use core::mem::ManuallyDrop; use core::ptr::{self}; use super::{IntoIter, SpecExtend, SpecFromIterNested, Vec}; /// Specialization trait used for Vec::from_iter /// /// ## The delegation graph: /// /// ```text /// +-------------+ /// |FromIterator | /// +-+-----------+ /// | /// v /// +-+-------------------------------+ +---------------------+ /// |SpecFromIter +---->+SpecFromIterNested | /// |where I: | | |where I: | /// | Iterator (default)----------+ | | Iterator (default) | /// | vec::IntoIter | | | TrustedLen | /// | SourceIterMarker---fallback-+ | +---------------------+ /// +---------------------------------+ /// ``` pub(super) trait SpecFromIter { fn from_iter(iter: I) -> Self; } impl SpecFromIter for Vec where I: Iterator, { default fn from_iter(iterator: I) -> Self { SpecFromIterNested::from_iter(iterator) } } impl SpecFromIter> for Vec { fn from_iter(iterator: IntoIter) -> Self { // A common case is passing a vector into a function which immediately // re-collects into a vector. We can short circuit this if the IntoIter // has not been advanced at all. // When it has been advanced We can also reuse the memory and move the data to the front. // But we only do so when the resulting Vec wouldn't have more unused capacity // than creating it through the generic FromIterator implementation would. That limitation // is not strictly necessary as Vec's allocation behavior is intentionally unspecified. // But it is a conservative choice. let has_advanced = iterator.buf.as_ptr() as *const _ != iterator.ptr; if !has_advanced || iterator.len() >= iterator.cap / 2 { unsafe { let it = ManuallyDrop::new(iterator); if has_advanced { ptr::copy(it.ptr, it.buf.as_ptr(), it.len()); } return Vec::from_raw_parts(it.buf.as_ptr(), it.len(), it.cap); } } let mut vec = Vec::new(); // must delegate to spec_extend() since extend() itself delegates // to spec_from for empty Vecs vec.spec_extend(iterator); vec } }