//! Utilities for dynamic typing or type reflection. //! //! # `Any` and `TypeId` //! //! `Any` itself can be used to get a `TypeId`, and has more features when used //! as a trait object. As `&dyn Any` (a borrowed trait object), it has the `is` //! and `downcast_ref` methods, to test if the contained value is of a given type, //! and to get a reference to the inner value as a type. As `&mut dyn Any`, there //! is also the `downcast_mut` method, for getting a mutable reference to the //! inner value. `Box` adds the `downcast` method, which attempts to //! convert to a `Box`. See the [`Box`] documentation for the full details. //! //! Note that `&dyn Any` is limited to testing whether a value is of a specified //! concrete type, and cannot be used to test whether a type implements a trait. //! //! [`Box`]: ../../std/boxed/struct.Box.html //! //! # Smart pointers and `dyn Any` //! //! One piece of behavior to keep in mind when using `Any` as a trait object, //! especially with types like `Box` or `Arc`, is that simply //! calling `.type_id()` on the value will produce the `TypeId` of the //! *container*, not the underlying trait object. This can be avoided by //! converting the smart pointer into a `&dyn Any` instead, which will return //! the object's `TypeId`. For example: //! //! ``` //! use std::any::{Any, TypeId}; //! //! let boxed: Box = Box::new(3_i32); //! //! // You're more likely to want this: //! let actual_id = (&*boxed).type_id(); //! // ... than this: //! let boxed_id = boxed.type_id(); //! //! assert_eq!(actual_id, TypeId::of::()); //! assert_eq!(boxed_id, TypeId::of::>()); //! ``` //! //! ## Examples //! //! Consider a situation where we want to log out a value passed to a function. //! We know the value we're working on implements Debug, but we don't know its //! concrete type. We want to give special treatment to certain types: in this //! case printing out the length of String values prior to their value. //! We don't know the concrete type of our value at compile time, so we need to //! use runtime reflection instead. //! //! ```rust //! use std::fmt::Debug; //! use std::any::Any; //! //! // Logger function for any type that implements Debug. //! fn log(value: &T) { //! let value_any = value as &dyn Any; //! //! // Try to convert our value to a `String`. If successful, we want to //! // output the String`'s length as well as its value. If not, it's a //! // different type: just print it out unadorned. //! match value_any.downcast_ref::() { //! Some(as_string) => { //! println!("String ({}): {}", as_string.len(), as_string); //! } //! None => { //! println!("{value:?}"); //! } //! } //! } //! //! // This function wants to log its parameter out prior to doing work with it. //! fn do_work(value: &T) { //! log(value); //! // ...do some other work //! } //! //! fn main() { //! let my_string = "Hello World".to_string(); //! do_work(&my_string); //! //! let my_i8: i8 = 100; //! do_work(&my_i8); //! } //! ``` //! //! # `Provider` and `Demand` //! //! `Provider` and the associated APIs support generic, type-driven access to data, and a mechanism //! for implementers to provide such data. The key parts of the interface are the `Provider` //! trait for objects which can provide data, and the [`request_value`] and [`request_ref`] //! functions for requesting data from an object which implements `Provider`. Generally, end users //! should not call `request_*` directly, they are helper functions for intermediate implementers //! to use to implement a user-facing interface. This is purely for the sake of ergonomics, there is //! no safety concern here; intermediate implementers can typically support methods rather than //! free functions and use more specific names. //! //! Typically, a data provider is a trait object of a trait which extends `Provider`. A user will //! request data from a trait object by specifying the type of the data. //! //! ## Data flow //! //! * A user requests an object of a specific type, which is delegated to `request_value` or //! `request_ref` //! * `request_*` creates a `Demand` object and passes it to `Provider::provide` //! * The data provider's implementation of `Provider::provide` tries providing values of //! different types using `Demand::provide_*`. If the type matches the type requested by //! the user, the value will be stored in the `Demand` object. //! * `request_*` unpacks the `Demand` object and returns any stored value to the user. //! //! ## Examples //! //! ``` //! # #![feature(provide_any)] //! use std::any::{Provider, Demand, request_ref}; //! //! // Definition of MyTrait, a data provider. //! trait MyTrait: Provider { //! // ... //! } //! //! // Methods on `MyTrait` trait objects. //! impl dyn MyTrait + '_ { //! /// Get a reference to a field of the implementing struct. //! pub fn get_context_by_ref(&self) -> Option<&T> { //! request_ref::(self) //! } //! } //! //! // Downstream implementation of `MyTrait` and `Provider`. //! # struct SomeConcreteType { some_string: String } //! impl MyTrait for SomeConcreteType { //! // ... //! } //! //! impl Provider for SomeConcreteType { //! fn provide<'a>(&'a self, demand: &mut Demand<'a>) { //! // Provide a string reference. We could provide multiple values with //! // different types here. //! demand.provide_ref::(&self.some_string); //! } //! } //! //! // Downstream usage of `MyTrait`. //! fn use_my_trait(obj: &dyn MyTrait) { //! // Request a &String from obj. //! let _ = obj.get_context_by_ref::().unwrap(); //! } //! ``` //! //! In this example, if the concrete type of `obj` in `use_my_trait` is `SomeConcreteType`, then //! the `get_context_by_ref` call will return a reference to `obj.some_string` with type `&String`. #![stable(feature = "rust1", since = "1.0.0")] use crate::fmt; use crate::intrinsics; /////////////////////////////////////////////////////////////////////////////// // Any trait /////////////////////////////////////////////////////////////////////////////// /// A trait to emulate dynamic typing. /// /// Most types implement `Any`. However, any type which contains a non-`'static` reference does not. /// See the [module-level documentation][mod] for more details. /// /// [mod]: crate::any // This trait is not unsafe, though we rely on the specifics of it's sole impl's // `type_id` function in unsafe code (e.g., `downcast`). Normally, that would be // a problem, but because the only impl of `Any` is a blanket implementation, no // other code can implement `Any`. // // We could plausibly make this trait unsafe -- it would not cause breakage, // since we control all the implementations -- but we choose not to as that's // both not really necessary and may confuse users about the distinction of // unsafe traits and unsafe methods (i.e., `type_id` would still be safe to call, // but we would likely want to indicate as such in documentation). #[stable(feature = "rust1", since = "1.0.0")] #[cfg_attr(not(test), rustc_diagnostic_item = "Any")] pub trait Any: 'static { /// Gets the `TypeId` of `self`. /// /// # Examples /// /// ``` /// use std::any::{Any, TypeId}; /// /// fn is_string(s: &dyn Any) -> bool { /// TypeId::of::() == s.type_id() /// } /// /// assert_eq!(is_string(&0), false); /// assert_eq!(is_string(&"cookie monster".to_string()), true); /// ``` #[stable(feature = "get_type_id", since = "1.34.0")] fn type_id(&self) -> TypeId; } #[stable(feature = "rust1", since = "1.0.0")] impl Any for T { fn type_id(&self) -> TypeId { TypeId::of::() } } /////////////////////////////////////////////////////////////////////////////// // Extension methods for Any trait objects. /////////////////////////////////////////////////////////////////////////////// #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for dyn Any { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Any").finish_non_exhaustive() } } // Ensure that the result of e.g., joining a thread can be printed and // hence used with `unwrap`. May eventually no longer be needed if // dispatch works with upcasting. #[stable(feature = "rust1", since = "1.0.0")] impl fmt::Debug for dyn Any + Send { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Any").finish_non_exhaustive() } } #[stable(feature = "any_send_sync_methods", since = "1.28.0")] impl fmt::Debug for dyn Any + Send + Sync { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Any").finish_non_exhaustive() } } impl dyn Any { /// Returns `true` if the inner type is the same as `T`. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn is_string(s: &dyn Any) { /// if s.is::() { /// println!("It's a string!"); /// } else { /// println!("Not a string..."); /// } /// } /// /// is_string(&0); /// is_string(&"cookie monster".to_string()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is(&self) -> bool { // Get `TypeId` of the type this function is instantiated with. let t = TypeId::of::(); // Get `TypeId` of the type in the trait object (`self`). let concrete = self.type_id(); // Compare both `TypeId`s on equality. t == concrete } /// Returns some reference to the inner value if it is of type `T`, or /// `None` if it isn't. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn print_if_string(s: &dyn Any) { /// if let Some(string) = s.downcast_ref::() { /// println!("It's a string({}): '{}'", string.len(), string); /// } else { /// println!("Not a string..."); /// } /// } /// /// print_if_string(&0); /// print_if_string(&"cookie monster".to_string()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn downcast_ref(&self) -> Option<&T> { if self.is::() { // SAFETY: just checked whether we are pointing to the correct type, and we can rely on // that check for memory safety because we have implemented Any for all types; no other // impls can exist as they would conflict with our impl. unsafe { Some(self.downcast_ref_unchecked()) } } else { None } } /// Returns some mutable reference to the inner value if it is of type `T`, or /// `None` if it isn't. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn modify_if_u32(s: &mut dyn Any) { /// if let Some(num) = s.downcast_mut::() { /// *num = 42; /// } /// } /// /// let mut x = 10u32; /// let mut s = "starlord".to_string(); /// /// modify_if_u32(&mut x); /// modify_if_u32(&mut s); /// /// assert_eq!(x, 42); /// assert_eq!(&s, "starlord"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn downcast_mut(&mut self) -> Option<&mut T> { if self.is::() { // SAFETY: just checked whether we are pointing to the correct type, and we can rely on // that check for memory safety because we have implemented Any for all types; no other // impls can exist as they would conflict with our impl. unsafe { Some(self.downcast_mut_unchecked()) } } else { None } } /// Returns a reference to the inner value as type `dyn T`. /// /// # Examples /// /// ``` /// #![feature(downcast_unchecked)] /// /// use std::any::Any; /// /// let x: Box = Box::new(1_usize); /// /// unsafe { /// assert_eq!(*x.downcast_ref_unchecked::(), 1); /// } /// ``` /// /// # Safety /// /// The contained value must be of type `T`. Calling this method /// with the incorrect type is *undefined behavior*. #[unstable(feature = "downcast_unchecked", issue = "90850")] #[inline] pub unsafe fn downcast_ref_unchecked(&self) -> &T { debug_assert!(self.is::()); // SAFETY: caller guarantees that T is the correct type unsafe { &*(self as *const dyn Any as *const T) } } /// Returns a mutable reference to the inner value as type `dyn T`. /// /// # Examples /// /// ``` /// #![feature(downcast_unchecked)] /// /// use std::any::Any; /// /// let mut x: Box = Box::new(1_usize); /// /// unsafe { /// *x.downcast_mut_unchecked::() += 1; /// } /// /// assert_eq!(*x.downcast_ref::().unwrap(), 2); /// ``` /// /// # Safety /// /// The contained value must be of type `T`. Calling this method /// with the incorrect type is *undefined behavior*. #[unstable(feature = "downcast_unchecked", issue = "90850")] #[inline] pub unsafe fn downcast_mut_unchecked(&mut self) -> &mut T { debug_assert!(self.is::()); // SAFETY: caller guarantees that T is the correct type unsafe { &mut *(self as *mut dyn Any as *mut T) } } } impl dyn Any + Send { /// Forwards to the method defined on the type `dyn Any`. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn is_string(s: &(dyn Any + Send)) { /// if s.is::() { /// println!("It's a string!"); /// } else { /// println!("Not a string..."); /// } /// } /// /// is_string(&0); /// is_string(&"cookie monster".to_string()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn is(&self) -> bool { ::is::(self) } /// Forwards to the method defined on the type `dyn Any`. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn print_if_string(s: &(dyn Any + Send)) { /// if let Some(string) = s.downcast_ref::() { /// println!("It's a string({}): '{}'", string.len(), string); /// } else { /// println!("Not a string..."); /// } /// } /// /// print_if_string(&0); /// print_if_string(&"cookie monster".to_string()); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn downcast_ref(&self) -> Option<&T> { ::downcast_ref::(self) } /// Forwards to the method defined on the type `dyn Any`. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn modify_if_u32(s: &mut (dyn Any + Send)) { /// if let Some(num) = s.downcast_mut::() { /// *num = 42; /// } /// } /// /// let mut x = 10u32; /// let mut s = "starlord".to_string(); /// /// modify_if_u32(&mut x); /// modify_if_u32(&mut s); /// /// assert_eq!(x, 42); /// assert_eq!(&s, "starlord"); /// ``` #[stable(feature = "rust1", since = "1.0.0")] #[inline] pub fn downcast_mut(&mut self) -> Option<&mut T> { ::downcast_mut::(self) } /// Forwards to the method defined on the type `dyn Any`. /// /// # Examples /// /// ``` /// #![feature(downcast_unchecked)] /// /// use std::any::Any; /// /// let x: Box = Box::new(1_usize); /// /// unsafe { /// assert_eq!(*x.downcast_ref_unchecked::(), 1); /// } /// ``` /// /// # Safety /// /// Same as the method on the type `dyn Any`. #[unstable(feature = "downcast_unchecked", issue = "90850")] #[inline] pub unsafe fn downcast_ref_unchecked(&self) -> &T { // SAFETY: guaranteed by caller unsafe { ::downcast_ref_unchecked::(self) } } /// Forwards to the method defined on the type `dyn Any`. /// /// # Examples /// /// ``` /// #![feature(downcast_unchecked)] /// /// use std::any::Any; /// /// let mut x: Box = Box::new(1_usize); /// /// unsafe { /// *x.downcast_mut_unchecked::() += 1; /// } /// /// assert_eq!(*x.downcast_ref::().unwrap(), 2); /// ``` /// /// # Safety /// /// Same as the method on the type `dyn Any`. #[unstable(feature = "downcast_unchecked", issue = "90850")] #[inline] pub unsafe fn downcast_mut_unchecked(&mut self) -> &mut T { // SAFETY: guaranteed by caller unsafe { ::downcast_mut_unchecked::(self) } } } impl dyn Any + Send + Sync { /// Forwards to the method defined on the type `Any`. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn is_string(s: &(dyn Any + Send + Sync)) { /// if s.is::() { /// println!("It's a string!"); /// } else { /// println!("Not a string..."); /// } /// } /// /// is_string(&0); /// is_string(&"cookie monster".to_string()); /// ``` #[stable(feature = "any_send_sync_methods", since = "1.28.0")] #[inline] pub fn is(&self) -> bool { ::is::(self) } /// Forwards to the method defined on the type `Any`. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn print_if_string(s: &(dyn Any + Send + Sync)) { /// if let Some(string) = s.downcast_ref::() { /// println!("It's a string({}): '{}'", string.len(), string); /// } else { /// println!("Not a string..."); /// } /// } /// /// print_if_string(&0); /// print_if_string(&"cookie monster".to_string()); /// ``` #[stable(feature = "any_send_sync_methods", since = "1.28.0")] #[inline] pub fn downcast_ref(&self) -> Option<&T> { ::downcast_ref::(self) } /// Forwards to the method defined on the type `Any`. /// /// # Examples /// /// ``` /// use std::any::Any; /// /// fn modify_if_u32(s: &mut (dyn Any + Send + Sync)) { /// if let Some(num) = s.downcast_mut::() { /// *num = 42; /// } /// } /// /// let mut x = 10u32; /// let mut s = "starlord".to_string(); /// /// modify_if_u32(&mut x); /// modify_if_u32(&mut s); /// /// assert_eq!(x, 42); /// assert_eq!(&s, "starlord"); /// ``` #[stable(feature = "any_send_sync_methods", since = "1.28.0")] #[inline] pub fn downcast_mut(&mut self) -> Option<&mut T> { ::downcast_mut::(self) } /// Forwards to the method defined on the type `Any`. /// /// # Examples /// /// ``` /// #![feature(downcast_unchecked)] /// /// use std::any::Any; /// /// let x: Box = Box::new(1_usize); /// /// unsafe { /// assert_eq!(*x.downcast_ref_unchecked::(), 1); /// } /// ``` #[unstable(feature = "downcast_unchecked", issue = "90850")] #[inline] pub unsafe fn downcast_ref_unchecked(&self) -> &T { // SAFETY: guaranteed by caller unsafe { ::downcast_ref_unchecked::(self) } } /// Forwards to the method defined on the type `Any`. /// /// # Examples /// /// ``` /// #![feature(downcast_unchecked)] /// /// use std::any::Any; /// /// let mut x: Box = Box::new(1_usize); /// /// unsafe { /// *x.downcast_mut_unchecked::() += 1; /// } /// /// assert_eq!(*x.downcast_ref::().unwrap(), 2); /// ``` #[unstable(feature = "downcast_unchecked", issue = "90850")] #[inline] pub unsafe fn downcast_mut_unchecked(&mut self) -> &mut T { // SAFETY: guaranteed by caller unsafe { ::downcast_mut_unchecked::(self) } } } /////////////////////////////////////////////////////////////////////////////// // TypeID and its methods /////////////////////////////////////////////////////////////////////////////// /// A `TypeId` represents a globally unique identifier for a type. /// /// Each `TypeId` is an opaque object which does not allow inspection of what's /// inside but does allow basic operations such as cloning, comparison, /// printing, and showing. /// /// A `TypeId` is currently only available for types which ascribe to `'static`, /// but this limitation may be removed in the future. /// /// While `TypeId` implements `Hash`, `PartialOrd`, and `Ord`, it is worth /// noting that the hashes and ordering will vary between Rust releases. Beware /// of relying on them inside of your code! #[derive(Clone, Copy, Debug, Hash, Eq)] #[derive_const(PartialEq, PartialOrd, Ord)] #[stable(feature = "rust1", since = "1.0.0")] pub struct TypeId { t: u64, } impl TypeId { /// Returns the `TypeId` of the type this generic function has been /// instantiated with. /// /// # Examples /// /// ``` /// use std::any::{Any, TypeId}; /// /// fn is_string(_s: &T) -> bool { /// TypeId::of::() == TypeId::of::() /// } /// /// assert_eq!(is_string(&0), false); /// assert_eq!(is_string(&"cookie monster".to_string()), true); /// ``` #[must_use] #[stable(feature = "rust1", since = "1.0.0")] #[rustc_const_unstable(feature = "const_type_id", issue = "77125")] pub const fn of() -> TypeId { TypeId { t: intrinsics::type_id::() } } } /// Returns the name of a type as a string slice. /// /// # Note /// /// This is intended for diagnostic use. The exact contents and format of the /// string returned are not specified, other than being a best-effort /// description of the type. For example, amongst the strings /// that `type_name::>()` might return are `"Option"` and /// `"std::option::Option"`. /// /// The returned string must not be considered to be a unique identifier of a /// type as multiple types may map to the same type name. Similarly, there is no /// guarantee that all parts of a type will appear in the returned string: for /// example, lifetime specifiers are currently not included. In addition, the /// output may change between versions of the compiler. /// /// The current implementation uses the same infrastructure as compiler /// diagnostics and debuginfo, but this is not guaranteed. /// /// # Examples /// /// ```rust /// assert_eq!( /// std::any::type_name::>(), /// "core::option::Option", /// ); /// ``` #[must_use] #[stable(feature = "type_name", since = "1.38.0")] #[rustc_const_unstable(feature = "const_type_name", issue = "63084")] pub const fn type_name() -> &'static str { intrinsics::type_name::() } /// Returns the name of the type of the pointed-to value as a string slice. /// This is the same as `type_name::()`, but can be used where the type of a /// variable is not easily available. /// /// # Note /// /// This is intended for diagnostic use. The exact contents and format of the /// string are not specified, other than being a best-effort description of the /// type. For example, `type_name_of_val::>(None)` could return /// `"Option"` or `"std::option::Option"`, but not /// `"foobar"`. In addition, the output may change between versions of the /// compiler. /// /// This function does not resolve trait objects, /// meaning that `type_name_of_val(&7u32 as &dyn Debug)` /// may return `"dyn Debug"`, but not `"u32"`. /// /// The type name should not be considered a unique identifier of a type; /// multiple types may share the same type name. /// /// The current implementation uses the same infrastructure as compiler /// diagnostics and debuginfo, but this is not guaranteed. /// /// # Examples /// /// Prints the default integer and float types. /// /// ```rust /// #![feature(type_name_of_val)] /// use std::any::type_name_of_val; /// /// let x = 1; /// println!("{}", type_name_of_val(&x)); /// let y = 1.0; /// println!("{}", type_name_of_val(&y)); /// ``` #[must_use] #[unstable(feature = "type_name_of_val", issue = "66359")] #[rustc_const_unstable(feature = "const_type_name", issue = "63084")] pub const fn type_name_of_val(_val: &T) -> &'static str { type_name::() } /////////////////////////////////////////////////////////////////////////////// // Provider trait /////////////////////////////////////////////////////////////////////////////// /// Trait implemented by a type which can dynamically provide values based on type. #[unstable(feature = "provide_any", issue = "96024")] pub trait Provider { /// Data providers should implement this method to provide *all* values they are able to /// provide by using `demand`. /// /// Note that the `provide_*` methods on `Demand` have short-circuit semantics: if an earlier /// method has successfully provided a value, then later methods will not get an opportunity to /// provide. /// /// # Examples /// /// Provides a reference to a field with type `String` as a `&str`, and a value of /// type `i32`. /// /// ```rust /// # #![feature(provide_any)] /// use std::any::{Provider, Demand}; /// # struct SomeConcreteType { field: String, num_field: i32 } /// /// impl Provider for SomeConcreteType { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// demand.provide_ref::(&self.field) /// .provide_value::(self.num_field); /// } /// } /// ``` #[unstable(feature = "provide_any", issue = "96024")] fn provide<'a>(&'a self, demand: &mut Demand<'a>); } /// Request a value from the `Provider`. /// /// # Examples /// /// Get a string value from a provider. /// /// ```rust /// # #![feature(provide_any)] /// use std::any::{Provider, request_value}; /// /// fn get_string(provider: &impl Provider) -> String { /// request_value::(provider).unwrap() /// } /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn request_value<'a, T>(provider: &'a (impl Provider + ?Sized)) -> Option where T: 'static, { request_by_type_tag::<'a, tags::Value>(provider) } /// Request a reference from the `Provider`. /// /// # Examples /// /// Get a string reference from a provider. /// /// ```rust /// # #![feature(provide_any)] /// use std::any::{Provider, request_ref}; /// /// fn get_str(provider: &impl Provider) -> &str { /// request_ref::(provider).unwrap() /// } /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn request_ref<'a, T>(provider: &'a (impl Provider + ?Sized)) -> Option<&'a T> where T: 'static + ?Sized, { request_by_type_tag::<'a, tags::Ref>>(provider) } /// Request a specific value by tag from the `Provider`. fn request_by_type_tag<'a, I>(provider: &'a (impl Provider + ?Sized)) -> Option where I: tags::Type<'a>, { let mut tagged = TaggedOption::<'a, I>(None); provider.provide(tagged.as_demand()); tagged.0 } /////////////////////////////////////////////////////////////////////////////// // Demand and its methods /////////////////////////////////////////////////////////////////////////////// /// A helper object for providing data by type. /// /// A data provider provides values by calling this type's provide methods. #[unstable(feature = "provide_any", issue = "96024")] #[repr(transparent)] pub struct Demand<'a>(dyn Erased<'a> + 'a); impl<'a> Demand<'a> { /// Create a new `&mut Demand` from a `&mut dyn Erased` trait object. fn new<'b>(erased: &'b mut (dyn Erased<'a> + 'a)) -> &'b mut Demand<'a> { // SAFETY: transmuting `&mut (dyn Erased<'a> + 'a)` to `&mut Demand<'a>` is safe since // `Demand` is repr(transparent). unsafe { &mut *(erased as *mut dyn Erased<'a> as *mut Demand<'a>) } } /// Provide a value or other type with only static lifetimes. /// /// # Examples /// /// Provides an `u8`. /// /// ```rust /// #![feature(provide_any)] /// /// use std::any::{Provider, Demand}; /// # struct SomeConcreteType { field: u8 } /// /// impl Provider for SomeConcreteType { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// demand.provide_value::(self.field); /// } /// } /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn provide_value(&mut self, value: T) -> &mut Self where T: 'static, { self.provide::>(value) } /// Provide a value or other type with only static lifetimes computed using a closure. /// /// # Examples /// /// Provides a `String` by cloning. /// /// ```rust /// #![feature(provide_any)] /// /// use std::any::{Provider, Demand}; /// # struct SomeConcreteType { field: String } /// /// impl Provider for SomeConcreteType { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// demand.provide_value_with::(|| self.field.clone()); /// } /// } /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn provide_value_with(&mut self, fulfil: impl FnOnce() -> T) -> &mut Self where T: 'static, { self.provide_with::>(fulfil) } /// Provide a reference. The referee type must be bounded by `'static`, /// but may be unsized. /// /// # Examples /// /// Provides a reference to a field as a `&str`. /// /// ```rust /// #![feature(provide_any)] /// /// use std::any::{Provider, Demand}; /// # struct SomeConcreteType { field: String } /// /// impl Provider for SomeConcreteType { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// demand.provide_ref::(&self.field); /// } /// } /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn provide_ref(&mut self, value: &'a T) -> &mut Self { self.provide::>>(value) } /// Provide a reference computed using a closure. The referee type /// must be bounded by `'static`, but may be unsized. /// /// # Examples /// /// Provides a reference to a field as a `&str`. /// /// ```rust /// #![feature(provide_any)] /// /// use std::any::{Provider, Demand}; /// # struct SomeConcreteType { business: String, party: String } /// # fn today_is_a_weekday() -> bool { true } /// /// impl Provider for SomeConcreteType { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// demand.provide_ref_with::(|| { /// if today_is_a_weekday() { /// &self.business /// } else { /// &self.party /// } /// }); /// } /// } /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn provide_ref_with( &mut self, fulfil: impl FnOnce() -> &'a T, ) -> &mut Self { self.provide_with::>>(fulfil) } /// Provide a value with the given `Type` tag. fn provide(&mut self, value: I::Reified) -> &mut Self where I: tags::Type<'a>, { if let Some(res @ TaggedOption(None)) = self.0.downcast_mut::() { res.0 = Some(value); } self } /// Provide a value with the given `Type` tag, using a closure to prevent unnecessary work. fn provide_with(&mut self, fulfil: impl FnOnce() -> I::Reified) -> &mut Self where I: tags::Type<'a>, { if let Some(res @ TaggedOption(None)) = self.0.downcast_mut::() { res.0 = Some(fulfil()); } self } /// Check if the `Demand` would be satisfied if provided with a /// value of the specified type. If the type does not match or has /// already been provided, returns false. /// /// # Examples /// /// Check if an `u8` still needs to be provided and then provides /// it. /// /// ```rust /// #![feature(provide_any)] /// /// use std::any::{Provider, Demand}; /// /// struct Parent(Option); /// /// impl Provider for Parent { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// if let Some(v) = self.0 { /// demand.provide_value::(v); /// } /// } /// } /// /// struct Child { /// parent: Parent, /// } /// /// impl Child { /// // Pretend that this takes a lot of resources to evaluate. /// fn an_expensive_computation(&self) -> Option { /// Some(99) /// } /// } /// /// impl Provider for Child { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// // In general, we don't know if this call will provide /// // an `u8` value or not... /// self.parent.provide(demand); /// /// // ...so we check to see if the `u8` is needed before /// // we run our expensive computation. /// if demand.would_be_satisfied_by_value_of::() { /// if let Some(v) = self.an_expensive_computation() { /// demand.provide_value::(v); /// } /// } /// /// // The demand will be satisfied now, regardless of if /// // the parent provided the value or we did. /// assert!(!demand.would_be_satisfied_by_value_of::()); /// } /// } /// /// let parent = Parent(Some(42)); /// let child = Child { parent }; /// assert_eq!(Some(42), std::any::request_value::(&child)); /// /// let parent = Parent(None); /// let child = Child { parent }; /// assert_eq!(Some(99), std::any::request_value::(&child)); /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn would_be_satisfied_by_value_of(&self) -> bool where T: 'static, { self.would_be_satisfied_by::>() } /// Check if the `Demand` would be satisfied if provided with a /// reference to a value of the specified type. If the type does /// not match or has already been provided, returns false. /// /// # Examples /// /// Check if a `&str` still needs to be provided and then provides /// it. /// /// ```rust /// #![feature(provide_any)] /// /// use std::any::{Provider, Demand}; /// /// struct Parent(Option); /// /// impl Provider for Parent { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// if let Some(v) = &self.0 { /// demand.provide_ref::(v); /// } /// } /// } /// /// struct Child { /// parent: Parent, /// name: String, /// } /// /// impl Child { /// // Pretend that this takes a lot of resources to evaluate. /// fn an_expensive_computation(&self) -> Option<&str> { /// Some(&self.name) /// } /// } /// /// impl Provider for Child { /// fn provide<'a>(&'a self, demand: &mut Demand<'a>) { /// // In general, we don't know if this call will provide /// // a `str` reference or not... /// self.parent.provide(demand); /// /// // ...so we check to see if the `&str` is needed before /// // we run our expensive computation. /// if demand.would_be_satisfied_by_ref_of::() { /// if let Some(v) = self.an_expensive_computation() { /// demand.provide_ref::(v); /// } /// } /// /// // The demand will be satisfied now, regardless of if /// // the parent provided the reference or we did. /// assert!(!demand.would_be_satisfied_by_ref_of::()); /// } /// } /// /// let parent = Parent(Some("parent".into())); /// let child = Child { parent, name: "child".into() }; /// assert_eq!(Some("parent"), std::any::request_ref::(&child)); /// /// let parent = Parent(None); /// let child = Child { parent, name: "child".into() }; /// assert_eq!(Some("child"), std::any::request_ref::(&child)); /// ``` #[unstable(feature = "provide_any", issue = "96024")] pub fn would_be_satisfied_by_ref_of(&self) -> bool where T: ?Sized + 'static, { self.would_be_satisfied_by::>>() } fn would_be_satisfied_by(&self) -> bool where I: tags::Type<'a>, { matches!(self.0.downcast::(), Some(TaggedOption(None))) } } #[unstable(feature = "provide_any", issue = "96024")] impl<'a> fmt::Debug for Demand<'a> { fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result { f.debug_struct("Demand").finish_non_exhaustive() } } /////////////////////////////////////////////////////////////////////////////// // Type tags /////////////////////////////////////////////////////////////////////////////// mod tags { //! Type tags are used to identify a type using a separate value. This module includes type tags //! for some very common types. //! //! Currently type tags are not exposed to the user. But in the future, if you want to use the //! Provider API with more complex types (typically those including lifetime parameters), you //! will need to write your own tags. use crate::marker::PhantomData; /// This trait is implemented by specific tag types in order to allow /// describing a type which can be requested for a given lifetime `'a`. /// /// A few example implementations for type-driven tags can be found in this /// module, although crates may also implement their own tags for more /// complex types with internal lifetimes. pub trait Type<'a>: Sized + 'static { /// The type of values which may be tagged by this tag for the given /// lifetime. type Reified: 'a; } /// Similar to the [`Type`] trait, but represents a type which may be unsized (i.e., has a /// `?Sized` bound). E.g., `str`. pub trait MaybeSizedType<'a>: Sized + 'static { type Reified: 'a + ?Sized; } impl<'a, T: Type<'a>> MaybeSizedType<'a> for T { type Reified = T::Reified; } /// Type-based tag for types bounded by `'static`, i.e., with no borrowed elements. #[derive(Debug)] pub struct Value(PhantomData); impl<'a, T: 'static> Type<'a> for Value { type Reified = T; } /// Type-based tag similar to [`Value`] but which may be unsized (i.e., has a `?Sized` bound). #[derive(Debug)] pub struct MaybeSizedValue(PhantomData); impl<'a, T: ?Sized + 'static> MaybeSizedType<'a> for MaybeSizedValue { type Reified = T; } /// Type-based tag for reference types (`&'a T`, where T is represented by /// `>::Reified`. #[derive(Debug)] pub struct Ref(PhantomData); impl<'a, I: MaybeSizedType<'a>> Type<'a> for Ref { type Reified = &'a I::Reified; } } /// An `Option` with a type tag `I`. /// /// Since this struct implements `Erased`, the type can be erased to make a dynamically typed /// option. The type can be checked dynamically using `Erased::tag_id` and since this is statically /// checked for the concrete type, there is some degree of type safety. #[repr(transparent)] struct TaggedOption<'a, I: tags::Type<'a>>(Option); impl<'a, I: tags::Type<'a>> TaggedOption<'a, I> { fn as_demand(&mut self) -> &mut Demand<'a> { Demand::new(self as &mut (dyn Erased<'a> + 'a)) } } /// Represents a type-erased but identifiable object. /// /// This trait is exclusively implemented by the `TaggedOption` type. unsafe trait Erased<'a>: 'a { /// The `TypeId` of the erased type. fn tag_id(&self) -> TypeId; } unsafe impl<'a, I: tags::Type<'a>> Erased<'a> for TaggedOption<'a, I> { fn tag_id(&self) -> TypeId { TypeId::of::() } } #[unstable(feature = "provide_any", issue = "96024")] impl<'a> dyn Erased<'a> + 'a { /// Returns some reference to the dynamic value if it is tagged with `I`, /// or `None` otherwise. #[inline] fn downcast(&self) -> Option<&TaggedOption<'a, I>> where I: tags::Type<'a>, { if self.tag_id() == TypeId::of::() { // SAFETY: Just checked whether we're pointing to an I. Some(unsafe { &*(self as *const Self).cast::>() }) } else { None } } /// Returns some mutable reference to the dynamic value if it is tagged with `I`, /// or `None` otherwise. #[inline] fn downcast_mut(&mut self) -> Option<&mut TaggedOption<'a, I>> where I: tags::Type<'a>, { if self.tag_id() == TypeId::of::() { // SAFETY: Just checked whether we're pointing to an I. Some(unsafe { &mut *(self as *mut Self).cast::>() }) } else { None } } }