//! A dynamically-sized view into a contiguous sequence, `[T]`. //! //! *[See also the slice primitive type](slice).* //! //! Slices are a view into a block of memory represented as a pointer and a //! length. //! //! ``` //! // slicing a Vec //! let vec = vec![1, 2, 3]; //! let int_slice = &vec[..]; //! // coercing an array to a slice //! let str_slice: &[&str] = &["one", "two", "three"]; //! ``` //! //! Slices are either mutable or shared. The shared slice type is `&[T]`, //! while the mutable slice type is `&mut [T]`, where `T` represents the element //! type. For example, you can mutate the block of memory that a mutable slice //! points to: //! //! ``` //! let x = &mut [1, 2, 3]; //! x[1] = 7; //! assert_eq!(x, &[1, 7, 3]); //! ``` //! //! Here are some of the things this module contains: //! //! ## Structs //! //! There are several structs that are useful for slices, such as [`Iter`], which //! represents iteration over a slice. //! //! ## Trait Implementations //! //! There are several implementations of common traits for slices. Some examples //! include: //! //! * [`Clone`] //! * [`Eq`], [`Ord`] - for slices whose element type are [`Eq`] or [`Ord`]. //! * [`Hash`] - for slices whose element type is [`Hash`]. //! //! ## Iteration //! //! The slices implement `IntoIterator`. The iterator yields references to the //! slice elements. //! //! ``` //! let numbers = &[0, 1, 2]; //! for n in numbers { //! println!("{n} is a number!"); //! } //! ``` //! //! The mutable slice yields mutable references to the elements: //! //! ``` //! let mut scores = [7, 8, 9]; //! for score in &mut scores[..] { //! *score += 1; //! } //! ``` //! //! This iterator yields mutable references to the slice's elements, so while //! the element type of the slice is `i32`, the element type of the iterator is //! `&mut i32`. //! //! * [`.iter`] and [`.iter_mut`] are the explicit methods to return the default //! iterators. //! * Further methods that return iterators are [`.split`], [`.splitn`], //! [`.chunks`], [`.windows`] and more. //! //! [`Hash`]: core::hash::Hash //! [`.iter`]: slice::iter //! [`.iter_mut`]: slice::iter_mut //! [`.split`]: slice::split //! [`.splitn`]: slice::splitn //! [`.chunks`]: slice::chunks //! [`.windows`]: slice::windows #![stable(feature = "rust1", since = "1.0.0")] // Many of the usings in this module are only used in the test configuration. // It's cleaner to just turn off the unused_imports warning than to fix them. #![cfg_attr(test, allow(unused_imports, dead_code))] use core::borrow::{Borrow, BorrowMut}; #[cfg(not(no_global_oom_handling))] use core::cmp::Ordering::{self, Less}; #[cfg(not(no_global_oom_handling))] use core::mem; #[cfg(not(no_global_oom_handling))] use core::mem::size_of; #[cfg(not(no_global_oom_handling))] use core::ptr; use crate::alloc::Allocator; #[cfg(not(no_global_oom_handling))] use crate::alloc::Global; #[cfg(not(no_global_oom_handling))] use crate::borrow::ToOwned; use crate::boxed::Box; use crate::vec::Vec; #[unstable(feature = "slice_range", issue = "76393")] pub use core::slice::range; #[unstable(feature = "array_chunks", issue = "74985")] pub use core::slice::ArrayChunks; #[unstable(feature = "array_chunks", issue = "74985")] pub use core::slice::ArrayChunksMut; #[unstable(feature = "array_windows", issue = "75027")] pub use core::slice::ArrayWindows; #[stable(feature = "inherent_ascii_escape", since = "1.60.0")] pub use core::slice::EscapeAscii; #[stable(feature = "slice_get_slice", since = "1.28.0")] pub use core::slice::SliceIndex; #[stable(feature = "from_ref", since = "1.28.0")] pub use core::slice::{from_mut, from_ref}; #[unstable(feature = "slice_from_ptr_range", issue = "89792")] pub use core::slice::{from_mut_ptr_range, from_ptr_range}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{from_raw_parts, from_raw_parts_mut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Chunks, Windows}; #[stable(feature = "chunks_exact", since = "1.31.0")] pub use core::slice::{ChunksExact, ChunksExactMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{ChunksMut, Split, SplitMut}; #[unstable(feature = "slice_group_by", issue = "80552")] pub use core::slice::{GroupBy, GroupByMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{Iter, IterMut}; #[stable(feature = "rchunks", since = "1.31.0")] pub use core::slice::{RChunks, RChunksExact, RChunksExactMut, RChunksMut}; #[stable(feature = "slice_rsplit", since = "1.27.0")] pub use core::slice::{RSplit, RSplitMut}; #[stable(feature = "rust1", since = "1.0.0")] pub use core::slice::{RSplitN, RSplitNMut, SplitN, SplitNMut}; #[stable(feature = "split_inclusive", since = "1.51.0")] pub use core::slice::{SplitInclusive, SplitInclusiveMut}; //////////////////////////////////////////////////////////////////////////////// // Basic slice extension methods //////////////////////////////////////////////////////////////////////////////// // HACK(japaric) needed for the implementation of `vec!` macro during testing // N.B., see the `hack` module in this file for more details. #[cfg(test)] pub use hack::into_vec; // HACK(japaric) needed for the implementation of `Vec::clone` during testing // N.B., see the `hack` module in this file for more details. #[cfg(test)] pub use hack::to_vec; // HACK(japaric): With cfg(test) `impl [T]` is not available, these three // functions are actually methods that are in `impl [T]` but not in // `core::slice::SliceExt` - we need to supply these functions for the // `test_permutations` test pub(crate) mod hack { use core::alloc::Allocator; use crate::boxed::Box; use crate::vec::Vec; // We shouldn't add inline attribute to this since this is used in // `vec!` macro mostly and causes perf regression. See #71204 for // discussion and perf results. pub fn into_vec(b: Box<[T], A>) -> Vec { unsafe { let len = b.len(); let (b, alloc) = Box::into_raw_with_allocator(b); Vec::from_raw_parts_in(b as *mut T, len, len, alloc) } } #[cfg(not(no_global_oom_handling))] #[inline] pub fn to_vec(s: &[T], alloc: A) -> Vec { T::to_vec(s, alloc) } #[cfg(not(no_global_oom_handling))] pub trait ConvertVec { fn to_vec(s: &[Self], alloc: A) -> Vec where Self: Sized; } #[cfg(not(no_global_oom_handling))] impl ConvertVec for T { #[inline] default fn to_vec(s: &[Self], alloc: A) -> Vec { struct DropGuard<'a, T, A: Allocator> { vec: &'a mut Vec, num_init: usize, } impl<'a, T, A: Allocator> Drop for DropGuard<'a, T, A> { #[inline] fn drop(&mut self) { // SAFETY: // items were marked initialized in the loop below unsafe { self.vec.set_len(self.num_init); } } } let mut vec = Vec::with_capacity_in(s.len(), alloc); let mut guard = DropGuard { vec: &mut vec, num_init: 0 }; let slots = guard.vec.spare_capacity_mut(); // .take(slots.len()) is necessary for LLVM to remove bounds checks // and has better codegen than zip. for (i, b) in s.iter().enumerate().take(slots.len()) { guard.num_init = i; slots[i].write(b.clone()); } core::mem::forget(guard); // SAFETY: // the vec was allocated and initialized above to at least this length. unsafe { vec.set_len(s.len()); } vec } } #[cfg(not(no_global_oom_handling))] impl ConvertVec for T { #[inline] fn to_vec(s: &[Self], alloc: A) -> Vec { let mut v = Vec::with_capacity_in(s.len(), alloc); // SAFETY: // allocated above with the capacity of `s`, and initialize to `s.len()` in // ptr::copy_to_non_overlapping below. unsafe { s.as_ptr().copy_to_nonoverlapping(v.as_mut_ptr(), s.len()); v.set_len(s.len()); } v } } } #[cfg(not(test))] impl [T] { /// Sorts the slice. /// /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable`](slice::sort_unstable). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [-5, 4, 1, -3, 2]; /// /// v.sort(); /// assert!(v == [-5, -3, 1, 2, 4]); /// ``` #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort(&mut self) where T: Ord, { merge_sort(self, |a, b| a.lt(b)); } /// Sorts the slice with a comparator function. /// /// This sort is stable (i.e., does not reorder equal elements) and *O*(*n* \* log(*n*)) worst-case. /// /// The comparator function must define a total ordering for the elements in the slice. If /// the ordering is not total, the order of the elements is unspecified. An order is a /// total order if it is (for all `a`, `b` and `c`): /// /// * total and antisymmetric: exactly one of `a < b`, `a == b` or `a > b` is true, and /// * transitive, `a < b` and `b < c` implies `a < c`. The same must hold for both `==` and `>`. /// /// For example, while [`f64`] doesn't implement [`Ord`] because `NaN != NaN`, we can use /// `partial_cmp` as our sort function when we know the slice doesn't contain a `NaN`. /// /// ``` /// let mut floats = [5f64, 4.0, 1.0, 3.0, 2.0]; /// floats.sort_by(|a, b| a.partial_cmp(b).unwrap()); /// assert_eq!(floats, [1.0, 2.0, 3.0, 4.0, 5.0]); /// ``` /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable_by`](slice::sort_unstable_by). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [5, 4, 1, 3, 2]; /// v.sort_by(|a, b| a.cmp(b)); /// assert!(v == [1, 2, 3, 4, 5]); /// /// // reverse sorting /// v.sort_by(|a, b| b.cmp(a)); /// assert!(v == [5, 4, 3, 2, 1]); /// ``` #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn sort_by(&mut self, mut compare: F) where F: FnMut(&T, &T) -> Ordering, { merge_sort(self, |a, b| compare(a, b) == Less); } /// Sorts the slice with a key extraction function. /// /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* \* log(*n*)) /// worst-case, where the key function is *O*(*m*). /// /// For expensive key functions (e.g. functions that are not simple property accesses or /// basic operations), [`sort_by_cached_key`](slice::sort_by_cached_key) is likely to be /// significantly faster, as it does not recompute element keys. /// /// When applicable, unstable sorting is preferred because it is generally faster than stable /// sorting and it doesn't allocate auxiliary memory. /// See [`sort_unstable_by_key`](slice::sort_unstable_by_key). /// /// # Current implementation /// /// The current algorithm is an adaptive, iterative merge sort inspired by /// [timsort](https://en.wikipedia.org/wiki/Timsort). /// It is designed to be very fast in cases where the slice is nearly sorted, or consists of /// two or more sorted sequences concatenated one after another. /// /// Also, it allocates temporary storage half the size of `self`, but for short slices a /// non-allocating insertion sort is used instead. /// /// # Examples /// /// ``` /// let mut v = [-5i32, 4, 1, -3, 2]; /// /// v.sort_by_key(|k| k.abs()); /// assert!(v == [1, 2, -3, 4, -5]); /// ``` #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[stable(feature = "slice_sort_by_key", since = "1.7.0")] #[inline] pub fn sort_by_key(&mut self, mut f: F) where F: FnMut(&T) -> K, K: Ord, { merge_sort(self, |a, b| f(a).lt(&f(b))); } /// Sorts the slice with a key extraction function. /// /// During sorting, the key function is called at most once per element, by using /// temporary storage to remember the results of key evaluation. /// The order of calls to the key function is unspecified and may change in future versions /// of the standard library. /// /// This sort is stable (i.e., does not reorder equal elements) and *O*(*m* \* *n* + *n* \* log(*n*)) /// worst-case, where the key function is *O*(*m*). /// /// For simple key functions (e.g., functions that are property accesses or /// basic operations), [`sort_by_key`](slice::sort_by_key) is likely to be /// faster. /// /// # Current implementation /// /// The current algorithm is based on [pattern-defeating quicksort][pdqsort] by Orson Peters, /// which combines the fast average case of randomized quicksort with the fast worst case of /// heapsort, while achieving linear time on slices with certain patterns. It uses some /// randomization to avoid degenerate cases, but with a fixed seed to always provide /// deterministic behavior. /// /// In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the /// length of the slice. /// /// # Examples /// /// ``` /// let mut v = [-5i32, 4, 32, -3, 2]; /// /// v.sort_by_cached_key(|k| k.to_string()); /// assert!(v == [-3, -5, 2, 32, 4]); /// ``` /// /// [pdqsort]: https://github.com/orlp/pdqsort #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[stable(feature = "slice_sort_by_cached_key", since = "1.34.0")] #[inline] pub fn sort_by_cached_key(&mut self, f: F) where F: FnMut(&T) -> K, K: Ord, { // Helper macro for indexing our vector by the smallest possible type, to reduce allocation. macro_rules! sort_by_key { ($t:ty, $slice:ident, $f:ident) => {{ let mut indices: Vec<_> = $slice.iter().map($f).enumerate().map(|(i, k)| (k, i as $t)).collect(); // The elements of `indices` are unique, as they are indexed, so any sort will be // stable with respect to the original slice. We use `sort_unstable` here because // it requires less memory allocation. indices.sort_unstable(); for i in 0..$slice.len() { let mut index = indices[i].1; while (index as usize) < i { index = indices[index as usize].1; } indices[i].1 = index; $slice.swap(i, index as usize); } }}; } let sz_u8 = mem::size_of::<(K, u8)>(); let sz_u16 = mem::size_of::<(K, u16)>(); let sz_u32 = mem::size_of::<(K, u32)>(); let sz_usize = mem::size_of::<(K, usize)>(); let len = self.len(); if len < 2 { return; } if sz_u8 < sz_u16 && len <= (u8::MAX as usize) { return sort_by_key!(u8, self, f); } if sz_u16 < sz_u32 && len <= (u16::MAX as usize) { return sort_by_key!(u16, self, f); } if sz_u32 < sz_usize && len <= (u32::MAX as usize) { return sort_by_key!(u32, self, f); } sort_by_key!(usize, self, f) } /// Copies `self` into a new `Vec`. /// /// # Examples /// /// ``` /// let s = [10, 40, 30]; /// let x = s.to_vec(); /// // Here, `s` and `x` can be modified independently. /// ``` #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[rustc_conversion_suggestion] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn to_vec(&self) -> Vec where T: Clone, { self.to_vec_in(Global) } /// Copies `self` into a new `Vec` with an allocator. /// /// # Examples /// /// ``` /// #![feature(allocator_api)] /// /// use std::alloc::System; /// /// let s = [10, 40, 30]; /// let x = s.to_vec_in(System); /// // Here, `s` and `x` can be modified independently. /// ``` #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[inline] #[unstable(feature = "allocator_api", issue = "32838")] pub fn to_vec_in(&self, alloc: A) -> Vec where T: Clone, { // N.B., see the `hack` module in this file for more details. hack::to_vec(self, alloc) } /// Converts `self` into a vector without clones or allocation. /// /// The resulting vector can be converted back into a box via /// `Vec`'s `into_boxed_slice` method. /// /// # Examples /// /// ``` /// let s: Box<[i32]> = Box::new([10, 40, 30]); /// let x = s.into_vec(); /// // `s` cannot be used anymore because it has been converted into `x`. /// /// assert_eq!(x, vec![10, 40, 30]); /// ``` #[rustc_allow_incoherent_impl] #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn into_vec(self: Box) -> Vec { // N.B., see the `hack` module in this file for more details. hack::into_vec(self) } /// Creates a vector by repeating a slice `n` times. /// /// # Panics /// /// This function will panic if the capacity would overflow. /// /// # Examples /// /// Basic usage: /// /// ``` /// assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]); /// ``` /// /// A panic upon overflow: /// /// ```should_panic /// // this will panic at runtime /// b"0123456789abcdef".repeat(usize::MAX); /// ``` #[rustc_allow_incoherent_impl] #[cfg(not(no_global_oom_handling))] #[stable(feature = "repeat_generic_slice", since = "1.40.0")] pub fn repeat(&self, n: usize) -> Vec where T: Copy, { if n == 0 { return Vec::new(); } // If `n` is larger than zero, it can be split as // `n = 2^expn + rem (2^expn > rem, expn >= 0, rem >= 0)`. // `2^expn` is the number represented by the leftmost '1' bit of `n`, // and `rem` is the remaining part of `n`. // Using `Vec` to access `set_len()`. let capacity = self.len().checked_mul(n).expect("capacity overflow"); let mut buf = Vec::with_capacity(capacity); // `2^expn` repetition is done by doubling `buf` `expn`-times. buf.extend(self); { let mut m = n >> 1; // If `m > 0`, there are remaining bits up to the leftmost '1'. while m > 0 { // `buf.extend(buf)`: unsafe { ptr::copy_nonoverlapping( buf.as_ptr(), (buf.as_mut_ptr() as *mut T).add(buf.len()), buf.len(), ); // `buf` has capacity of `self.len() * n`. let buf_len = buf.len(); buf.set_len(buf_len * 2); } m >>= 1; } } // `rem` (`= n - 2^expn`) repetition is done by copying // first `rem` repetitions from `buf` itself. let rem_len = capacity - buf.len(); // `self.len() * rem` if rem_len > 0 { // `buf.extend(buf[0 .. rem_len])`: unsafe { // This is non-overlapping since `2^expn > rem`. ptr::copy_nonoverlapping( buf.as_ptr(), (buf.as_mut_ptr() as *mut T).add(buf.len()), rem_len, ); // `buf.len() + rem_len` equals to `buf.capacity()` (`= self.len() * n`). buf.set_len(capacity); } } buf } /// Flattens a slice of `T` into a single value `Self::Output`. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].concat(), "helloworld"); /// assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]); /// ``` #[rustc_allow_incoherent_impl] #[stable(feature = "rust1", since = "1.0.0")] pub fn concat(&self) -> >::Output where Self: Concat, { Concat::concat(self) } /// Flattens a slice of `T` into a single value `Self::Output`, placing a /// given separator between each. /// /// # Examples /// /// ``` /// assert_eq!(["hello", "world"].join(" "), "hello world"); /// assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); /// assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]); /// ``` #[rustc_allow_incoherent_impl] #[stable(feature = "rename_connect_to_join", since = "1.3.0")] pub fn join(&self, sep: Separator) -> >::Output where Self: Join, { Join::join(self, sep) } /// Flattens a slice of `T` into a single value `Self::Output`, placing a /// given separator between each. /// /// # Examples /// /// ``` /// # #![allow(deprecated)] /// assert_eq!(["hello", "world"].connect(" "), "hello world"); /// assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]); /// ``` #[rustc_allow_incoherent_impl] #[stable(feature = "rust1", since = "1.0.0")] #[deprecated(since = "1.3.0", note = "renamed to join")] pub fn connect(&self, sep: Separator) -> >::Output where Self: Join, { Join::join(self, sep) } } #[cfg(not(test))] impl [u8] { /// Returns a vector containing a copy of this slice where each byte /// is mapped to its ASCII upper case equivalent. /// /// ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', /// but non-ASCII letters are unchanged. /// /// To uppercase the value in-place, use [`make_ascii_uppercase`]. /// /// [`make_ascii_uppercase`]: slice::make_ascii_uppercase #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[must_use = "this returns the uppercase bytes as a new Vec, \ without modifying the original"] #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn to_ascii_uppercase(&self) -> Vec { let mut me = self.to_vec(); me.make_ascii_uppercase(); me } /// Returns a vector containing a copy of this slice where each byte /// is mapped to its ASCII lower case equivalent. /// /// ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', /// but non-ASCII letters are unchanged. /// /// To lowercase the value in-place, use [`make_ascii_lowercase`]. /// /// [`make_ascii_lowercase`]: slice::make_ascii_lowercase #[cfg(not(no_global_oom_handling))] #[rustc_allow_incoherent_impl] #[must_use = "this returns the lowercase bytes as a new Vec, \ without modifying the original"] #[stable(feature = "ascii_methods_on_intrinsics", since = "1.23.0")] #[inline] pub fn to_ascii_lowercase(&self) -> Vec { let mut me = self.to_vec(); me.make_ascii_lowercase(); me } } //////////////////////////////////////////////////////////////////////////////// // Extension traits for slices over specific kinds of data //////////////////////////////////////////////////////////////////////////////// /// Helper trait for [`[T]::concat`](slice::concat). /// /// Note: the `Item` type parameter is not used in this trait, /// but it allows impls to be more generic. /// Without it, we get this error: /// /// ```error /// error[E0207]: the type parameter `T` is not constrained by the impl trait, self type, or predica /// --> src/liballoc/slice.rs:608:6 /// | /// 608 | impl> Concat for [V] { /// | ^ unconstrained type parameter /// ``` /// /// This is because there could exist `V` types with multiple `Borrow<[_]>` impls, /// such that multiple `T` types would apply: /// /// ``` /// # #[allow(dead_code)] /// pub struct Foo(Vec, Vec); /// /// impl std::borrow::Borrow<[u32]> for Foo { /// fn borrow(&self) -> &[u32] { &self.0 } /// } /// /// impl std::borrow::Borrow<[String]> for Foo { /// fn borrow(&self) -> &[String] { &self.1 } /// } /// ``` #[unstable(feature = "slice_concat_trait", issue = "27747")] pub trait Concat { #[unstable(feature = "slice_concat_trait", issue = "27747")] /// The resulting type after concatenation type Output; /// Implementation of [`[T]::concat`](slice::concat) #[unstable(feature = "slice_concat_trait", issue = "27747")] fn concat(slice: &Self) -> Self::Output; } /// Helper trait for [`[T]::join`](slice::join) #[unstable(feature = "slice_concat_trait", issue = "27747")] pub trait Join { #[unstable(feature = "slice_concat_trait", issue = "27747")] /// The resulting type after concatenation type Output; /// Implementation of [`[T]::join`](slice::join) #[unstable(feature = "slice_concat_trait", issue = "27747")] fn join(slice: &Self, sep: Separator) -> Self::Output; } #[cfg(not(no_global_oom_handling))] #[unstable(feature = "slice_concat_ext", issue = "27747")] impl> Concat for [V] { type Output = Vec; fn concat(slice: &Self) -> Vec { let size = slice.iter().map(|slice| slice.borrow().len()).sum(); let mut result = Vec::with_capacity(size); for v in slice { result.extend_from_slice(v.borrow()) } result } } #[cfg(not(no_global_oom_handling))] #[unstable(feature = "slice_concat_ext", issue = "27747")] impl> Join<&T> for [V] { type Output = Vec; fn join(slice: &Self, sep: &T) -> Vec { let mut iter = slice.iter(); let first = match iter.next() { Some(first) => first, None => return vec![], }; let size = slice.iter().map(|v| v.borrow().len()).sum::() + slice.len() - 1; let mut result = Vec::with_capacity(size); result.extend_from_slice(first.borrow()); for v in iter { result.push(sep.clone()); result.extend_from_slice(v.borrow()) } result } } #[cfg(not(no_global_oom_handling))] #[unstable(feature = "slice_concat_ext", issue = "27747")] impl> Join<&[T]> for [V] { type Output = Vec; fn join(slice: &Self, sep: &[T]) -> Vec { let mut iter = slice.iter(); let first = match iter.next() { Some(first) => first, None => return vec![], }; let size = slice.iter().map(|v| v.borrow().len()).sum::() + sep.len() * (slice.len() - 1); let mut result = Vec::with_capacity(size); result.extend_from_slice(first.borrow()); for v in iter { result.extend_from_slice(sep); result.extend_from_slice(v.borrow()) } result } } //////////////////////////////////////////////////////////////////////////////// // Standard trait implementations for slices //////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl Borrow<[T]> for Vec { fn borrow(&self) -> &[T] { &self[..] } } #[stable(feature = "rust1", since = "1.0.0")] impl BorrowMut<[T]> for Vec { fn borrow_mut(&mut self) -> &mut [T] { &mut self[..] } } #[cfg(not(no_global_oom_handling))] #[stable(feature = "rust1", since = "1.0.0")] impl ToOwned for [T] { type Owned = Vec; #[cfg(not(test))] fn to_owned(&self) -> Vec { self.to_vec() } #[cfg(test)] fn to_owned(&self) -> Vec { hack::to_vec(self, Global) } fn clone_into(&self, target: &mut Vec) { // drop anything in target that will not be overwritten target.truncate(self.len()); // target.len <= self.len due to the truncate above, so the // slices here are always in-bounds. let (init, tail) = self.split_at(target.len()); // reuse the contained values' allocations/resources. target.clone_from_slice(init); target.extend_from_slice(tail); } } //////////////////////////////////////////////////////////////////////////////// // Sorting //////////////////////////////////////////////////////////////////////////////// /// Inserts `v[0]` into pre-sorted sequence `v[1..]` so that whole `v[..]` becomes sorted. /// /// This is the integral subroutine of insertion sort. #[cfg(not(no_global_oom_handling))] fn insert_head(v: &mut [T], is_less: &mut F) where F: FnMut(&T, &T) -> bool, { if v.len() >= 2 && is_less(&v[1], &v[0]) { unsafe { // There are three ways to implement insertion here: // // 1. Swap adjacent elements until the first one gets to its final destination. // However, this way we copy data around more than is necessary. If elements are big // structures (costly to copy), this method will be slow. // // 2. Iterate until the right place for the first element is found. Then shift the // elements succeeding it to make room for it and finally place it into the // remaining hole. This is a good method. // // 3. Copy the first element into a temporary variable. Iterate until the right place // for it is found. As we go along, copy every traversed element into the slot // preceding it. Finally, copy data from the temporary variable into the remaining // hole. This method is very good. Benchmarks demonstrated slightly better // performance than with the 2nd method. // // All methods were benchmarked, and the 3rd showed best results. So we chose that one. let tmp = mem::ManuallyDrop::new(ptr::read(&v[0])); // Intermediate state of the insertion process is always tracked by `hole`, which // serves two purposes: // 1. Protects integrity of `v` from panics in `is_less`. // 2. Fills the remaining hole in `v` in the end. // // Panic safety: // // If `is_less` panics at any point during the process, `hole` will get dropped and // fill the hole in `v` with `tmp`, thus ensuring that `v` still holds every object it // initially held exactly once. let mut hole = InsertionHole { src: &*tmp, dest: &mut v[1] }; ptr::copy_nonoverlapping(&v[1], &mut v[0], 1); for i in 2..v.len() { if !is_less(&v[i], &*tmp) { break; } ptr::copy_nonoverlapping(&v[i], &mut v[i - 1], 1); hole.dest = &mut v[i]; } // `hole` gets dropped and thus copies `tmp` into the remaining hole in `v`. } } // When dropped, copies from `src` into `dest`. struct InsertionHole { src: *const T, dest: *mut T, } impl Drop for InsertionHole { fn drop(&mut self) { unsafe { ptr::copy_nonoverlapping(self.src, self.dest, 1); } } } } /// Merges non-decreasing runs `v[..mid]` and `v[mid..]` using `buf` as temporary storage, and /// stores the result into `v[..]`. /// /// # Safety /// /// The two slices must be non-empty and `mid` must be in bounds. Buffer `buf` must be long enough /// to hold a copy of the shorter slice. Also, `T` must not be a zero-sized type. #[cfg(not(no_global_oom_handling))] unsafe fn merge(v: &mut [T], mid: usize, buf: *mut T, is_less: &mut F) where F: FnMut(&T, &T) -> bool, { let len = v.len(); let v = v.as_mut_ptr(); let (v_mid, v_end) = unsafe { (v.add(mid), v.add(len)) }; // The merge process first copies the shorter run into `buf`. Then it traces the newly copied // run and the longer run forwards (or backwards), comparing their next unconsumed elements and // copying the lesser (or greater) one into `v`. // // As soon as the shorter run is fully consumed, the process is done. If the longer run gets // consumed first, then we must copy whatever is left of the shorter run into the remaining // hole in `v`. // // Intermediate state of the process is always tracked by `hole`, which serves two purposes: // 1. Protects integrity of `v` from panics in `is_less`. // 2. Fills the remaining hole in `v` if the longer run gets consumed first. // // Panic safety: // // If `is_less` panics at any point during the process, `hole` will get dropped and fill the // hole in `v` with the unconsumed range in `buf`, thus ensuring that `v` still holds every // object it initially held exactly once. let mut hole; if mid <= len - mid { // The left run is shorter. unsafe { ptr::copy_nonoverlapping(v, buf, mid); hole = MergeHole { start: buf, end: buf.add(mid), dest: v }; } // Initially, these pointers point to the beginnings of their arrays. let left = &mut hole.start; let mut right = v_mid; let out = &mut hole.dest; while *left < hole.end && right < v_end { // Consume the lesser side. // If equal, prefer the left run to maintain stability. unsafe { let to_copy = if is_less(&*right, &**left) { get_and_increment(&mut right) } else { get_and_increment(left) }; ptr::copy_nonoverlapping(to_copy, get_and_increment(out), 1); } } } else { // The right run is shorter. unsafe { ptr::copy_nonoverlapping(v_mid, buf, len - mid); hole = MergeHole { start: buf, end: buf.add(len - mid), dest: v_mid }; } // Initially, these pointers point past the ends of their arrays. let left = &mut hole.dest; let right = &mut hole.end; let mut out = v_end; while v < *left && buf < *right { // Consume the greater side. // If equal, prefer the right run to maintain stability. unsafe { let to_copy = if is_less(&*right.offset(-1), &*left.offset(-1)) { decrement_and_get(left) } else { decrement_and_get(right) }; ptr::copy_nonoverlapping(to_copy, decrement_and_get(&mut out), 1); } } } // Finally, `hole` gets dropped. If the shorter run was not fully consumed, whatever remains of // it will now be copied into the hole in `v`. unsafe fn get_and_increment(ptr: &mut *mut T) -> *mut T { let old = *ptr; *ptr = unsafe { ptr.offset(1) }; old } unsafe fn decrement_and_get(ptr: &mut *mut T) -> *mut T { *ptr = unsafe { ptr.offset(-1) }; *ptr } // When dropped, copies the range `start..end` into `dest..`. struct MergeHole { start: *mut T, end: *mut T, dest: *mut T, } impl Drop for MergeHole { fn drop(&mut self) { // `T` is not a zero-sized type, and these are pointers into a slice's elements. unsafe { let len = self.end.sub_ptr(self.start); ptr::copy_nonoverlapping(self.start, self.dest, len); } } } } /// This merge sort borrows some (but not all) ideas from TimSort, which is described in detail /// [here](https://github.com/python/cpython/blob/main/Objects/listsort.txt). /// /// The algorithm identifies strictly descending and non-descending subsequences, which are called /// natural runs. There is a stack of pending runs yet to be merged. Each newly found run is pushed /// onto the stack, and then some pairs of adjacent runs are merged until these two invariants are /// satisfied: /// /// 1. for every `i` in `1..runs.len()`: `runs[i - 1].len > runs[i].len` /// 2. for every `i` in `2..runs.len()`: `runs[i - 2].len > runs[i - 1].len + runs[i].len` /// /// The invariants ensure that the total running time is *O*(*n* \* log(*n*)) worst-case. #[cfg(not(no_global_oom_handling))] fn merge_sort(v: &mut [T], mut is_less: F) where F: FnMut(&T, &T) -> bool, { // Slices of up to this length get sorted using insertion sort. const MAX_INSERTION: usize = 20; // Very short runs are extended using insertion sort to span at least this many elements. const MIN_RUN: usize = 10; // Sorting has no meaningful behavior on zero-sized types. if size_of::() == 0 { return; } let len = v.len(); // Short arrays get sorted in-place via insertion sort to avoid allocations. if len <= MAX_INSERTION { if len >= 2 { for i in (0..len - 1).rev() { insert_head(&mut v[i..], &mut is_less); } } return; } // Allocate a buffer to use as scratch memory. We keep the length 0 so we can keep in it // shallow copies of the contents of `v` without risking the dtors running on copies if // `is_less` panics. When merging two sorted runs, this buffer holds a copy of the shorter run, // which will always have length at most `len / 2`. let mut buf = Vec::with_capacity(len / 2); // In order to identify natural runs in `v`, we traverse it backwards. That might seem like a // strange decision, but consider the fact that merges more often go in the opposite direction // (forwards). According to benchmarks, merging forwards is slightly faster than merging // backwards. To conclude, identifying runs by traversing backwards improves performance. let mut runs = vec![]; let mut end = len; while end > 0 { // Find the next natural run, and reverse it if it's strictly descending. let mut start = end - 1; if start > 0 { start -= 1; unsafe { if is_less(v.get_unchecked(start + 1), v.get_unchecked(start)) { while start > 0 && is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { start -= 1; } v[start..end].reverse(); } else { while start > 0 && !is_less(v.get_unchecked(start), v.get_unchecked(start - 1)) { start -= 1; } } } } // Insert some more elements into the run if it's too short. Insertion sort is faster than // merge sort on short sequences, so this significantly improves performance. while start > 0 && end - start < MIN_RUN { start -= 1; insert_head(&mut v[start..end], &mut is_less); } // Push this run onto the stack. runs.push(Run { start, len: end - start }); end = start; // Merge some pairs of adjacent runs to satisfy the invariants. while let Some(r) = collapse(&runs) { let left = runs[r + 1]; let right = runs[r]; unsafe { merge( &mut v[left.start..right.start + right.len], left.len, buf.as_mut_ptr(), &mut is_less, ); } runs[r] = Run { start: left.start, len: left.len + right.len }; runs.remove(r + 1); } } // Finally, exactly one run must remain in the stack. debug_assert!(runs.len() == 1 && runs[0].start == 0 && runs[0].len == len); // Examines the stack of runs and identifies the next pair of runs to merge. More specifically, // if `Some(r)` is returned, that means `runs[r]` and `runs[r + 1]` must be merged next. If the // algorithm should continue building a new run instead, `None` is returned. // // TimSort is infamous for its buggy implementations, as described here: // http://envisage-project.eu/timsort-specification-and-verification/ // // The gist of the story is: we must enforce the invariants on the top four runs on the stack. // Enforcing them on just top three is not sufficient to ensure that the invariants will still // hold for *all* runs in the stack. // // This function correctly checks invariants for the top four runs. Additionally, if the top // run starts at index 0, it will always demand a merge operation until the stack is fully // collapsed, in order to complete the sort. #[inline] fn collapse(runs: &[Run]) -> Option { let n = runs.len(); if n >= 2 && (runs[n - 1].start == 0 || runs[n - 2].len <= runs[n - 1].len || (n >= 3 && runs[n - 3].len <= runs[n - 2].len + runs[n - 1].len) || (n >= 4 && runs[n - 4].len <= runs[n - 3].len + runs[n - 2].len)) { if n >= 3 && runs[n - 3].len < runs[n - 1].len { Some(n - 3) } else { Some(n - 2) } } else { None } } #[derive(Clone, Copy)] struct Run { start: usize, len: usize, } }