//! A priority queue implemented with a binary heap. //! //! Insertion and popping the largest element have *O*(log(*n*)) time complexity. //! Checking the largest element is *O*(1). Converting a vector to a binary heap //! can be done in-place, and has *O*(*n*) complexity. A binary heap can also be //! converted to a sorted vector in-place, allowing it to be used for an *O*(*n* * log(*n*)) //! in-place heapsort. //! //! # Examples //! //! This is a larger example that implements [Dijkstra's algorithm][dijkstra] //! to solve the [shortest path problem][sssp] on a [directed graph][dir_graph]. //! It shows how to use [`BinaryHeap`] with custom types. //! //! [dijkstra]: https://en.wikipedia.org/wiki/Dijkstra%27s_algorithm //! [sssp]: https://en.wikipedia.org/wiki/Shortest_path_problem //! [dir_graph]: https://en.wikipedia.org/wiki/Directed_graph //! //! ``` //! use std::cmp::Ordering; //! use std::collections::BinaryHeap; //! //! #[derive(Copy, Clone, Eq, PartialEq)] //! struct State { //! cost: usize, //! position: usize, //! } //! //! // The priority queue depends on `Ord`. //! // Explicitly implement the trait so the queue becomes a min-heap //! // instead of a max-heap. //! impl Ord for State { //! fn cmp(&self, other: &Self) -> Ordering { //! // Notice that the we flip the ordering on costs. //! // In case of a tie we compare positions - this step is necessary //! // to make implementations of `PartialEq` and `Ord` consistent. //! other.cost.cmp(&self.cost) //! .then_with(|| self.position.cmp(&other.position)) //! } //! } //! //! // `PartialOrd` needs to be implemented as well. //! impl PartialOrd for State { //! fn partial_cmp(&self, other: &Self) -> Option { //! Some(self.cmp(other)) //! } //! } //! //! // Each node is represented as a `usize`, for a shorter implementation. //! struct Edge { //! node: usize, //! cost: usize, //! } //! //! // Dijkstra's shortest path algorithm. //! //! // Start at `start` and use `dist` to track the current shortest distance //! // to each node. This implementation isn't memory-efficient as it may leave duplicate //! // nodes in the queue. It also uses `usize::MAX` as a sentinel value, //! // for a simpler implementation. //! fn shortest_path(adj_list: &Vec>, start: usize, goal: usize) -> Option { //! // dist[node] = current shortest distance from `start` to `node` //! let mut dist: Vec<_> = (0..adj_list.len()).map(|_| usize::MAX).collect(); //! //! let mut heap = BinaryHeap::new(); //! //! // We're at `start`, with a zero cost //! dist[start] = 0; //! heap.push(State { cost: 0, position: start }); //! //! // Examine the frontier with lower cost nodes first (min-heap) //! while let Some(State { cost, position }) = heap.pop() { //! // Alternatively we could have continued to find all shortest paths //! if position == goal { return Some(cost); } //! //! // Important as we may have already found a better way //! if cost > dist[position] { continue; } //! //! // For each node we can reach, see if we can find a way with //! // a lower cost going through this node //! for edge in &adj_list[position] { //! let next = State { cost: cost + edge.cost, position: edge.node }; //! //! // If so, add it to the frontier and continue //! if next.cost < dist[next.position] { //! heap.push(next); //! // Relaxation, we have now found a better way //! dist[next.position] = next.cost; //! } //! } //! } //! //! // Goal not reachable //! None //! } //! //! fn main() { //! // This is the directed graph we're going to use. //! // The node numbers correspond to the different states, //! // and the edge weights symbolize the cost of moving //! // from one node to another. //! // Note that the edges are one-way. //! // //! // 7 //! // +-----------------+ //! // | | //! // v 1 2 | 2 //! // 0 -----> 1 -----> 3 ---> 4 //! // | ^ ^ ^ //! // | | 1 | | //! // | | | 3 | 1 //! // +------> 2 -------+ | //! // 10 | | //! // +---------------+ //! // //! // The graph is represented as an adjacency list where each index, //! // corresponding to a node value, has a list of outgoing edges. //! // Chosen for its efficiency. //! let graph = vec![ //! // Node 0 //! vec![Edge { node: 2, cost: 10 }, //! Edge { node: 1, cost: 1 }], //! // Node 1 //! vec![Edge { node: 3, cost: 2 }], //! // Node 2 //! vec![Edge { node: 1, cost: 1 }, //! Edge { node: 3, cost: 3 }, //! Edge { node: 4, cost: 1 }], //! // Node 3 //! vec![Edge { node: 0, cost: 7 }, //! Edge { node: 4, cost: 2 }], //! // Node 4 //! vec![]]; //! //! assert_eq!(shortest_path(&graph, 0, 1), Some(1)); //! assert_eq!(shortest_path(&graph, 0, 3), Some(3)); //! assert_eq!(shortest_path(&graph, 3, 0), Some(7)); //! assert_eq!(shortest_path(&graph, 0, 4), Some(5)); //! assert_eq!(shortest_path(&graph, 4, 0), None); //! } //! ``` #![allow(missing_docs)] #![stable(feature = "rust1", since = "1.0.0")] use core::alloc::Allocator; use core::fmt; use core::iter::{FusedIterator, InPlaceIterable, SourceIter, TrustedFused, TrustedLen}; use core::mem::{self, swap, ManuallyDrop}; use core::num::NonZeroUsize; use core::ops::{Deref, DerefMut}; use core::ptr; use crate::alloc::Global; use crate::collections::TryReserveError; use crate::slice; use crate::vec::{self, AsVecIntoIter, Vec}; #[cfg(test)] mod tests; /// A priority queue implemented with a binary heap. /// /// This will be a max-heap. /// /// It is a logic error for an item to be modified in such a way that the /// item's ordering relative to any other item, as determined by the [`Ord`] /// trait, changes while it is in the heap. This is normally only possible /// through interior mutability, global state, I/O, or unsafe code. The /// behavior resulting from such a logic error is not specified, but will /// be encapsulated to the `BinaryHeap` that observed the logic error and not /// result in undefined behavior. This could include panics, incorrect results, /// aborts, memory leaks, and non-termination. /// /// As long as no elements change their relative order while being in the heap /// as described above, the API of `BinaryHeap` guarantees that the heap /// invariant remains intact i.e. its methods all behave as documented. For /// example if a method is documented as iterating in sorted order, that's /// guaranteed to work as long as elements in the heap have not changed order, /// even in the presence of closures getting unwinded out of, iterators getting /// leaked, and similar foolishness. /// /// # Examples /// /// ``` /// use std::collections::BinaryHeap; /// /// // Type inference lets us omit an explicit type signature (which /// // would be `BinaryHeap` in this example). /// let mut heap = BinaryHeap::new(); /// /// // We can use peek to look at the next item in the heap. In this case, /// // there's no items in there yet so we get None. /// assert_eq!(heap.peek(), None); /// /// // Let's add some scores... /// heap.push(1); /// heap.push(5); /// heap.push(2); /// /// // Now peek shows the most important item in the heap. /// assert_eq!(heap.peek(), Some(&5)); /// /// // We can check the length of a heap. /// assert_eq!(heap.len(), 3); /// /// // We can iterate over the items in the heap, although they are returned in /// // a random order. /// for x in &heap { /// println!("{x}"); /// } /// /// // If we instead pop these scores, they should come back in order. /// assert_eq!(heap.pop(), Some(5)); /// assert_eq!(heap.pop(), Some(2)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// /// // We can clear the heap of any remaining items. /// heap.clear(); /// /// // The heap should now be empty. /// assert!(heap.is_empty()) /// ``` /// /// A `BinaryHeap` with a known list of items can be initialized from an array: /// /// ``` /// use std::collections::BinaryHeap; /// /// let heap = BinaryHeap::from([1, 5, 2]); /// ``` /// /// ## Min-heap /// /// Either [`core::cmp::Reverse`] or a custom [`Ord`] implementation can be used to /// make `BinaryHeap` a min-heap. This makes `heap.pop()` return the smallest /// value instead of the greatest one. /// /// ``` /// use std::collections::BinaryHeap; /// use std::cmp::Reverse; /// /// let mut heap = BinaryHeap::new(); /// /// // Wrap values in `Reverse` /// heap.push(Reverse(1)); /// heap.push(Reverse(5)); /// heap.push(Reverse(2)); /// /// // If we pop these scores now, they should come back in the reverse order. /// assert_eq!(heap.pop(), Some(Reverse(1))); /// assert_eq!(heap.pop(), Some(Reverse(2))); /// assert_eq!(heap.pop(), Some(Reverse(5))); /// assert_eq!(heap.pop(), None); /// ``` /// /// # Time complexity /// /// | [push] | [pop] | [peek]/[peek\_mut] | /// |---------|---------------|--------------------| /// | *O*(1)~ | *O*(log(*n*)) | *O*(1) | /// /// The value for `push` is an expected cost; the method documentation gives a /// more detailed analysis. /// /// [`core::cmp::Reverse`]: core::cmp::Reverse /// [`Cell`]: core::cell::Cell /// [`RefCell`]: core::cell::RefCell /// [push]: BinaryHeap::push /// [pop]: BinaryHeap::pop /// [peek]: BinaryHeap::peek /// [peek\_mut]: BinaryHeap::peek_mut #[stable(feature = "rust1", since = "1.0.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "BinaryHeap")] pub struct BinaryHeap< T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, > { data: Vec, } /// Structure wrapping a mutable reference to the greatest item on a /// `BinaryHeap`. /// /// This `struct` is created by the [`peek_mut`] method on [`BinaryHeap`]. See /// its documentation for more. /// /// [`peek_mut`]: BinaryHeap::peek_mut #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] pub struct PeekMut< 'a, T: 'a + Ord, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, > { heap: &'a mut BinaryHeap, // If a set_len + sift_down are required, this is Some. If a &mut T has not // yet been exposed to peek_mut()'s caller, it's None. original_len: Option, } #[stable(feature = "collection_debug", since = "1.17.0")] impl fmt::Debug for PeekMut<'_, T, A> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("PeekMut").field(&self.heap.data[0]).finish() } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl Drop for PeekMut<'_, T, A> { fn drop(&mut self) { if let Some(original_len) = self.original_len { // SAFETY: That's how many elements were in the Vec at the time of // the PeekMut::deref_mut call, and therefore also at the time of // the BinaryHeap::peek_mut call. Since the PeekMut did not end up // getting leaked, we are now undoing the leak amplification that // the DerefMut prepared for. unsafe { self.heap.data.set_len(original_len.get()) }; // SAFETY: PeekMut is only instantiated for non-empty heaps. unsafe { self.heap.sift_down(0) }; } } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl Deref for PeekMut<'_, T, A> { type Target = T; fn deref(&self) -> &T { debug_assert!(!self.heap.is_empty()); // SAFE: PeekMut is only instantiated for non-empty heaps unsafe { self.heap.data.get_unchecked(0) } } } #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] impl DerefMut for PeekMut<'_, T, A> { fn deref_mut(&mut self) -> &mut T { debug_assert!(!self.heap.is_empty()); let len = self.heap.len(); if len > 1 { // Here we preemptively leak all the rest of the underlying vector // after the currently max element. If the caller mutates the &mut T // we're about to give them, and then leaks the PeekMut, all these // elements will remain leaked. If they don't leak the PeekMut, then // either Drop or PeekMut::pop will un-leak the vector elements. // // This is technique is described throughout several other places in // the standard library as "leak amplification". unsafe { // SAFETY: len > 1 so len != 0. self.original_len = Some(NonZeroUsize::new_unchecked(len)); // SAFETY: len > 1 so all this does for now is leak elements, // which is safe. self.heap.data.set_len(1); } } // SAFE: PeekMut is only instantiated for non-empty heaps unsafe { self.heap.data.get_unchecked_mut(0) } } } impl<'a, T: Ord, A: Allocator> PeekMut<'a, T, A> { /// Removes the peeked value from the heap and returns it. #[stable(feature = "binary_heap_peek_mut_pop", since = "1.18.0")] pub fn pop(mut this: PeekMut<'a, T, A>) -> T { if let Some(original_len) = this.original_len.take() { // SAFETY: This is how many elements were in the Vec at the time of // the BinaryHeap::peek_mut call. unsafe { this.heap.data.set_len(original_len.get()) }; // Unlike in Drop, here we don't also need to do a sift_down even if // the caller could've mutated the element. It is removed from the // heap on the next line and pop() is not sensitive to its value. } this.heap.pop().unwrap() } } #[stable(feature = "rust1", since = "1.0.0")] impl Clone for BinaryHeap { fn clone(&self) -> Self { BinaryHeap { data: self.data.clone() } } fn clone_from(&mut self, source: &Self) { self.data.clone_from(&source.data); } } #[stable(feature = "rust1", since = "1.0.0")] impl Default for BinaryHeap { /// Creates an empty `BinaryHeap`. #[inline] fn default() -> BinaryHeap { BinaryHeap::new() } } #[stable(feature = "binaryheap_debug", since = "1.4.0")] impl fmt::Debug for BinaryHeap { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_list().entries(self.iter()).finish() } } struct RebuildOnDrop< 'a, T: Ord, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, > { heap: &'a mut BinaryHeap, rebuild_from: usize, } impl Drop for RebuildOnDrop<'_, T, A> { fn drop(&mut self) { self.heap.rebuild_tail(self.rebuild_from); } } impl BinaryHeap { /// Creates an empty `BinaryHeap` as a max-heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_binary_heap_constructor", issue = "112353")] #[must_use] pub const fn new() -> BinaryHeap { BinaryHeap { data: vec![] } } /// Creates an empty `BinaryHeap` with at least the specified capacity. /// /// The binary heap will be able to hold at least `capacity` elements without /// reallocating. This method is allowed to allocate for more elements than /// `capacity`. If `capacity` is 0, the binary heap will not allocate. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::with_capacity(10); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[must_use] pub fn with_capacity(capacity: usize) -> BinaryHeap { BinaryHeap { data: Vec::with_capacity(capacity) } } } impl BinaryHeap { /// Creates an empty `BinaryHeap` as a max-heap, using `A` as allocator. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(allocator_api)] /// /// use std::alloc::System; /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new_in(System); /// heap.push(4); /// ``` #[unstable(feature = "allocator_api", issue = "32838")] #[rustc_const_unstable(feature = "const_binary_heap_constructor", issue = "112353")] #[must_use] pub const fn new_in(alloc: A) -> BinaryHeap { BinaryHeap { data: Vec::new_in(alloc) } } /// Creates an empty `BinaryHeap` with at least the specified capacity, using `A` as allocator. /// /// The binary heap will be able to hold at least `capacity` elements without /// reallocating. This method is allowed to allocate for more elements than /// `capacity`. If `capacity` is 0, the binary heap will not allocate. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(allocator_api)] /// /// use std::alloc::System; /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::with_capacity_in(10, System); /// heap.push(4); /// ``` #[unstable(feature = "allocator_api", issue = "32838")] #[must_use] pub fn with_capacity_in(capacity: usize, alloc: A) -> BinaryHeap { BinaryHeap { data: Vec::with_capacity_in(capacity, alloc) } } /// Returns a mutable reference to the greatest item in the binary heap, or /// `None` if it is empty. /// /// Note: If the `PeekMut` value is leaked, some heap elements might get /// leaked along with it, but the remaining elements will remain a valid /// heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// assert!(heap.peek_mut().is_none()); /// /// heap.push(1); /// heap.push(5); /// heap.push(2); /// { /// let mut val = heap.peek_mut().unwrap(); /// *val = 0; /// } /// assert_eq!(heap.peek(), Some(&2)); /// ``` /// /// # Time complexity /// /// If the item is modified then the worst case time complexity is *O*(log(*n*)), /// otherwise it's *O*(1). #[stable(feature = "binary_heap_peek_mut", since = "1.12.0")] pub fn peek_mut(&mut self) -> Option> { if self.is_empty() { None } else { Some(PeekMut { heap: self, original_len: None }) } } /// Removes the greatest item from the binary heap and returns it, or `None` if it /// is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from([1, 3]); /// /// assert_eq!(heap.pop(), Some(3)); /// assert_eq!(heap.pop(), Some(1)); /// assert_eq!(heap.pop(), None); /// ``` /// /// # Time complexity /// /// The worst case cost of `pop` on a heap containing *n* elements is *O*(log(*n*)). #[stable(feature = "rust1", since = "1.0.0")] pub fn pop(&mut self) -> Option { self.data.pop().map(|mut item| { if !self.is_empty() { swap(&mut item, &mut self.data[0]); // SAFETY: !self.is_empty() means that self.len() > 0 unsafe { self.sift_down_to_bottom(0) }; } item }) } /// Pushes an item onto the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.push(3); /// heap.push(5); /// heap.push(1); /// /// assert_eq!(heap.len(), 3); /// assert_eq!(heap.peek(), Some(&5)); /// ``` /// /// # Time complexity /// /// The expected cost of `push`, averaged over every possible ordering of /// the elements being pushed, and over a sufficiently large number of /// pushes, is *O*(1). This is the most meaningful cost metric when pushing /// elements that are *not* already in any sorted pattern. /// /// The time complexity degrades if elements are pushed in predominantly /// ascending order. In the worst case, elements are pushed in ascending /// sorted order and the amortized cost per push is *O*(log(*n*)) against a heap /// containing *n* elements. /// /// The worst case cost of a *single* call to `push` is *O*(*n*). The worst case /// occurs when capacity is exhausted and needs a resize. The resize cost /// has been amortized in the previous figures. #[stable(feature = "rust1", since = "1.0.0")] pub fn push(&mut self, item: T) { let old_len = self.len(); self.data.push(item); // SAFETY: Since we pushed a new item it means that // old_len = self.len() - 1 < self.len() unsafe { self.sift_up(0, old_len) }; } /// Consumes the `BinaryHeap` and returns a vector in sorted /// (ascending) order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// /// let mut heap = BinaryHeap::from([1, 2, 4, 5, 7]); /// heap.push(6); /// heap.push(3); /// /// let vec = heap.into_sorted_vec(); /// assert_eq!(vec, [1, 2, 3, 4, 5, 6, 7]); /// ``` #[must_use = "`self` will be dropped if the result is not used"] #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] pub fn into_sorted_vec(mut self) -> Vec { let mut end = self.len(); while end > 1 { end -= 1; // SAFETY: `end` goes from `self.len() - 1` to 1 (both included), // so it's always a valid index to access. // It is safe to access index 0 (i.e. `ptr`), because // 1 <= end < self.len(), which means self.len() >= 2. unsafe { let ptr = self.data.as_mut_ptr(); ptr::swap(ptr, ptr.add(end)); } // SAFETY: `end` goes from `self.len() - 1` to 1 (both included) so: // 0 < 1 <= end <= self.len() - 1 < self.len() // Which means 0 < end and end < self.len(). unsafe { self.sift_down_range(0, end) }; } self.into_vec() } // The implementations of sift_up and sift_down use unsafe blocks in // order to move an element out of the vector (leaving behind a // hole), shift along the others and move the removed element back into the // vector at the final location of the hole. // The `Hole` type is used to represent this, and make sure // the hole is filled back at the end of its scope, even on panic. // Using a hole reduces the constant factor compared to using swaps, // which involves twice as many moves. /// # Safety /// /// The caller must guarantee that `pos < self.len()`. unsafe fn sift_up(&mut self, start: usize, pos: usize) -> usize { // Take out the value at `pos` and create a hole. // SAFETY: The caller guarantees that pos < self.len() let mut hole = unsafe { Hole::new(&mut self.data, pos) }; while hole.pos() > start { let parent = (hole.pos() - 1) / 2; // SAFETY: hole.pos() > start >= 0, which means hole.pos() > 0 // and so hole.pos() - 1 can't underflow. // This guarantees that parent < hole.pos() so // it's a valid index and also != hole.pos(). if hole.element() <= unsafe { hole.get(parent) } { break; } // SAFETY: Same as above unsafe { hole.move_to(parent) }; } hole.pos() } /// Take an element at `pos` and move it down the heap, /// while its children are larger. /// /// # Safety /// /// The caller must guarantee that `pos < end <= self.len()`. unsafe fn sift_down_range(&mut self, pos: usize, end: usize) { // SAFETY: The caller guarantees that pos < end <= self.len(). let mut hole = unsafe { Hole::new(&mut self.data, pos) }; let mut child = 2 * hole.pos() + 1; // Loop invariant: child == 2 * hole.pos() + 1. while child <= end.saturating_sub(2) { // compare with the greater of the two children // SAFETY: child < end - 1 < self.len() and // child + 1 < end <= self.len(), so they're valid indexes. // child == 2 * hole.pos() + 1 != hole.pos() and // child + 1 == 2 * hole.pos() + 2 != hole.pos(). // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow // if T is a ZST child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize; // if we are already in order, stop. // SAFETY: child is now either the old child or the old child+1 // We already proven that both are < self.len() and != hole.pos() if hole.element() >= unsafe { hole.get(child) } { return; } // SAFETY: same as above. unsafe { hole.move_to(child) }; child = 2 * hole.pos() + 1; } // SAFETY: && short circuit, which means that in the // second condition it's already true that child == end - 1 < self.len(). if child == end - 1 && hole.element() < unsafe { hole.get(child) } { // SAFETY: child is already proven to be a valid index and // child == 2 * hole.pos() + 1 != hole.pos(). unsafe { hole.move_to(child) }; } } /// # Safety /// /// The caller must guarantee that `pos < self.len()`. unsafe fn sift_down(&mut self, pos: usize) { let len = self.len(); // SAFETY: pos < len is guaranteed by the caller and // obviously len = self.len() <= self.len(). unsafe { self.sift_down_range(pos, len) }; } /// Take an element at `pos` and move it all the way down the heap, /// then sift it up to its position. /// /// Note: This is faster when the element is known to be large / should /// be closer to the bottom. /// /// # Safety /// /// The caller must guarantee that `pos < self.len()`. unsafe fn sift_down_to_bottom(&mut self, mut pos: usize) { let end = self.len(); let start = pos; // SAFETY: The caller guarantees that pos < self.len(). let mut hole = unsafe { Hole::new(&mut self.data, pos) }; let mut child = 2 * hole.pos() + 1; // Loop invariant: child == 2 * hole.pos() + 1. while child <= end.saturating_sub(2) { // SAFETY: child < end - 1 < self.len() and // child + 1 < end <= self.len(), so they're valid indexes. // child == 2 * hole.pos() + 1 != hole.pos() and // child + 1 == 2 * hole.pos() + 2 != hole.pos(). // FIXME: 2 * hole.pos() + 1 or 2 * hole.pos() + 2 could overflow // if T is a ZST child += unsafe { hole.get(child) <= hole.get(child + 1) } as usize; // SAFETY: Same as above unsafe { hole.move_to(child) }; child = 2 * hole.pos() + 1; } if child == end - 1 { // SAFETY: child == end - 1 < self.len(), so it's a valid index // and child == 2 * hole.pos() + 1 != hole.pos(). unsafe { hole.move_to(child) }; } pos = hole.pos(); drop(hole); // SAFETY: pos is the position in the hole and was already proven // to be a valid index. unsafe { self.sift_up(start, pos) }; } /// Rebuild assuming data[0..start] is still a proper heap. fn rebuild_tail(&mut self, start: usize) { if start == self.len() { return; } let tail_len = self.len() - start; #[inline(always)] fn log2_fast(x: usize) -> usize { (usize::BITS - x.leading_zeros() - 1) as usize } // `rebuild` takes O(self.len()) operations // and about 2 * self.len() comparisons in the worst case // while repeating `sift_up` takes O(tail_len * log(start)) operations // and about 1 * tail_len * log_2(start) comparisons in the worst case, // assuming start >= tail_len. For larger heaps, the crossover point // no longer follows this reasoning and was determined empirically. let better_to_rebuild = if start < tail_len { true } else if self.len() <= 2048 { 2 * self.len() < tail_len * log2_fast(start) } else { 2 * self.len() < tail_len * 11 }; if better_to_rebuild { self.rebuild(); } else { for i in start..self.len() { // SAFETY: The index `i` is always less than self.len(). unsafe { self.sift_up(0, i) }; } } } fn rebuild(&mut self) { let mut n = self.len() / 2; while n > 0 { n -= 1; // SAFETY: n starts from self.len() / 2 and goes down to 0. // The only case when !(n < self.len()) is if // self.len() == 0, but it's ruled out by the loop condition. unsafe { self.sift_down(n) }; } } /// Moves all the elements of `other` into `self`, leaving `other` empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// /// let mut a = BinaryHeap::from([-10, 1, 2, 3, 3]); /// let mut b = BinaryHeap::from([-20, 5, 43]); /// /// a.append(&mut b); /// /// assert_eq!(a.into_sorted_vec(), [-20, -10, 1, 2, 3, 3, 5, 43]); /// assert!(b.is_empty()); /// ``` #[stable(feature = "binary_heap_append", since = "1.11.0")] pub fn append(&mut self, other: &mut Self) { if self.len() < other.len() { swap(self, other); } let start = self.data.len(); self.data.append(&mut other.data); self.rebuild_tail(start); } /// Clears the binary heap, returning an iterator over the removed elements /// in heap order. If the iterator is dropped before being fully consumed, /// it drops the remaining elements in heap order. /// /// The returned iterator keeps a mutable borrow on the heap to optimize /// its implementation. /// /// Note: /// * `.drain_sorted()` is *O*(*n* \* log(*n*)); much slower than `.drain()`. /// You should use the latter for most cases. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(binary_heap_drain_sorted)] /// use std::collections::BinaryHeap; /// /// let mut heap = BinaryHeap::from([1, 2, 3, 4, 5]); /// assert_eq!(heap.len(), 5); /// /// drop(heap.drain_sorted()); // removes all elements in heap order /// assert_eq!(heap.len(), 0); /// ``` #[inline] #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] pub fn drain_sorted(&mut self) -> DrainSorted<'_, T, A> { DrainSorted { inner: self } } /// Retains only the elements specified by the predicate. /// /// In other words, remove all elements `e` for which `f(&e)` returns /// `false`. The elements are visited in unsorted (and unspecified) order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// /// let mut heap = BinaryHeap::from([-10, -5, 1, 2, 4, 13]); /// /// heap.retain(|x| x % 2 == 0); // only keep even numbers /// /// assert_eq!(heap.into_sorted_vec(), [-10, 2, 4]) /// ``` #[stable(feature = "binary_heap_retain", since = "1.70.0")] pub fn retain(&mut self, mut f: F) where F: FnMut(&T) -> bool, { // rebuild_start will be updated to the first touched element below, and the rebuild will // only be done for the tail. let mut guard = RebuildOnDrop { rebuild_from: self.len(), heap: self }; let mut i = 0; guard.heap.data.retain(|e| { let keep = f(e); if !keep && i < guard.rebuild_from { guard.rebuild_from = i; } i += 1; keep }); } } impl BinaryHeap { /// Returns an iterator visiting all values in the underlying vector, in /// arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from([1, 2, 3, 4]); /// /// // Print 1, 2, 3, 4 in arbitrary order /// for x in heap.iter() { /// println!("{x}"); /// } /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn iter(&self) -> Iter<'_, T> { Iter { iter: self.data.iter() } } /// Returns an iterator which retrieves elements in heap order. /// This method consumes the original heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(binary_heap_into_iter_sorted)] /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from([1, 2, 3, 4, 5]); /// /// assert_eq!(heap.into_iter_sorted().take(2).collect::>(), [5, 4]); /// ``` #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] pub fn into_iter_sorted(self) -> IntoIterSorted { IntoIterSorted { inner: self } } /// Returns the greatest item in the binary heap, or `None` if it is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// assert_eq!(heap.peek(), None); /// /// heap.push(1); /// heap.push(5); /// heap.push(2); /// assert_eq!(heap.peek(), Some(&5)); /// /// ``` /// /// # Time complexity /// /// Cost is *O*(1) in the worst case. #[must_use] #[stable(feature = "rust1", since = "1.0.0")] pub fn peek(&self) -> Option<&T> { self.data.get(0) } /// Returns the number of elements the binary heap can hold without reallocating. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::with_capacity(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] pub fn capacity(&self) -> usize { self.data.capacity() } /// Reserves the minimum capacity for at least `additional` elements more than /// the current length. Unlike [`reserve`], this will not /// deliberately over-allocate to speculatively avoid frequent allocations. /// After calling `reserve_exact`, capacity will be greater than or equal to /// `self.len() + additional`. Does nothing if the capacity is already /// sufficient. /// /// [`reserve`]: BinaryHeap::reserve /// /// # Panics /// /// Panics if the new capacity overflows [`usize`]. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.reserve_exact(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` /// /// [`reserve`]: BinaryHeap::reserve #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve_exact(&mut self, additional: usize) { self.data.reserve_exact(additional); } /// Reserves capacity for at least `additional` elements more than the /// current length. The allocator may reserve more space to speculatively /// avoid frequent allocations. After calling `reserve`, /// capacity will be greater than or equal to `self.len() + additional`. /// Does nothing if capacity is already sufficient. /// /// # Panics /// /// Panics if the new capacity overflows [`usize`]. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// heap.reserve(100); /// assert!(heap.capacity() >= 100); /// heap.push(4); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn reserve(&mut self, additional: usize) { self.data.reserve(additional); } /// Tries to reserve the minimum capacity for at least `additional` elements /// more than the current length. Unlike [`try_reserve`], this will not /// deliberately over-allocate to speculatively avoid frequent allocations. /// After calling `try_reserve_exact`, capacity will be greater than or /// equal to `self.len() + additional` if it returns `Ok(())`. /// Does nothing if the capacity is already sufficient. /// /// Note that the allocator may give the collection more space than it /// requests. Therefore, capacity can not be relied upon to be precisely /// minimal. Prefer [`try_reserve`] if future insertions are expected. /// /// [`try_reserve`]: BinaryHeap::try_reserve /// /// # Errors /// /// If the capacity overflows, or the allocator reports a failure, then an error /// is returned. /// /// # Examples /// /// ``` /// use std::collections::BinaryHeap; /// use std::collections::TryReserveError; /// /// fn find_max_slow(data: &[u32]) -> Result, TryReserveError> { /// let mut heap = BinaryHeap::new(); /// /// // Pre-reserve the memory, exiting if we can't /// heap.try_reserve_exact(data.len())?; /// /// // Now we know this can't OOM in the middle of our complex work /// heap.extend(data.iter()); /// /// Ok(heap.pop()) /// } /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); /// ``` #[stable(feature = "try_reserve_2", since = "1.63.0")] pub fn try_reserve_exact(&mut self, additional: usize) -> Result<(), TryReserveError> { self.data.try_reserve_exact(additional) } /// Tries to reserve capacity for at least `additional` elements more than the /// current length. The allocator may reserve more space to speculatively /// avoid frequent allocations. After calling `try_reserve`, capacity will be /// greater than or equal to `self.len() + additional` if it returns /// `Ok(())`. Does nothing if capacity is already sufficient. This method /// preserves the contents even if an error occurs. /// /// # Errors /// /// If the capacity overflows, or the allocator reports a failure, then an error /// is returned. /// /// # Examples /// /// ``` /// use std::collections::BinaryHeap; /// use std::collections::TryReserveError; /// /// fn find_max_slow(data: &[u32]) -> Result, TryReserveError> { /// let mut heap = BinaryHeap::new(); /// /// // Pre-reserve the memory, exiting if we can't /// heap.try_reserve(data.len())?; /// /// // Now we know this can't OOM in the middle of our complex work /// heap.extend(data.iter()); /// /// Ok(heap.pop()) /// } /// # find_max_slow(&[1, 2, 3]).expect("why is the test harness OOMing on 12 bytes?"); /// ``` #[stable(feature = "try_reserve_2", since = "1.63.0")] pub fn try_reserve(&mut self, additional: usize) -> Result<(), TryReserveError> { self.data.try_reserve(additional) } /// Discards as much additional capacity as possible. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap: BinaryHeap = BinaryHeap::with_capacity(100); /// /// assert!(heap.capacity() >= 100); /// heap.shrink_to_fit(); /// assert!(heap.capacity() == 0); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn shrink_to_fit(&mut self) { self.data.shrink_to_fit(); } /// Discards capacity with a lower bound. /// /// The capacity will remain at least as large as both the length /// and the supplied value. /// /// If the current capacity is less than the lower limit, this is a no-op. /// /// # Examples /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap: BinaryHeap = BinaryHeap::with_capacity(100); /// /// assert!(heap.capacity() >= 100); /// heap.shrink_to(10); /// assert!(heap.capacity() >= 10); /// ``` #[inline] #[stable(feature = "shrink_to", since = "1.56.0")] pub fn shrink_to(&mut self, min_capacity: usize) { self.data.shrink_to(min_capacity) } /// Returns a slice of all values in the underlying vector, in arbitrary /// order. /// /// # Examples /// /// Basic usage: /// /// ``` /// #![feature(binary_heap_as_slice)] /// use std::collections::BinaryHeap; /// use std::io::{self, Write}; /// /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]); /// /// io::sink().write(heap.as_slice()).unwrap(); /// ``` #[must_use] #[unstable(feature = "binary_heap_as_slice", issue = "83659")] pub fn as_slice(&self) -> &[T] { self.data.as_slice() } /// Consumes the `BinaryHeap` and returns the underlying vector /// in arbitrary order. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from([1, 2, 3, 4, 5, 6, 7]); /// let vec = heap.into_vec(); /// /// // Will print in some order /// for x in vec { /// println!("{x}"); /// } /// ``` #[must_use = "`self` will be dropped if the result is not used"] #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] pub fn into_vec(self) -> Vec { self.into() } /// Returns a reference to the underlying allocator. #[unstable(feature = "allocator_api", issue = "32838")] #[inline] pub fn allocator(&self) -> &A { self.data.allocator() } /// Returns the length of the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from([1, 3]); /// /// assert_eq!(heap.len(), 2); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] pub fn len(&self) -> usize { self.data.len() } /// Checks if the binary heap is empty. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::new(); /// /// assert!(heap.is_empty()); /// /// heap.push(3); /// heap.push(5); /// heap.push(1); /// /// assert!(!heap.is_empty()); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] pub fn is_empty(&self) -> bool { self.len() == 0 } /// Clears the binary heap, returning an iterator over the removed elements /// in arbitrary order. If the iterator is dropped before being fully /// consumed, it drops the remaining elements in arbitrary order. /// /// The returned iterator keeps a mutable borrow on the heap to optimize /// its implementation. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from([1, 3]); /// /// assert!(!heap.is_empty()); /// /// for x in heap.drain() { /// println!("{x}"); /// } /// /// assert!(heap.is_empty()); /// ``` #[inline] #[stable(feature = "drain", since = "1.6.0")] pub fn drain(&mut self) -> Drain<'_, T, A> { Drain { iter: self.data.drain(..) } } /// Drops all items from the binary heap. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let mut heap = BinaryHeap::from([1, 3]); /// /// assert!(!heap.is_empty()); /// /// heap.clear(); /// /// assert!(heap.is_empty()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] pub fn clear(&mut self) { self.drain(); } } /// Hole represents a hole in a slice i.e., an index without valid value /// (because it was moved from or duplicated). /// In drop, `Hole` will restore the slice by filling the hole /// position with the value that was originally removed. struct Hole<'a, T: 'a> { data: &'a mut [T], elt: ManuallyDrop, pos: usize, } impl<'a, T> Hole<'a, T> { /// Create a new `Hole` at index `pos`. /// /// Unsafe because pos must be within the data slice. #[inline] unsafe fn new(data: &'a mut [T], pos: usize) -> Self { debug_assert!(pos < data.len()); // SAFE: pos should be inside the slice let elt = unsafe { ptr::read(data.get_unchecked(pos)) }; Hole { data, elt: ManuallyDrop::new(elt), pos } } #[inline] fn pos(&self) -> usize { self.pos } /// Returns a reference to the element removed. #[inline] fn element(&self) -> &T { &self.elt } /// Returns a reference to the element at `index`. /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn get(&self, index: usize) -> &T { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); unsafe { self.data.get_unchecked(index) } } /// Move hole to new location /// /// Unsafe because index must be within the data slice and not equal to pos. #[inline] unsafe fn move_to(&mut self, index: usize) { debug_assert!(index != self.pos); debug_assert!(index < self.data.len()); unsafe { let ptr = self.data.as_mut_ptr(); let index_ptr: *const _ = ptr.add(index); let hole_ptr = ptr.add(self.pos); ptr::copy_nonoverlapping(index_ptr, hole_ptr, 1); } self.pos = index; } } impl Drop for Hole<'_, T> { #[inline] fn drop(&mut self) { // fill the hole again unsafe { let pos = self.pos; ptr::copy_nonoverlapping(&*self.elt, self.data.get_unchecked_mut(pos), 1); } } } /// An iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by [`BinaryHeap::iter()`]. See its /// documentation for more. /// /// [`iter`]: BinaryHeap::iter #[must_use = "iterators are lazy and do nothing unless consumed"] #[stable(feature = "rust1", since = "1.0.0")] pub struct Iter<'a, T: 'a> { iter: slice::Iter<'a, T>, } #[stable(feature = "collection_debug", since = "1.17.0")] impl fmt::Debug for Iter<'_, T> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("Iter").field(&self.iter.as_slice()).finish() } } // FIXME(#26925) Remove in favor of `#[derive(Clone)]` #[stable(feature = "rust1", since = "1.0.0")] impl Clone for Iter<'_, T> { fn clone(&self) -> Self { Iter { iter: self.iter.clone() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> Iterator for Iter<'a, T> { type Item = &'a T; #[inline] fn next(&mut self) -> Option<&'a T> { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } #[inline] fn last(self) -> Option<&'a T> { self.iter.last() } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T> DoubleEndedIterator for Iter<'a, T> { #[inline] fn next_back(&mut self) -> Option<&'a T> { self.iter.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for Iter<'_, T> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Iter<'_, T> {} /// An owning iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by [`BinaryHeap::into_iter()`] /// (provided by the [`IntoIterator`] trait). See its documentation for more. /// /// [`into_iter`]: BinaryHeap::into_iter #[stable(feature = "rust1", since = "1.0.0")] #[derive(Clone)] pub struct IntoIter< T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, > { iter: vec::IntoIter, } impl IntoIter { /// Returns a reference to the underlying allocator. #[unstable(feature = "allocator_api", issue = "32838")] pub fn allocator(&self) -> &A { self.iter.allocator() } } #[stable(feature = "collection_debug", since = "1.17.0")] impl fmt::Debug for IntoIter { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_tuple("IntoIter").field(&self.iter.as_slice()).finish() } } #[stable(feature = "rust1", since = "1.0.0")] impl Iterator for IntoIter { type Item = T; #[inline] fn next(&mut self) -> Option { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "rust1", since = "1.0.0")] impl DoubleEndedIterator for IntoIter { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back() } } #[stable(feature = "rust1", since = "1.0.0")] impl ExactSizeIterator for IntoIter { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for IntoIter {} #[doc(hidden)] #[unstable(issue = "none", feature = "trusted_fused")] unsafe impl TrustedFused for IntoIter {} #[stable(feature = "default_iters", since = "1.70.0")] impl Default for IntoIter { /// Creates an empty `binary_heap::IntoIter`. /// /// ``` /// # use std::collections::binary_heap; /// let iter: binary_heap::IntoIter = Default::default(); /// assert_eq!(iter.len(), 0); /// ``` fn default() -> Self { IntoIter { iter: Default::default() } } } // In addition to the SAFETY invariants of the following three unsafe traits // also refer to the vec::in_place_collect module documentation to get an overview #[unstable(issue = "none", feature = "inplace_iteration")] #[doc(hidden)] unsafe impl SourceIter for IntoIter { type Source = IntoIter; #[inline] unsafe fn as_inner(&mut self) -> &mut Self::Source { self } } #[unstable(issue = "none", feature = "inplace_iteration")] #[doc(hidden)] unsafe impl InPlaceIterable for IntoIter { const EXPAND_BY: Option = NonZeroUsize::new(1); const MERGE_BY: Option = NonZeroUsize::new(1); } unsafe impl AsVecIntoIter for IntoIter { type Item = I; fn as_into_iter(&mut self) -> &mut vec::IntoIter { &mut self.iter } } #[must_use = "iterators are lazy and do nothing unless consumed"] #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] #[derive(Clone, Debug)] pub struct IntoIterSorted< T, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, > { inner: BinaryHeap, } impl IntoIterSorted { /// Returns a reference to the underlying allocator. #[unstable(feature = "allocator_api", issue = "32838")] pub fn allocator(&self) -> &A { self.inner.allocator() } } #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] impl Iterator for IntoIterSorted { type Item = T; #[inline] fn next(&mut self) -> Option { self.inner.pop() } #[inline] fn size_hint(&self) -> (usize, Option) { let exact = self.inner.len(); (exact, Some(exact)) } } #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] impl ExactSizeIterator for IntoIterSorted {} #[unstable(feature = "binary_heap_into_iter_sorted", issue = "59278")] impl FusedIterator for IntoIterSorted {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for IntoIterSorted {} /// A draining iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by [`BinaryHeap::drain()`]. See its /// documentation for more. /// /// [`drain`]: BinaryHeap::drain #[stable(feature = "drain", since = "1.6.0")] #[derive(Debug)] pub struct Drain< 'a, T: 'a, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, > { iter: vec::Drain<'a, T, A>, } impl Drain<'_, T, A> { /// Returns a reference to the underlying allocator. #[unstable(feature = "allocator_api", issue = "32838")] pub fn allocator(&self) -> &A { self.iter.allocator() } } #[stable(feature = "drain", since = "1.6.0")] impl Iterator for Drain<'_, T, A> { type Item = T; #[inline] fn next(&mut self) -> Option { self.iter.next() } #[inline] fn size_hint(&self) -> (usize, Option) { self.iter.size_hint() } } #[stable(feature = "drain", since = "1.6.0")] impl DoubleEndedIterator for Drain<'_, T, A> { #[inline] fn next_back(&mut self) -> Option { self.iter.next_back() } } #[stable(feature = "drain", since = "1.6.0")] impl ExactSizeIterator for Drain<'_, T, A> { fn is_empty(&self) -> bool { self.iter.is_empty() } } #[stable(feature = "fused", since = "1.26.0")] impl FusedIterator for Drain<'_, T, A> {} /// A draining iterator over the elements of a `BinaryHeap`. /// /// This `struct` is created by [`BinaryHeap::drain_sorted()`]. See its /// documentation for more. /// /// [`drain_sorted`]: BinaryHeap::drain_sorted #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] #[derive(Debug)] pub struct DrainSorted< 'a, T: Ord, #[unstable(feature = "allocator_api", issue = "32838")] A: Allocator = Global, > { inner: &'a mut BinaryHeap, } impl<'a, T: Ord, A: Allocator> DrainSorted<'a, T, A> { /// Returns a reference to the underlying allocator. #[unstable(feature = "allocator_api", issue = "32838")] pub fn allocator(&self) -> &A { self.inner.allocator() } } #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] impl<'a, T: Ord, A: Allocator> Drop for DrainSorted<'a, T, A> { /// Removes heap elements in heap order. fn drop(&mut self) { struct DropGuard<'r, 'a, T: Ord, A: Allocator>(&'r mut DrainSorted<'a, T, A>); impl<'r, 'a, T: Ord, A: Allocator> Drop for DropGuard<'r, 'a, T, A> { fn drop(&mut self) { while self.0.inner.pop().is_some() {} } } while let Some(item) = self.inner.pop() { let guard = DropGuard(self); drop(item); mem::forget(guard); } } } #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] impl Iterator for DrainSorted<'_, T, A> { type Item = T; #[inline] fn next(&mut self) -> Option { self.inner.pop() } #[inline] fn size_hint(&self) -> (usize, Option) { let exact = self.inner.len(); (exact, Some(exact)) } } #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] impl ExactSizeIterator for DrainSorted<'_, T, A> {} #[unstable(feature = "binary_heap_drain_sorted", issue = "59278")] impl FusedIterator for DrainSorted<'_, T, A> {} #[unstable(feature = "trusted_len", issue = "37572")] unsafe impl TrustedLen for DrainSorted<'_, T, A> {} #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] impl From> for BinaryHeap { /// Converts a `Vec` into a `BinaryHeap`. /// /// This conversion happens in-place, and has *O*(*n*) time complexity. fn from(vec: Vec) -> BinaryHeap { let mut heap = BinaryHeap { data: vec }; heap.rebuild(); heap } } #[stable(feature = "std_collections_from_array", since = "1.56.0")] impl From<[T; N]> for BinaryHeap { /// ``` /// use std::collections::BinaryHeap; /// /// let mut h1 = BinaryHeap::from([1, 4, 2, 3]); /// let mut h2: BinaryHeap<_> = [1, 4, 2, 3].into(); /// while let Some((a, b)) = h1.pop().zip(h2.pop()) { /// assert_eq!(a, b); /// } /// ``` fn from(arr: [T; N]) -> Self { Self::from_iter(arr) } } #[stable(feature = "binary_heap_extras_15", since = "1.5.0")] impl From> for Vec { /// Converts a `BinaryHeap` into a `Vec`. /// /// This conversion requires no data movement or allocation, and has /// constant time complexity. fn from(heap: BinaryHeap) -> Vec { heap.data } } #[stable(feature = "rust1", since = "1.0.0")] impl FromIterator for BinaryHeap { fn from_iter>(iter: I) -> BinaryHeap { BinaryHeap::from(iter.into_iter().collect::>()) } } #[stable(feature = "rust1", since = "1.0.0")] impl IntoIterator for BinaryHeap { type Item = T; type IntoIter = IntoIter; /// Creates a consuming iterator, that is, one that moves each value out of /// the binary heap in arbitrary order. The binary heap cannot be used /// after calling this. /// /// # Examples /// /// Basic usage: /// /// ``` /// use std::collections::BinaryHeap; /// let heap = BinaryHeap::from([1, 2, 3, 4]); /// /// // Print 1, 2, 3, 4 in arbitrary order /// for x in heap.into_iter() { /// // x has type i32, not &i32 /// println!("{x}"); /// } /// ``` fn into_iter(self) -> IntoIter { IntoIter { iter: self.data.into_iter() } } } #[stable(feature = "rust1", since = "1.0.0")] impl<'a, T, A: Allocator> IntoIterator for &'a BinaryHeap { type Item = &'a T; type IntoIter = Iter<'a, T>; fn into_iter(self) -> Iter<'a, T> { self.iter() } } #[stable(feature = "rust1", since = "1.0.0")] impl Extend for BinaryHeap { #[inline] fn extend>(&mut self, iter: I) { let guard = RebuildOnDrop { rebuild_from: self.len(), heap: self }; guard.heap.data.extend(iter); } #[inline] fn extend_one(&mut self, item: T) { self.push(item); } #[inline] fn extend_reserve(&mut self, additional: usize) { self.reserve(additional); } } #[stable(feature = "extend_ref", since = "1.2.0")] impl<'a, T: 'a + Ord + Copy, A: Allocator> Extend<&'a T> for BinaryHeap { fn extend>(&mut self, iter: I) { self.extend(iter.into_iter().cloned()); } #[inline] fn extend_one(&mut self, &item: &'a T) { self.push(item); } #[inline] fn extend_reserve(&mut self, additional: usize) { self.reserve(additional); } }