use rustc_data_structures::fx::{FxHashSet, FxIndexSet}; use rustc_hir as hir; use rustc_hir::def::DefKind; use rustc_index::bit_set::BitSet; use rustc_middle::query::Providers; use rustc_middle::ty::{ self, Binder, EarlyBinder, ImplTraitInTraitData, Predicate, PredicateKind, ToPredicate, Ty, TyCtxt, TypeSuperVisitable, TypeVisitable, TypeVisitor, }; use rustc_session::config::TraitSolver; use rustc_span::def_id::{DefId, LocalDefId, CRATE_DEF_ID}; use rustc_span::DUMMY_SP; use rustc_trait_selection::traits; fn sized_constraint_for_ty<'tcx>( tcx: TyCtxt<'tcx>, adtdef: ty::AdtDef<'tcx>, ty: Ty<'tcx>, ) -> Vec> { use rustc_type_ir::sty::TyKind::*; let result = match ty.kind() { Bool | Char | Int(..) | Uint(..) | Float(..) | RawPtr(..) | Ref(..) | FnDef(..) | FnPtr(_) | Array(..) | Closure(..) | Generator(..) | Never => vec![], Str | Dynamic(..) | Slice(_) | Foreign(..) | Error(_) | GeneratorWitness(..) | GeneratorWitnessMIR(..) => { // these are never sized - return the target type vec![ty] } Tuple(ref tys) => match tys.last() { None => vec![], Some(&ty) => sized_constraint_for_ty(tcx, adtdef, ty), }, Adt(adt, substs) => { // recursive case let adt_tys = adt.sized_constraint(tcx); debug!("sized_constraint_for_ty({:?}) intermediate = {:?}", ty, adt_tys); adt_tys .0 .iter() .map(|ty| adt_tys.rebind(*ty).subst(tcx, substs)) .flat_map(|ty| sized_constraint_for_ty(tcx, adtdef, ty)) .collect() } Alias(..) => { // must calculate explicitly. // FIXME: consider special-casing always-Sized projections vec![ty] } Param(..) => { // perf hack: if there is a `T: Sized` bound, then // we know that `T` is Sized and do not need to check // it on the impl. let Some(sized_trait) = tcx.lang_items().sized_trait() else { return vec![ty] }; let sized_predicate = ty::TraitRef::new(tcx, sized_trait, [ty]).without_const().to_predicate(tcx); let predicates = tcx.predicates_of(adtdef.did()).predicates; if predicates.iter().any(|(p, _)| *p == sized_predicate) { vec![] } else { vec![ty] } } Placeholder(..) | Bound(..) | Infer(..) => { bug!("unexpected type `{:?}` in sized_constraint_for_ty", ty) } }; debug!("sized_constraint_for_ty({:?}) = {:?}", ty, result); result } fn impl_defaultness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> hir::Defaultness { match tcx.hir().get_by_def_id(def_id) { hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(impl_), .. }) => impl_.defaultness, hir::Node::ImplItem(hir::ImplItem { defaultness, .. }) | hir::Node::TraitItem(hir::TraitItem { defaultness, .. }) => *defaultness, node => { bug!("`impl_defaultness` called on {:?}", node); } } } /// Calculates the `Sized` constraint. /// /// In fact, there are only a few options for the types in the constraint: /// - an obviously-unsized type /// - a type parameter or projection whose Sizedness can't be known /// - a tuple of type parameters or projections, if there are multiple /// such. /// - an Error, if a type is infinitely sized fn adt_sized_constraint(tcx: TyCtxt<'_>, def_id: DefId) -> &[Ty<'_>] { if let Some(def_id) = def_id.as_local() { if matches!(tcx.representability(def_id), ty::Representability::Infinite) { return tcx.mk_type_list(&[tcx.ty_error_misc()]); } } let def = tcx.adt_def(def_id); let result = tcx.mk_type_list_from_iter( def.variants() .iter() .filter_map(|v| v.fields.raw.last()) .flat_map(|f| sized_constraint_for_ty(tcx, def, tcx.type_of(f.did).subst_identity())), ); debug!("adt_sized_constraint: {:?} => {:?}", def, result); result } /// See `ParamEnv` struct definition for details. fn param_env(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { // Compute the bounds on Self and the type parameters. let ty::InstantiatedPredicates { mut predicates, .. } = tcx.predicates_of(def_id).instantiate_identity(tcx); // When computing the param_env of an RPITIT, use predicates of the containing function, // *except* for the additional assumption that the RPITIT normalizes to the trait method's // default opaque type. This is needed to properly check the item bounds of the assoc // type hold (`check_type_bounds`), since that method already installs a similar projection // bound, so they will conflict. // FIXME(-Zlower-impl-trait-in-trait-to-assoc-ty): I don't like this, we should // at least be making sure that the generics in RPITITs and their parent fn don't // get out of alignment, or else we do actually need to substitute these predicates. if let Some(ImplTraitInTraitData::Trait { fn_def_id, .. }) | Some(ImplTraitInTraitData::Impl { fn_def_id, .. }) = tcx.opt_rpitit_info(def_id) { predicates = tcx.predicates_of(fn_def_id).instantiate_identity(tcx).predicates; } // Finally, we have to normalize the bounds in the environment, in // case they contain any associated type projections. This process // can yield errors if the put in illegal associated types, like // `::Bar` where `i32` does not implement `Foo`. We // report these errors right here; this doesn't actually feel // right to me, because constructing the environment feels like a // kind of an "idempotent" action, but I'm not sure where would be // a better place. In practice, we construct environments for // every fn once during type checking, and we'll abort if there // are any errors at that point, so outside of type inference you can be // sure that this will succeed without errors anyway. if tcx.sess.opts.unstable_opts.trait_solver == TraitSolver::Chalk { let environment = well_formed_types_in_env(tcx, def_id); predicates.extend(environment); } if tcx.def_kind(def_id) == DefKind::AssocFn && tcx.associated_item(def_id).container == ty::AssocItemContainer::TraitContainer { let sig = tcx.fn_sig(def_id).subst_identity(); // We accounted for the binder of the fn sig, so skip the binder. sig.skip_binder().visit_with(&mut ImplTraitInTraitFinder { tcx, fn_def_id: def_id, bound_vars: sig.bound_vars(), predicates: &mut predicates, seen: FxHashSet::default(), depth: ty::INNERMOST, }); } let local_did = def_id.as_local(); // FIXME(-Zlower-impl-trait-in-trait-to-assoc-ty): This isn't correct for // RPITITs in const trait fn. let hir_id = local_did.and_then(|def_id| tcx.opt_local_def_id_to_hir_id(def_id)); // FIXME(consts): This is not exactly in line with the constness query. let constness = match hir_id { Some(hir_id) => match tcx.hir().get(hir_id) { hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn(..), .. }) if tcx.is_const_default_method(def_id) => { hir::Constness::Const } hir::Node::Item(hir::Item { kind: hir::ItemKind::Const(..), .. }) | hir::Node::Item(hir::Item { kind: hir::ItemKind::Static(..), .. }) | hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Const(..), .. }) | hir::Node::AnonConst(_) | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Const(..), .. }) | hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Fn( hir::FnSig { header: hir::FnHeader { constness: hir::Constness::Const, .. }, .. }, .., ), .. }) => hir::Constness::Const, hir::Node::ImplItem(hir::ImplItem { kind: hir::ImplItemKind::Type(..) | hir::ImplItemKind::Fn(..), .. }) => { let parent_hir_id = tcx.hir().parent_id(hir_id); match tcx.hir().get(parent_hir_id) { hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(hir::Impl { constness, .. }), .. }) => *constness, _ => span_bug!( tcx.def_span(parent_hir_id.owner), "impl item's parent node is not an impl", ), } } hir::Node::Item(hir::Item { kind: hir::ItemKind::Fn(hir::FnSig { header: hir::FnHeader { constness, .. }, .. }, ..), .. }) | hir::Node::TraitItem(hir::TraitItem { kind: hir::TraitItemKind::Fn( hir::FnSig { header: hir::FnHeader { constness, .. }, .. }, .., ), .. }) | hir::Node::Item(hir::Item { kind: hir::ItemKind::Impl(hir::Impl { constness, .. }), .. }) => *constness, _ => hir::Constness::NotConst, }, // FIXME(consts): It's suspicious that a param-env for a foreign item // will always have NotConst param-env, though we don't typically use // that param-env for anything meaningful right now, so it's likely // not an issue. None => hir::Constness::NotConst, }; let unnormalized_env = ty::ParamEnv::new(tcx.mk_predicates(&predicates), traits::Reveal::UserFacing, constness); let body_id = local_did.unwrap_or(CRATE_DEF_ID); let cause = traits::ObligationCause::misc(tcx.def_span(def_id), body_id); traits::normalize_param_env_or_error(tcx, unnormalized_env, cause) } /// Walk through a function type, gathering all RPITITs and installing a /// `NormalizesTo(Projection(RPITIT) -> Opaque(RPITIT))` predicate into the /// predicates list. This allows us to observe that an RPITIT projects to /// its corresponding opaque within the body of a default-body trait method. struct ImplTraitInTraitFinder<'a, 'tcx> { tcx: TyCtxt<'tcx>, predicates: &'a mut Vec>, fn_def_id: DefId, bound_vars: &'tcx ty::List, seen: FxHashSet, depth: ty::DebruijnIndex, } impl<'tcx> TypeVisitor> for ImplTraitInTraitFinder<'_, 'tcx> { fn visit_binder>>( &mut self, binder: &ty::Binder<'tcx, T>, ) -> std::ops::ControlFlow { self.depth.shift_in(1); let binder = binder.super_visit_with(self); self.depth.shift_out(1); binder } fn visit_ty(&mut self, ty: Ty<'tcx>) -> std::ops::ControlFlow { if let ty::Alias(ty::Projection, unshifted_alias_ty) = *ty.kind() && self.tcx.is_impl_trait_in_trait(unshifted_alias_ty.def_id) && self.tcx.impl_trait_in_trait_parent_fn(unshifted_alias_ty.def_id) == self.fn_def_id && self.seen.insert(unshifted_alias_ty.def_id) { // We have entered some binders as we've walked into the // bounds of the RPITIT. Shift these binders back out when // constructing the top-level projection predicate. let shifted_alias_ty = self.tcx.fold_regions(unshifted_alias_ty, |re, depth| { if let ty::ReLateBound(index, bv) = re.kind() { if depth != ty::INNERMOST { return self.tcx.mk_re_error_with_message( DUMMY_SP, "we shouldn't walk non-predicate binders with `impl Trait`...", ); } self.tcx.mk_re_late_bound(index.shifted_out_to_binder(self.depth), bv) } else { re } }); // If we're lowering to associated item, install the opaque type which is just // the `type_of` of the trait's associated item. If we're using the old lowering // strategy, then just reinterpret the associated type like an opaque :^) let default_ty = if self.tcx.lower_impl_trait_in_trait_to_assoc_ty() { self.tcx.type_of(shifted_alias_ty.def_id).subst(self.tcx, shifted_alias_ty.substs) } else { self.tcx.mk_alias(ty::Opaque, shifted_alias_ty) }; self.predicates.push( ty::Binder::bind_with_vars( ty::ProjectionPredicate { projection_ty: shifted_alias_ty, term: default_ty.into() }, self.bound_vars, ) .to_predicate(self.tcx), ); // We walk the *un-shifted* alias ty, because we're tracking the de bruijn // binder depth, and if we were to walk `shifted_alias_ty` instead, we'd // have to reset `self.depth` back to `ty::INNERMOST` or something. It's // easier to just do this. for bound in self .tcx .item_bounds(unshifted_alias_ty.def_id) .subst_iter(self.tcx, unshifted_alias_ty.substs) { bound.visit_with(self); } } ty.super_visit_with(self) } } /// Elaborate the environment. /// /// Collect a list of `Predicate`'s used for building the `ParamEnv`. Adds `TypeWellFormedFromEnv`'s /// that are assumed to be well-formed (because they come from the environment). /// /// Used only in chalk mode. fn well_formed_types_in_env(tcx: TyCtxt<'_>, def_id: DefId) -> &ty::List> { use rustc_hir::{ForeignItemKind, ImplItemKind, ItemKind, Node, TraitItemKind}; use rustc_middle::ty::subst::GenericArgKind; debug!("environment(def_id = {:?})", def_id); // The environment of an impl Trait type is its defining function's environment. if let Some(parent) = ty::is_impl_trait_defn(tcx, def_id) { return well_formed_types_in_env(tcx, parent.to_def_id()); } // Compute the bounds on `Self` and the type parameters. let ty::InstantiatedPredicates { predicates, .. } = tcx.predicates_of(def_id).instantiate_identity(tcx); let clauses = predicates.into_iter(); if !def_id.is_local() { return ty::List::empty(); } let node = tcx.hir().get_by_def_id(def_id.expect_local()); enum NodeKind { TraitImpl, InherentImpl, Fn, Other, } let node_kind = match node { Node::TraitItem(item) => match item.kind { TraitItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, Node::ImplItem(item) => match item.kind { ImplItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, Node::Item(item) => match item.kind { ItemKind::Impl(hir::Impl { of_trait: Some(_), .. }) => NodeKind::TraitImpl, ItemKind::Impl(hir::Impl { of_trait: None, .. }) => NodeKind::InherentImpl, ItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, Node::ForeignItem(item) => match item.kind { ForeignItemKind::Fn(..) => NodeKind::Fn, _ => NodeKind::Other, }, // FIXME: closures? _ => NodeKind::Other, }; // FIXME(eddyb) isn't the unordered nature of this a hazard? let mut inputs = FxIndexSet::default(); match node_kind { // In a trait impl, we assume that the header trait ref and all its // constituents are well-formed. NodeKind::TraitImpl => { let trait_ref = tcx.impl_trait_ref(def_id).expect("not an impl").subst_identity(); // FIXME(chalk): this has problems because of late-bound regions //inputs.extend(trait_ref.substs.iter().flat_map(|arg| arg.walk())); inputs.extend(trait_ref.substs.iter()); } // In an inherent impl, we assume that the receiver type and all its // constituents are well-formed. NodeKind::InherentImpl => { let self_ty = tcx.type_of(def_id).subst_identity(); inputs.extend(self_ty.walk()); } // In an fn, we assume that the arguments and all their constituents are // well-formed. NodeKind::Fn => { let fn_sig = tcx.fn_sig(def_id).subst_identity(); let fn_sig = tcx.liberate_late_bound_regions(def_id, fn_sig); inputs.extend(fn_sig.inputs().iter().flat_map(|ty| ty.walk())); } NodeKind::Other => (), } let input_clauses = inputs.into_iter().filter_map(|arg| { match arg.unpack() { GenericArgKind::Type(ty) => { let binder = Binder::dummy(PredicateKind::TypeWellFormedFromEnv(ty)); Some(tcx.mk_predicate(binder)) } // FIXME(eddyb) no WF conditions from lifetimes? GenericArgKind::Lifetime(_) => None, // FIXME(eddyb) support const generics in Chalk GenericArgKind::Const(_) => None, } }); tcx.mk_predicates_from_iter(clauses.chain(input_clauses)) } fn param_env_reveal_all_normalized(tcx: TyCtxt<'_>, def_id: DefId) -> ty::ParamEnv<'_> { tcx.param_env(def_id).with_reveal_all_normalized(tcx) } fn instance_def_size_estimate<'tcx>( tcx: TyCtxt<'tcx>, instance_def: ty::InstanceDef<'tcx>, ) -> usize { use ty::InstanceDef; match instance_def { InstanceDef::Item(..) | InstanceDef::DropGlue(..) => { let mir = tcx.instance_mir(instance_def); mir.basic_blocks.iter().map(|bb| bb.statements.len() + 1).sum() } // Estimate the size of other compiler-generated shims to be 1. _ => 1, } } /// If `def_id` is an issue 33140 hack impl, returns its self type; otherwise, returns `None`. /// /// See [`ty::ImplOverlapKind::Issue33140`] for more details. fn issue33140_self_ty(tcx: TyCtxt<'_>, def_id: DefId) -> Option>> { debug!("issue33140_self_ty({:?})", def_id); let trait_ref = tcx .impl_trait_ref(def_id) .unwrap_or_else(|| bug!("issue33140_self_ty called on inherent impl {:?}", def_id)) .skip_binder(); debug!("issue33140_self_ty({:?}), trait-ref={:?}", def_id, trait_ref); let is_marker_like = tcx.impl_polarity(def_id) == ty::ImplPolarity::Positive && tcx.associated_item_def_ids(trait_ref.def_id).is_empty(); // Check whether these impls would be ok for a marker trait. if !is_marker_like { debug!("issue33140_self_ty - not marker-like!"); return None; } // impl must be `impl Trait for dyn Marker1 + Marker2 + ...` if trait_ref.substs.len() != 1 { debug!("issue33140_self_ty - impl has substs!"); return None; } let predicates = tcx.predicates_of(def_id); if predicates.parent.is_some() || !predicates.predicates.is_empty() { debug!("issue33140_self_ty - impl has predicates {:?}!", predicates); return None; } let self_ty = trait_ref.self_ty(); let self_ty_matches = match self_ty.kind() { ty::Dynamic(ref data, re, _) if re.is_static() => data.principal().is_none(), _ => false, }; if self_ty_matches { debug!("issue33140_self_ty - MATCHES!"); Some(EarlyBinder(self_ty)) } else { debug!("issue33140_self_ty - non-matching self type"); None } } /// Check if a function is async. fn asyncness(tcx: TyCtxt<'_>, def_id: LocalDefId) -> hir::IsAsync { let node = tcx.hir().get_by_def_id(def_id); node.fn_sig().map_or(hir::IsAsync::NotAsync, |sig| sig.header.asyncness) } fn unsizing_params_for_adt<'tcx>(tcx: TyCtxt<'tcx>, def_id: DefId) -> BitSet { let def = tcx.adt_def(def_id); let num_params = tcx.generics_of(def_id).count(); let maybe_unsizing_param_idx = |arg: ty::GenericArg<'tcx>| match arg.unpack() { ty::GenericArgKind::Type(ty) => match ty.kind() { ty::Param(p) => Some(p.index), _ => None, }, // We can't unsize a lifetime ty::GenericArgKind::Lifetime(_) => None, ty::GenericArgKind::Const(ct) => match ct.kind() { ty::ConstKind::Param(p) => Some(p.index), _ => None, }, }; // The last field of the structure has to exist and contain type/const parameters. let Some((tail_field, prefix_fields)) = def.non_enum_variant().fields.raw.split_last() else { return BitSet::new_empty(num_params); }; let mut unsizing_params = BitSet::new_empty(num_params); for arg in tcx.type_of(tail_field.did).subst_identity().walk() { if let Some(i) = maybe_unsizing_param_idx(arg) { unsizing_params.insert(i); } } // Ensure none of the other fields mention the parameters used // in unsizing. for field in prefix_fields { for arg in tcx.type_of(field.did).subst_identity().walk() { if let Some(i) = maybe_unsizing_param_idx(arg) { unsizing_params.remove(i); } } } unsizing_params } pub fn provide(providers: &mut Providers) { *providers = Providers { asyncness, adt_sized_constraint, param_env, param_env_reveal_all_normalized, instance_def_size_estimate, issue33140_self_ty, impl_defaultness, unsizing_params_for_adt, ..*providers }; }