//! Check whether a type has (potentially) non-trivial drop glue. use rustc_data_structures::fx::FxHashSet; use rustc_hir::def_id::DefId; use rustc_middle::query::Providers; use rustc_middle::ty::util::{needs_drop_components, AlwaysRequiresDrop}; use rustc_middle::ty::GenericArgsRef; use rustc_middle::ty::{self, EarlyBinder, Ty, TyCtxt}; use rustc_session::Limit; use rustc_span::sym; use crate::errors::NeedsDropOverflow; type NeedsDropResult = Result; fn needs_drop_raw<'tcx>(tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>) -> bool { // If we don't know a type doesn't need drop, for example if it's a type // parameter without a `Copy` bound, then we conservatively return that it // needs drop. let adt_has_dtor = |adt_def: ty::AdtDef<'tcx>| adt_def.destructor(tcx).map(|_| DtorType::Significant); let res = drop_tys_helper(tcx, query.value, query.param_env, adt_has_dtor, false) .filter(filter_array_elements(tcx, query.param_env)) .next() .is_some(); debug!("needs_drop_raw({:?}) = {:?}", query, res); res } /// HACK: in order to not mistakenly assume that `[PhantomData; N]` requires drop glue /// we check the element type for drop glue. The correct fix would be looking at the /// entirety of the code around `needs_drop_components` and this file and come up with /// logic that is easier to follow while not repeating any checks that may thus diverge. fn filter_array_elements<'tcx>( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ) -> impl Fn(&Result, AlwaysRequiresDrop>) -> bool { move |ty| match ty { Ok(ty) => match *ty.kind() { ty::Array(elem, _) => tcx.needs_drop_raw(param_env.and(elem)), _ => true, }, Err(AlwaysRequiresDrop) => true, } } fn has_significant_drop_raw<'tcx>( tcx: TyCtxt<'tcx>, query: ty::ParamEnvAnd<'tcx, Ty<'tcx>>, ) -> bool { let res = drop_tys_helper( tcx, query.value, query.param_env, adt_consider_insignificant_dtor(tcx), true, ) .filter(filter_array_elements(tcx, query.param_env)) .next() .is_some(); debug!("has_significant_drop_raw({:?}) = {:?}", query, res); res } struct NeedsDropTypes<'tcx, F> { tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, // Whether to reveal coroutine witnesses, this is set // to `false` unless we compute `needs_drop` for a coroutine witness. reveal_coroutine_witnesses: bool, query_ty: Ty<'tcx>, seen_tys: FxHashSet>, /// A stack of types left to process, and the recursion depth when we /// pushed that type. Each round, we pop something from the stack and check /// if it needs drop. If the result depends on whether some other types /// need drop we push them onto the stack. unchecked_tys: Vec<(Ty<'tcx>, usize)>, recursion_limit: Limit, adt_components: F, } impl<'tcx, F> NeedsDropTypes<'tcx, F> { fn new( tcx: TyCtxt<'tcx>, param_env: ty::ParamEnv<'tcx>, ty: Ty<'tcx>, adt_components: F, ) -> Self { let mut seen_tys = FxHashSet::default(); seen_tys.insert(ty); Self { tcx, param_env, reveal_coroutine_witnesses: false, seen_tys, query_ty: ty, unchecked_tys: vec![(ty, 0)], recursion_limit: tcx.recursion_limit(), adt_components, } } } impl<'tcx, F, I> Iterator for NeedsDropTypes<'tcx, F> where F: Fn(ty::AdtDef<'tcx>, GenericArgsRef<'tcx>) -> NeedsDropResult, I: Iterator>, { type Item = NeedsDropResult>; fn next(&mut self) -> Option>> { let tcx = self.tcx; while let Some((ty, level)) = self.unchecked_tys.pop() { if !self.recursion_limit.value_within_limit(level) { // Not having a `Span` isn't great. But there's hopefully some other // recursion limit error as well. tcx.sess.emit_err(NeedsDropOverflow { query_ty: self.query_ty }); return Some(Err(AlwaysRequiresDrop)); } let components = match needs_drop_components(tcx, ty) { Err(e) => return Some(Err(e)), Ok(components) => components, }; debug!("needs_drop_components({:?}) = {:?}", ty, components); let queue_type = move |this: &mut Self, component: Ty<'tcx>| { if this.seen_tys.insert(component) { this.unchecked_tys.push((component, level + 1)); } }; for component in components { match *component.kind() { // The information required to determine whether a coroutine has drop is // computed on MIR, while this very method is used to build MIR. // To avoid cycles, we consider that coroutines always require drop. // // HACK: Because we erase regions contained in the coroutine witness, we // have to conservatively assume that every region captured by the // coroutine has to be live when dropped. This results in a lot of // undesirable borrowck errors. During borrowck, we call `needs_drop` // for the coroutine witness and check whether any of the contained types // need to be dropped, and only require the captured types to be live // if they do. ty::Coroutine(_, args, _) => { if self.reveal_coroutine_witnesses { queue_type(self, args.as_coroutine().witness()); } else { return Some(Err(AlwaysRequiresDrop)); } } ty::CoroutineWitness(def_id, args) => { if let Some(witness) = tcx.mir_coroutine_witnesses(def_id) { self.reveal_coroutine_witnesses = true; for field_ty in &witness.field_tys { queue_type( self, EarlyBinder::bind(field_ty.ty).instantiate(tcx, args), ); } } } _ if component.is_copy_modulo_regions(tcx, self.param_env) => (), ty::Closure(_, args) => { for upvar in args.as_closure().upvar_tys() { queue_type(self, upvar); } } // Check for a `Drop` impl and whether this is a union or // `ManuallyDrop`. If it's a struct or enum without a `Drop` // impl then check whether the field types need `Drop`. ty::Adt(adt_def, args) => { let tys = match (self.adt_components)(adt_def, args) { Err(e) => return Some(Err(e)), Ok(tys) => tys, }; for required_ty in tys { let required = tcx .try_normalize_erasing_regions(self.param_env, required_ty) .unwrap_or(required_ty); queue_type(self, required); } } ty::Alias(..) | ty::Array(..) | ty::Placeholder(_) | ty::Param(_) => { if ty == component { // Return the type to the caller: they may be able // to normalize further than we can. return Some(Ok(component)); } else { // Store the type for later. We can't return here // because we would then lose any other components // of the type. queue_type(self, component); } } ty::Foreign(_) | ty::Dynamic(..) => { return Some(Err(AlwaysRequiresDrop)); } ty::Bool | ty::Char | ty::Int(_) | ty::Uint(_) | ty::Float(_) | ty::Str | ty::Slice(_) | ty::Ref(..) | ty::RawPtr(..) | ty::FnDef(..) | ty::FnPtr(..) | ty::Tuple(_) | ty::Bound(..) | ty::Never | ty::Infer(_) | ty::Error(_) => { bug!("unexpected type returned by `needs_drop_components`: {component}") } } } } None } } enum DtorType { /// Type has a `Drop` but it is considered insignificant. /// Check the query `adt_significant_drop_tys` for understanding /// "significant" / "insignificant". Insignificant, /// Type has a `Drop` implantation. Significant, } // This is a helper function for `adt_drop_tys` and `adt_significant_drop_tys`. // Depending on the implantation of `adt_has_dtor`, it is used to check if the // ADT has a destructor or if the ADT only has a significant destructor. For // understanding significant destructor look at `adt_significant_drop_tys`. fn drop_tys_helper<'tcx>( tcx: TyCtxt<'tcx>, ty: Ty<'tcx>, param_env: rustc_middle::ty::ParamEnv<'tcx>, adt_has_dtor: impl Fn(ty::AdtDef<'tcx>) -> Option, only_significant: bool, ) -> impl Iterator>> { fn with_query_cache<'tcx>( tcx: TyCtxt<'tcx>, iter: impl IntoIterator>, ) -> NeedsDropResult>> { iter.into_iter().try_fold(Vec::new(), |mut vec, subty| { match subty.kind() { ty::Adt(adt_id, subst) => { for subty in tcx.adt_drop_tys(adt_id.did())? { vec.push(EarlyBinder::bind(subty).instantiate(tcx, subst)); } } _ => vec.push(subty), }; Ok(vec) }) } let adt_components = move |adt_def: ty::AdtDef<'tcx>, args: GenericArgsRef<'tcx>| { if adt_def.is_manually_drop() { debug!("drop_tys_helper: `{:?}` is manually drop", adt_def); Ok(Vec::new()) } else if let Some(dtor_info) = adt_has_dtor(adt_def) { match dtor_info { DtorType::Significant => { debug!("drop_tys_helper: `{:?}` implements `Drop`", adt_def); Err(AlwaysRequiresDrop) } DtorType::Insignificant => { debug!("drop_tys_helper: `{:?}` drop is insignificant", adt_def); // Since the destructor is insignificant, we just want to make sure all of // the passed in type parameters are also insignificant. // Eg: Vec dtor is insignificant when T=i32 but significant when T=Mutex. Ok(args.types().collect()) } } } else if adt_def.is_union() { debug!("drop_tys_helper: `{:?}` is a union", adt_def); Ok(Vec::new()) } else { let field_tys = adt_def.all_fields().map(|field| { let r = tcx.type_of(field.did).instantiate(tcx, args); debug!("drop_tys_helper: Subst into {:?} with {:?} getting {:?}", field, args, r); r }); if only_significant { // We can't recurse through the query system here because we might induce a cycle Ok(field_tys.collect()) } else { // We can use the query system if we consider all drops significant. In that case, // ADTs are `needs_drop` exactly if they `impl Drop` or if any of their "transitive" // fields do. There can be no cycles here, because ADTs cannot contain themselves as // fields. with_query_cache(tcx, field_tys) } } .map(|v| v.into_iter()) }; NeedsDropTypes::new(tcx, param_env, ty, adt_components) } fn adt_consider_insignificant_dtor<'tcx>( tcx: TyCtxt<'tcx>, ) -> impl Fn(ty::AdtDef<'tcx>) -> Option + 'tcx { move |adt_def: ty::AdtDef<'tcx>| { let is_marked_insig = tcx.has_attr(adt_def.did(), sym::rustc_insignificant_dtor); if is_marked_insig { // In some cases like `std::collections::HashMap` where the struct is a wrapper around // a type that is a Drop type, and the wrapped type (eg: `hashbrown::HashMap`) lies // outside stdlib, we might choose to still annotate the wrapper (std HashMap) with // `rustc_insignificant_dtor`, even if the type itself doesn't have a `Drop` impl. Some(DtorType::Insignificant) } else if adt_def.destructor(tcx).is_some() { // There is a Drop impl and the type isn't marked insignificant, therefore Drop must be // significant. Some(DtorType::Significant) } else { // No destructor found nor the type is annotated with `rustc_insignificant_dtor`, we // treat this as the simple case of Drop impl for type. None } } } fn adt_drop_tys<'tcx>( tcx: TyCtxt<'tcx>, def_id: DefId, ) -> Result<&ty::List>, AlwaysRequiresDrop> { // This is for the "adt_drop_tys" query, that considers all `Drop` impls, therefore all dtors are // significant. let adt_has_dtor = |adt_def: ty::AdtDef<'tcx>| adt_def.destructor(tcx).map(|_| DtorType::Significant); // `tcx.type_of(def_id)` identical to `tcx.make_adt(def, identity_args)` drop_tys_helper( tcx, tcx.type_of(def_id).instantiate_identity(), tcx.param_env(def_id), adt_has_dtor, false, ) .collect::, _>>() .map(|components| tcx.mk_type_list(&components)) } // If `def_id` refers to a generic ADT, the queries above and below act as if they had been handed // a `tcx.make_ty(def, identity_args)` and as such it is legal to substitute the generic parameters // of the ADT into the outputted `ty`s. fn adt_significant_drop_tys( tcx: TyCtxt<'_>, def_id: DefId, ) -> Result<&ty::List>, AlwaysRequiresDrop> { drop_tys_helper( tcx, tcx.type_of(def_id).instantiate_identity(), // identical to `tcx.make_adt(def, identity_args)` tcx.param_env(def_id), adt_consider_insignificant_dtor(tcx), true, ) .collect::, _>>() .map(|components| tcx.mk_type_list(&components)) } pub(crate) fn provide(providers: &mut Providers) { *providers = Providers { needs_drop_raw, has_significant_drop_raw, adt_drop_tys, adt_significant_drop_tys, ..*providers }; }