag_layout = cx.tcx.intern_layout(LayoutS::scalar(cx, tag)); let tag_layout = TyAndLayout { ty: discr_int_ty, layout: tag_layout }; let promoted_layouts = ineligible_locals .iter() .map(|local| subst_field(info.field_tys[local])) .map(|ty| tcx.mk_maybe_uninit(ty)) .map(|ty| cx.layout_of(ty)); let prefix_layouts = substs .as_generator() .prefix_tys() .map(|ty| cx.layout_of(ty)) .chain(iter::once(Ok(tag_layout))) .chain(promoted_layouts) .collect::, _>>()?; let prefix = univariant_uninterned( cx, ty, &prefix_layouts, &ReprOptions::default(), StructKind::AlwaysSized, )?; let (prefix_size, prefix_align) = (prefix.size, prefix.align); // Split the prefix layout into the "outer" fields (upvars and // discriminant) and the "promoted" fields. Promoted fields will // get included in each variant that requested them in // GeneratorLayout. debug!("prefix = {:#?}", prefix); let (outer_fields, promoted_offsets, promoted_memory_index) = match prefix.fields { FieldsShape::Arbitrary { mut offsets, memory_index } => { let mut inverse_memory_index = invert_mapping(&memory_index); // "a" (`0..b_start`) and "b" (`b_start..`) correspond to // "outer" and "promoted" fields respectively. let b_start = (tag_index + 1) as u32; let offsets_b = offsets.split_off(b_start as usize); let offsets_a = offsets; // Disentangle the "a" and "b" components of `inverse_memory_index` // by preserving the order but keeping only one disjoint "half" each. // FIXME(eddyb) build a better abstraction for permutations, if possible. let inverse_memory_index_b: Vec<_> = inverse_memory_index.iter().filter_map(|&i| i.checked_sub(b_start)).collect(); inverse_memory_index.retain(|&i| i < b_start); let inverse_memory_index_a = inverse_memory_index; // Since `inverse_memory_index_{a,b}` each only refer to their // respective fields, they can be safely inverted let memory_index_a = invert_mapping(&inverse_memory_index_a); let memory_index_b = invert_mapping(&inverse_memory_index_b); let outer_fields = FieldsShape::Arbitrary { offsets: offsets_a, memory_index: memory_index_a }; (outer_fields, offsets_b, memory_index_b) } _ => bug!(), }; let mut size = prefix.size; let mut align = prefix.align; let variants = info .variant_fields .iter_enumerated() .map(|(index, variant_fields)| { // Only include overlap-eligible fields when we compute our variant layout. let variant_only_tys = variant_fields .iter() .filter(|local| match assignments[**local] { Unassigned => bug!(), Assigned(v) if v == index => true, Assigned(_) => bug!("assignment does not match variant"), Ineligible(_) => false, }) .map(|local| subst_field(info.field_tys[*local])); let mut variant = univariant_uninterned( cx, ty, &variant_only_tys.map(|ty| cx.layout_of(ty)).collect::, _>>()?, &ReprOptions::default(), StructKind::Prefixed(prefix_size, prefix_align.abi), )?; variant.variants = Variants::Single { index }; let FieldsShape::Arbitrary { offsets, memory_index } = variant.fields else { bug!(); }; // Now, stitch the promoted and variant-only fields back together in // the order they are mentioned by our GeneratorLayout. // Because we only use some subset (that can differ between variants) // of the promoted fields, we can't just pick those elements of the // `promoted_memory_index` (as we'd end up with gaps). // So instead, we build an "inverse memory_index", as if all of the // promoted fields were being used, but leave the elements not in the // subset as `INVALID_FIELD_IDX`, which we can filter out later to // obtain a valid (bijective) mapping. const INVALID_FIELD_IDX: u32 = !0; let mut combined_inverse_memory_index = vec![INVALID_FIELD_IDX; promoted_memory_index.len() + memory_index.len()]; let mut offsets_and_memory_index = iter::zip(offsets, memory_index); let combined_offsets = variant_fields .iter() .enumerate() .map(|(i, local)| { let (offset, memory_index) = match assignments[*local] { Unassigned => bug!(), Assigned(_) => { let (offset, memory_index) = offsets_and_memory_index.next().unwrap(); (offset, promoted_memory_index.len() as u32 + memory_index) } Ineligible(field_idx) => { let field_idx = field_idx.unwrap() as usize; (promoted_offsets[field_idx], promoted_memory_index[field_idx]) } }; combined_inverse_memory_index[memory_index as usize] = i as u32; offset }) .collect(); // Remove the unused slots and invert the mapping to obtain the // combined `memory_index` (also see previous comment). combined_inverse_memory_index.retain(|&i| i != INVALID_FIELD_IDX); let combined_memory_index = invert_mapping(&combined_inverse_memory_index); variant.fields = FieldsShape::Arbitrary { offsets: combined_offsets, memory_index: combined_memory_index, }; size = size.max(variant.size); align = align.max(variant.align); Ok(tcx.intern_layout(variant)) }) .collect::, _>>()?; size = size.align_to(align.abi); let abi = if prefix.abi.is_uninhabited() || variants.iter().all(|v| v.abi().is_uninhabited()) { Abi::Uninhabited } else { Abi::Aggregate { sized: true } }; let layout = tcx.intern_layout(LayoutS { variants: Variants::Multiple { tag, tag_encoding: TagEncoding::Direct, tag_field: tag_index, variants, }, fields: outer_fields, abi, largest_niche: prefix.largest_niche, size, align, }); debug!("generator layout ({:?}): {:#?}", ty, layout); Ok(layout) } /// This is invoked by the `layout_of` query to record the final /// layout of each type. #[inline(always)] fn record_layout_for_printing<'tcx>(cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>) { // If we are running with `-Zprint-type-sizes`, maybe record layouts // for dumping later. if cx.tcx.sess.opts.unstable_opts.print_type_sizes { record_layout_for_printing_outlined(cx, layout) } } fn record_layout_for_printing_outlined<'tcx>( cx: &LayoutCx<'tcx, TyCtxt<'tcx>>, layout: TyAndLayout<'tcx>, ) { // Ignore layouts that are done with non-empty environments or // non-monomorphic layouts, as the user only wants to see the stuff // resulting from the final codegen session. if layout.ty.has_non_region_param() || !cx.param_env.caller_bounds().is_empty() { return; } // (delay format until we actually need it) let record = |kind, packed, opt_discr_size, variants| { let type_desc = format!("{:?}", layout.ty); cx.tcx.sess.code_stats.record_type_size( kind, type_desc, layout.align.abi, layout.size, packed, opt_discr_size, variants, ); }; let adt_def = match *layout.ty.kind() { ty::Adt(ref adt_def, _) => { debug!("print-type-size t: `{:?}` process adt", layout.ty); adt_def } ty::Closure(..) => { debug!("print-type-size t: `{:?}` record closure", layout.ty); record(DataTypeKind::Closure, false, None, vec![]); return; } _ => { debug!("print-type-size t: `{:?}` skip non-nominal", layout.ty); return; } }; let adt_kind = adt_def.adt_kind(); let adt_packed = adt_def.repr().pack.is_some(); let build_variant_info = |n: Option, flds: &[Symbol], layout: TyAndLayout<'tcx>| { let mut min_size = Size::ZERO; let field_info: Vec<_> = flds .iter() .enumerate() .map(|(i, &name)| { let field_layout = layout.field(cx, i); let offset = layout.fields.offset(i); let field_end = offset + field_layout.size; if min_size < field_end { min_size = field_end; } FieldInfo { name, offset: offset.bytes(), size: field_layout.size.bytes(), align: field_layout.align.abi.bytes(), } }) .collect(); VariantInfo { name: n, kind: if layout.is_unsized() { SizeKind::Min } else { SizeKind::Exact }, align: layout.align.abi.bytes(), size: if min_size.bytes() == 0 { layout.size.bytes() } else { min_size.bytes() }, fields: field_info, } }; match layout.variants { Variants::Single { index } => { if !adt_def.variants().is_empty() && layout.fields != FieldsShape::Primitive { debug!("print-type-size `{:#?}` variant {}", layout, adt_def.variant(index).name); let variant_def = &adt_def.variant(index); let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); record( adt_kind.into(), adt_packed, None, vec![build_variant_info(Some(variant_def.name), &fields, layout)], ); } else { // (This case arises for *empty* enums; so give it // zero variants.) record(adt_kind.into(), adt_packed, None, vec![]); } } Variants::Multiple { tag, ref tag_encoding, .. } => { debug!( "print-type-size `{:#?}` adt general variants def {}", layout.ty, adt_def.variants().len() ); let variant_infos: Vec<_> = adt_def .variants() .iter_enumerated() .map(|(i, variant_def)| { let fields: Vec<_> = variant_def.fields.iter().map(|f| f.name).collect(); build_variant_info(Some(variant_def.name), &fields, layout.for_variant(cx, i)) }) .collect(); record( adt_kind.into(), adt_packed, match tag_encoding { TagEncoding::Direct => Some(tag.size(cx)), _ => None, }, variant_infos, ); } } }